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Summary

In order to protect (copy)rights of digital content, means are sought to stop piracy. Several meth-
ods are known to be instrumental for achieving this goal. This report considers one such method:
digital watermarking, more specific quantization based watermarking methods. A general water-
marking scheme consist of a watermark embedder, a channel representing some sort of processing
on the watermarked signal, and a watermark detector. The problems related to any watermarking
method are the perceptual quality of the watermarked signal, and the possibility to retrieve the
embedded information at the detector.

From current quantization based watermarking algorithms, like QIM, DC-QIM, SCS, etc., it is
known that the achievable rates are promising, but that it is hard to meet the required robustness
demands. Therefore improvements of current algorithms are sought that are more robust against
normal processing. This report focusses on two possible improvements, namely the use of error
correcting codes (ECC) and the use of adaptive quantization.

Watermarking can be seen as a form of communication. Therefore, the robustness demand for
watermarking is equivalent with the demand of reliable communication for communication mod-
els. Therefore, the use of ECC gives certainly an improvement in robustness. This is confirmed
by experiments. Repetition codes are simple to implement and already gives a gain in robustness.
The concatenation of convolutional codes with repetition codes gives an improvement only in the
case of mild degradations due to the above mentioned processing.

In this report watermarking of signals with a luminance component are considered, like digital
images and video data. Adaptive quantization refers to the use of a larger quantization step size
for high luminance values, and a lower quantization step size for low luminance values. It is
known from Weber’s law that the human eye is less sensitive for brightness changes in higher
luminance values, than it is in lower luminance values. Therefore, using adaptive quantization
does not come at the cost of a loss of perceptual quality of the host signal. Adaptive quantization
gives a large robustness gain for brightness scaling attacks. However, the adaptive quantization
step size must be estimated at the detector, which potentially introduces an additional source of
errors in the retrieved message. By means of experiments it is shown that this is not such a big
problem. Therefore, adaptive quantization improves the robustness of the watermarking scheme.

It is valuable to know the performance of the watermarking scheme with the two improvements.
The used performance measure is the bit error probability. The total bit error probability is build
up from two components: One estimates the bit error probability for the case of fixed quantization,
with an Additive White Gaussian Noise (AWGN) or uniform noise attack; The other estimates the
bit error probability for the case of adaptive quantization, without any attack. Models for these
two bit error probabilities are developed.

At the embedder the distortion compensation parameterα has to be set. The optimal value for this
parameter is derived for the case of a Gaussian host signal and an AWGN channel. The value of
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this optimal parameterα∗ is compared with an earlier result of Eggers [17] and is shown to be
identical. But whereas Eggers found a numerical function, which he numerically optimizes, our
result leads to an analytical function, which can be optimized numerically.

So, we use two methods to improve robustness, namely the use of error correcting codes and
an adaptive quantization step size. These two methods are shown to be improvements. Also
an analytical model for the performance is derived, which can be used to verify analytically the
robustness improvement.
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Chapter 1

Preface

In today’s modern world, digital products are seen everywhere. The digitalization of all kinds of
media, like digital audio and video, has a lot of benefits for the consumer. Copying and distributing
digital content has become relatively simple with the introduction of computers and (fast) internet.
But there are also some drawbacks. Analog video, for example, has a build in copy protection
system. An analog copy results in quality degradation, and a copy of a copy of an analog video
has degraded so much, that it is not a pleasure to look at. Digital video however doesn’t have
this build in copy protection system, because a copy of a digital video is identical to the original;
There is no quality loss. Therefore it has become difficult for people to protect their intellectual
properties, like the intellectual rights on a digital video.

Methods to prevent the illegal copying of digital video has been sought since. One way of pre-
venting illegal copying is the use of digital watermarks. This is the subject of the report.

Watermarking for example digital video is changing the video sequence slightly, in such a way
that at a later time, this slight change can be detected. For example, if a DVD recorder is equipped
with such a detection device, it can search for a watermark in all video offered for copying. If
a watermark is found, copying is denied. In this way digital watermarking can provide a copy
protection mechanism.

Two of the most important demands that have to be met for watermarking digital content are the
following. The slight change made to the content, has to be slight indeed; People should not be
able to see or hear (in the case of audio) that an image, a video sequence, an audio stream, etc., is
watermarked. The second demand is that the watermark should not get lost very easily. For exam-
ple: modern televisions are utilized with image format buttons in order to switch between screen
ratio’s of 4:3 and 16:9. The watermark should still be detectable after such a switch. Other things
a watermark should be able to resist are, for example, the broadcasting of video over satellites,
conversions from one format to another (for examplewav to mp3 for audio), etc.

This report focusses on improvements of an existing watermarking algorithm in order to get better
results for the above mentioned two demands. In Chapter2 and3 a general introduction to digi-
tal watermarking and to a specific existing watermark algorithm are given, respectively. Only in
Chapter4 a more detailed problem description is given, because at that point the necessary termi-
nology has been derived. In later chapters, possible solutions to the problems stated in Chapter4
are derived.

In this report some abbreviations are used which the reader might not be familiar with. These
abbreviations, together with the notation used in this report, are listed in AppendixA and the

1
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Chapter 2

Introduction

In this chapter digital watermarking is defined (see Section2.1) and some of its applications are
given in Section2.2. In Section2.3 criteria are given to judge the quality of a watermarking
process. Some characteristics of the Human Visual System (HVS) are given in Section2.4and in
Section2.5 some of the possible attacks on digital watermarks are described. Finally, in Section
2.6, possible methods to put a watermark in digital content are considered.

For the general principles of digital watermarking the reader is referred to the excellent book of
Cox, Miller and Bloom, see [14].

2.1 What is digital watermarking?

In order to understand what digital watermarking is, it is good to understand the principle of
hiding information, because digital watermarking can be seen as a part of Information Hiding.
In Subsection2.1.1 Information Hiding is treated. The general principles of watermarking are
discussed in Subsection2.1.2. In Subsection2.1.3an analogy with banknotes is drawn.

2.1.1 Information hiding

Information Hiding is the process of sending information from one party to another, such that
either the message or the identity of the sender and the receiver is ’hidden’. Hidden means that the
message can not be read or removed by a third party, either because they don’t know the existence
of the hidden message or they are not capable of doing this.

Already in the early days of history, in the time of the ancient Greek, people used information
hiding techniques. One example (see [27]) tells about Histiaeus who informed his allies about the
exact moment to revolt against the Persians, by shaving the head of a trusted slave and tattooing a
message on his head. The hair of the slave grew back on and the slave was send through enemy
territory, looking like an innocent traveller. On his arrival, the slave just told the allied leader to
shave his head an read the message hidden there.

According to [27] Information Hiding can be divided into four categories:

Covert channels: Covert channels are communication channels that can be exploited by a pro-
cess to transfer information in a manner that violates the systems security policy. So, for
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example, information is carried over unintentionally by a computer program, to a user of the
system.

Steganography: Steganography comes from the Greek wordssteganosand graphie, meaning
”covered” and ”writing”. It comprehends the hiding of a secret message into a host message,
such that nobody suspects its existence.

Anonymity: Anonymity is the communication of a message in which not the message itself is
the secret, but the sender or the receiver or both.

Watermarking: Watermarking is steganography plus a robustness (see Section2.3) requirement;
Watermarking refers to the hiding of a message in a host message in such a way that if this
signal is altered, the hidden message still survives if the host survives.

So watermarking can be seen as a form of hiding information. Steganography and watermarking
are somewhat alike, because both methods have the goal to hide a message in a host signal. There
are however three differences between watermarking and steganography:

1. Watermarking considers information about the object, the host signal, where for steganog-
raphy the hidden message can be anything.

2. The robustness criteria are different. Steganography has the objective that information must
remain hidden, where watermarking has the objective that the information must not be re-
moved, altered or damaged, even if the watermarking algorithm is known to the adversary.

3. Usually steganography is one-to-one and watermarking one-to-many; For steganography
there is usually one sender and one receiver, and for watermarking there is usually one
sender and many receivers.

2.1.2 Digital watermarking

Digital watermarkingis the watermarking of digital content, like digital images, digital audio or
digital video. This digital content is often referred to as thehost signalor thehost data.

Digital watermarking is the process of making small adjustments to the host signal, in such a
way that these adjustments cannot be perceived by humans. These small changes represent in
some way the information one wishes to hide. The changes are called thewatermark. The host
signal together with the watermark adjustments is called thewatermarked signal. If the host
signal is represented byx and the watermarked signal byy, then the watermark, represented by
w, is defined asw � y − x, i.e., the difference between the watermarked and the host signal.
Unless stated otherwise the signal are supposed to beN -dimensional vectors in the real space. So
x = (x1, · · · , xN ), y = (y1, · · · , yN ), with xi, yi ∈ R, i ∈ {1, 2, · · · , N}.

The process of watermarking a host signal is usually referred to asembeddinga message in the host
signal. The process of reading the message at the receiver side is usually referred to asdetecting
a message from the received signal. The devices that embed or detect a watermark are called the
embedderand thedetector, respectively.

Watermarking can be seen as a form of communication. A general communication model is de-
picted in2.1. After a messagem is embedded into a host signalx, the watermarked signaly is
sent over some channel to the receiver. On the path from the sender to the receiver processing

4 c©Philips Electronics Nederland BV 2003
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m̂Embedderm w

x

y = x + w

n

r Detector

Figure 2.1: A general watermarking process. A messagem is embedded in a host signalx.
The embedder uses the host signal to make a watermarkw. The watermarked signal is given by
y = x + w. After the embedding, attacks take place onthe watermarked image, here in the form
of additive noisen. At the detector the signalr = y + n = x + w + n is received. The watermark
is extracted fromr and then decoded to get a messagem̂, which is hopefully the same as the
embedded messagem.

of the watermarked signal will take place. This processing can be anything, ranging from normal
processing to deliberate attacks. In Figure2.1 this processing is depicted with additive noisen.
Processing alters the watermarked signal such that at the detector a signalr is received.

Normal processingis considered to be all the processing that is regularly done on the signal, for
instance compression or perceptual improvement. Two other examples of this ’normal’ processing
are:

• Modern tv’s are equipped with a scaling button to go from one format to another. This
scaling is supposed to be possible without destroying the watermark.

• If a movie is broadcasted using satellites, the film is first compressed, then sent to a satellite
and back to earth, and then decompressed. The compression - decompression combination
introduces a distortion to the movie signal. The watermark is supposed to withstands these
processing steps.

A deliberate attackis a form of processing that has the goal to damage the watermark such that the
sent message can not be retrieved at the detector. However, in this report both kinds of processing
are denoted by the word attack.

So, digital watermarking enables one to send information together with the host signal, the digital
content, and to extract this information afterwards. It can be seen from Figure2.1 that a digital
watermark is subjected to the same attack as the host signal.

2.1.3 Analogy with watermarks in banknotes

From everyday live it is known that watermarks are used in bank notes. This watermark is only
visible under the special operation of holding it to the light; This is the way to detect the watermark.
Seeing the watermark tells us that this bank note is trustworthy. There is an analogy with digital
watermarks. The presence of a digital watermark is only supposed to be detectable by using the
appropriate watermark detector.

For most applications it should be difficult to remove the watermark. Removal of the watermark
from a bank note is likely to destroy the bill in the process. The same is required for digital
watermarks. Depending on the application it is desirable for the digital watermark to survive
common signal processing or sometimes even deliberate attacks, similar to an attempt to remove
a watermark from a bank note.

c©Philips Electronics Nederland BV 2003 5
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For a bank note it should not be possible to recreate the watermark and in doing so being able
to create trustworthy bank notes. This is also required for digital watermarks. It should not be
possible for unauthorized persons to detect, extract or insert a digital watermark from or in audio-
visual content. These aspects are referred to as thesecurityof a digital watermark.

These, and more, requirements for digital watermarks are discussed in more detail in Section2.3.

2.2 Applications

Digital watermarking can be used for a variety of applications. In [13, 22, 27] a number of them
are given:

Proof of ownership: It is possible to embed a watermark in digital content representing copyright
information. In this case the information might prove who is the copyright owner of the
digital content. It should be a hard task to remove the watermark.

Fingerprinting: It is possible to embed a watermark representing a customer identifier. If an
illegal copy of the digital content is found, the copyright owner is able to trace it back to the
customer by reading the watermark on the illegal copy.

Copy Protection: It is possible to embed a watermark in audio-visual content representing a copy
status (e.g. copy once, free to copy, copy never). A watermark detector reads this copy status
message and depending on the nature of this message the digital recorder can decide whether
or not to copy the content.

Broadcast Monitoring: In any broadcasted media, like commercials or television programs, it is
possible to embed a watermark. A watermark detector can automatically check if this media
item was actually broadcasted. ”Other applications include verification of commercial trans-
missions, assessment of sponsorship effectiveness, protection against illegal transmission,
statistical data collection, and analysis of broadcast content [27].”

Data Authentication or Tamper Proofing: It is possible to use a fragile watermark, see Subsec-
tion 2.3.2, to determine if digital content is altered, by checking whether or not the water-
mark is altered. In this case the watermark should be robust against small modifications, but
not against larger modifications. An example is the removal or insertion of a person into an
image of a crime scene: the watermark should not be robust against this kind of modifica-
tions, where it should be robust against minor modifications like lossy compression.

Indexing or Feature Tagging: The watermark can also represent additional information about
the content, like comments, captions or information useful for search engines (keywords).
The security requirements are not relevant in this case, because indexing is considered a
service, so it is unlikely that someone wants to remove the watermark.

Medical safety: In order to not accidently combine an x-ray image with the wrong patient, it is
possible to embed a patients name on the x-ray image. In this case high demands have to be
met with respect to the imperceptibility of the watermark, because a doctor does not want
any uncertainty whether something on his x-ray image is a tumor or just some watermark
artefact.

6 c©Philips Electronics Nederland BV 2003
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Data hiding: A non-perceptible message embedded in digital content can contain secret or just
hidden information. It is for example possible for terrorists to communicate secretly using
digital images on an internet-site.

The first two applications together are usually referred to ascopyright protection.

2.3 Performance criteria and characteristics

In order to judge the quality of a watermark embedding algorithm, some criteria are given. There
are several criteria, some of them already mentioned. Depending on the application some proper-
ties are more important than others. For example for medical safety applications (see Section2.2)
it is important that the watermark is absolutely imperceptible, but not necessarily robust against
signal processing. For copy protection the imperceptibility properties are still high, but not that
absolute. The robustness demands are very high in this case.

The following characteristics of watermarking algorithms are considered: imperceptibility, robust
and fragile watermarks, false positive and false negative probabilities, payload and capacity, secu-
rity, computational cost, blind and non-blind detection. These criteria are described in Subsection
2.3.1- 2.3.7. In Subsection2.3.8the relations between those criteria are given.

2.3.1 Imperceptibility

A first criterion is that of the already mentionedimperceptibilityof the watermark. A watermark is
truly imperceptible if humans cannot distinguish the original from the watermarked data if they are
laid side by side. Sometimes this is relaxed to the condition that one cannot see the watermark if
the original data is not available for comparison. Imperceptibility is also referred to asperceptual
transparency.

In practical situations it is sometimes necessary to allow some amount of perceptibility of the
watermark. But how to measure this amount? The best way would be to use the human senses
to determine the perceptibility, because this is the ultimate criterion for deciding whether or not a
watermark is perceptible for humans. Unfortunately, this is not convenient for practical purposes.
Therefore, some sort of objective measure of perceptibility is used. The best objective measures
are those that imitate the human senses. Unfortunately, these measures are really complex, because
the models of the Human Auditory System (HAS), for audio, or the Human Visual System (HVS),
for still images or video, are complex. Therefore three rather simple measures to establish the
perceptibility of a watermark are used: the Signal-to-Noise Ratio (SNR, the watermark is seen as
noise), theMean Squared Error(MSE) and for still images the Watson-metric. Because this report
is focused on still images, a description of the HVS is given in Section2.4.

The idea behind the use of theSignal-to-Noise Ratiois that a watermark is less perceptible if its
energy is low compared to that of the host signal. The SNR is defined as:

SNR � 10 log10

(
σ2

x

σ2
w

)
, (2.1)
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wherex is the host signal (the digital content),w the watermark andσ2 the variance, which
represents the energy. The variance ofx, σ2

x, is calculated as usual as:

σ2
x =

1
N − 1

N∑
i=1

(xi − x̄)2, (2.2)

wherex̄ is the mean value ofx. σ2
w is calculated in the same way. Another distortion measure is

the MSE, which is defined as

MSE � 1
N

N∑
i=1

(yi − xi)2 =
1
N

N∑
i=1

w2
i . (2.3)

The SNR and the MSE are more a measure of distance than of perceptual distance.

The Watson-metric is more like a measure of the perceptual distance. This distance is calculated
using the Watson model which takes into account three factors: contrast sensitivity, luminance
masking and contrast masking. This metric is a little more sophisticated than just using the SNR,
because it takes into account some aspects of the Human Visual System, see Section2.4. For a
description of the Watson model see Section 2.3 of [26].

Sometimes also visible (but not disturbing) watermarks are used, but we will not consider those
kind of watermarks. We will focus on imperceptible watermarks.

2.3.2 Robustness

Another important criterion already mentioned is that of therobustnessof a certain watermarking
algorithm. According to [9], a truly robust watermark is a watermark that survives signal process-
ing whenever the host signal does. In other words, robustness is the ability to withstand normal
processing of the watermarked signal.

Two criteria for robustness are used in this study, robustness against noise and against lossy com-
pression. Robustness against noise is measured as follows. White Gaussian noise is added to the
watermarked image and it is checked if it is still possible to detect the embedded information. The
maximum amount of noise added, after which it is still possible to detect the information, can be
considered as a measure for robustness against noise. Also the bit error rate at certain values of
noise power can be considered as robustness measure. In order to check robustness against lossy
compression techniques, JPEG compression on the watermarked image is performed. The mini-
mum JPEG quality factor used, after which it is still possible to correctly detect the watermark, is
considered as a measure for robustness against lossy compression.

It is possible to determine the probability that after a noise attack a detected message bit is different
from the embedded message bit. This bit error probability as a function of the noise energy can
also be seen as a measure for robustness against noise.

There are also other types of digital watermarks, like fragile ones. Afragile watermarkis the
opposite of a robust one. If the host data is somehow altered, this should be visible in the detection
result. Sometimes it is important to prove that a photograph of e.g. a crime scene is not altered.
This could be proved in court by showing that the fragile watermark has not been changed.

Because in most applications the watermark should be robust, we do not consider fragile water-
marks, but robust ones.

8 c©Philips Electronics Nederland BV 2003
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2.3.3 False positive and false negative probabilities

A false positiveis a detection of a watermark while no watermark is embedded. Thefalse positive
probability is the probability that a false positive occurs. Afalse negativeis no detection while
a watermark is embedded. Thefalse negative probabilityis the probability of such a missed de-
tection. The relevance of these probabilities depends on the application. For the case of DVD
video copy protection it should never happen that a DVD recorder refuses to copy something the
user has made himself (and is therefore not watermarked, at least not with the correct watermark).
Therefore the false positive probability should be very low in this case. The false negative proba-
bility is in this case not as important as the false positive probability; It is not a really big problem
if a user makes an illegal copy every now and then, as long as this is within limits. In general the
false negative probability is important for most applications, because this probability represents
the robustness of a watermark.

2.3.4 Payload and Capacity

The payloadis the amount of information that can be embedded in the host data. Thecapacity
is defined as the amount of information that can be embedded and detected without errors. These
amounts depend on the host data and on the watermarking algorithm. Directly related to capacity
is therate. The rate is defined as the capacity divided by the total lengthN of the host signal.

2.3.5 Security

The securityof a watermark relates to the (in)ability to detect, remove or insert a watermark
from or in the host signal. UsingKerckhoffs’ principle[21], a watermark should still be secure
if the watermarking algorithm is known to the adversary. Security must lie in the use of a secret
key. Security is the ability to withstand active (deliberate) attempts to disable the communication
through the watermark channel. Security also relates to the total watermarking system. If it is
possible for example to bypass the hardware in a DVD recorder that detects the watermark in a
DVD, then the system is not secure, although the watermarked secret has not been compromised.

2.3.6 Computational cost

Thecomputational costis the effort it takes to embed or detect a watermark. This can be measured
in time, like clock cycles of a computer, but also in the need of extra memory capacity (thus
making an application more expensive). The importance of this criterion varies per application.
For example for broadcast monitoring the detection must be done in real-time, so the speed is
important, but for copyright protection the speed is not important.

2.3.7 Blind detection

At the detector the original data may or may not be available for comparison with the received data.
The absence of the original data at the detector is referred to asblind detection. It is clear that with
non-blind detection it is easier to check for a watermark. In practice, however, the original data is
usually not known at the detector. We will therefore focus on blind detection.

c©Philips Electronics Nederland BV 2003 9
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Perceptual
Transparency

RobustnessPayload

Figure 2.2: Mutual dependencies between the performance criteria. Partially reproduced from
[22].

2.3.8 The trade-off between performance criteria

In order to make a watermark very robust, very large modifications to the host data are needed.
But, in doing so the watermark is made perceptible. This is an important observation, because it
is telling us that for an optimal watermark a trade-off has to be made between the performance
criteria. A large payload will come at the cost of reduced robustness and perceptual transparency.
The relationships between the criteria are shown in Figure2.2.

2.4 The Human Visual System

In order to measure the impact of a watermark in terms of perceptibility, some knowledge of
theHuman Visual System(HVS) is needed. Another reason to consider the HVS is that it gives
information about the regions in which the human eye is insensitive. Those regions are a perfect
option to embed the information in, because larger modifications are possible, without the human
eye detecting them. In this section some basic characteristics of the HVS are treated. See [10, 14,
29, 30] for more on this subject.

The sensitivity of the human eye for certain stimuli is treated in Subsection2.4.1. The fact that
certain stimuli can be masked with others is considered in Subsection2.4.2. Pooling is treated in
Subsection2.4.3.

2.4.1 Sensitivity

The two most important sensitivity characteristics for the human eye are brightness and frequency
sensitivity. Brightness sensitivityrefers to the fact that the human eye is less sensitive to brighter
signals, i.e., it will take a larger difference in bright signals than in signals with low luminance
in order for humans to perceive it. Therefore it is possible to embed more of the watermark in
regions with higher brightness. This principle is depicted in Figure2.3.

A just noticeable difference is the amount two stimuli need to differ by in order for the difference
to be perceived.Weber’s lawstates that these just noticeable differences are a function of the
percentage change in stimulus intensity not the absolute change in stimulus intensity. This means
for example that the perceived difference between the light intensity of 10 and 11 candles in a
room is not the same as the perceived difference of 100 and 101 candles, but rather the difference
of 100 and 110 candles. So the bigger the stimulus the bigger a change required for it to seem
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Figure 2.3: Reproduced from [29]. The effect of background luminance on the maximum contrast
of a just-not-visible noise pattern. Zero luminance corresponds to a black background on a CRT
display; a luminance level of 100 % corresponds to a white background on a CRT display. At
luminance levels around 30 % the human eye is most sensitive to noise patterns. The straight
dashed line through the origin represents Weber’s law.

different. In order to perceive light differences the percentage two stimuli should differ is around
6 %. A mass difference can be detected by humans if it is more than 2 % and a sound frequency
difference if it is more than 0.3 %. So the human ear is much more sensitive than the human eye,
therefore it is more difficult to embed information in audio than in video. As can be seen from
Figure2.3, Weber’s law holds for luminance levels over 30 %.

Frequency sensitivitycan be divided into three forms for vision: spatial, spectral and temporal fre-
quency sensitivities. Spatial frequencies are perceived as patterns or textures, spectral frequencies
as colors and temporal frequencies as motion or flicker.

Spatial sensitivityis usually described by the sensitivity to contrast in luminance as a function of
spatial frequency, the result is the contrast sensitivity function, see Figure2.4. It can be seen that
the human eye is most sensitive to luminance differences in the mid-frequencies and less sensitive
for the higher and lower frequencies.

The frequency sensitivityis illustrated with Figure2.5. The normal responses to the low, the
middle and the high frequencies, often called the blue, the green and the red channel, respectively
are depicted. The human eye is significantly less sensitive for blue frequencies than it is for the
red and green frequencies. Therefore, some watermarking methods embed a large proportion of
the watermark in the blue channel of an RGB image.

Figure2.6 shows thetemporal sensitivityfor the human eye. It can be seen that for frequencies
over 30 Hz, temporal sensitivity falls rapidly. This is why television and cinema frame rates are
not necessarily to be more than 60 frames per second. The total theory for temporal sensitivity is
very difficult, because the human eye follows moving objects. Temporal and spatial frequencies
are therefore partially converted into each other. A static watermark that is imperceptible in a
single video frame, can therefore be perceptible if more frames are shown after each other, like in
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Figure 2.4: Reproduced from [29]. The contrast sensitivity function in order to illustrate the
spatial sensitivity of the HVS.
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Figure 2.5: Reproduced from [14]. The sensitivity of the human eye for color, for the red (R),
green (G) and blue (B) channel.
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Figure 2.6: Reproduced from [14]. The sensitivity of the human eye for temporal frequencies.

video. This effect is called the dirty window effect.

2.4.2 Masking

Signals can bemaskedby other signals. This means that the presence of one signal, may render
another signal imperceptible. For example, we may hear a single tone with some intensity at 1000
Hz, but we may not hear that same tone if at the same time there is a tone at 1050 Hz with a higher
intensity. Another example is that it is easy to see noise in a part of an image where everything
is smooth and flat, but the same amount of noise in a highly textured area of an image might be
imperceptible for the human eye.

Three of the most important masking principles are brightness or contrast masking, frequency
masking and temporal masking.Brightness maskingrefers to the fact that local brightness is able
to mask contrast changes.Frequency maskingis the fact that one frequency can mask another.
The perception of a sound can be masked with a previous or even a future sound, this is called
temporal masking.

A good area to embed a watermark in an image are highly textured areas, because the watermark
noise is masked by the patterns of the image.

2.4.3 Pooling

Once one has developed models for estimating the effect on perceptibility of changing certain
characteristics (like changing pixel values, frequencies, etc.), it is necessary to combine all these
characteristics in order to come to an overall indication for the perceptibility of a watermark in an
image. Combining all the separate perceptibility changes in one estimate is calledpooling.

c©Philips Electronics Nederland BV 2003 13
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2.5 Possible attacks on digital watermarks

As already mentioned, watermarks need to be robust against all kinds of attacks. A distinction
has to be made between attacks directly on the watermark and targeted against other components
of the watermarking system. For example, if it is relatively simple to remove or disconnect a
watermark detection chip in a DVD-player, an attacker will focus his attention to this part of the
system in order to reach his goal (in this case: to copy a DVD). In this section those kinds of
attacks are not considered, but the attention is focused on direct attacks on the watermarked data.
An arrangement of attacks is given in Subsection2.5.1and some of the most common attacks are
mentioned in Subsection2.5.2- 2.5.4.

Some of the attacks mentioned in this section are considered to be normal processing, where others
are deliberate attacks.

2.5.1 Arrangement of attacks

Setyawan [32] gives a description and classification of different attacks. An overview can be
extracted from his article and is given in Figure2.7.

From this figure it can be seen that a distinction is made between attacks aimed at the watermark
itself and attacks aimed at the host signal alone. The latter one can for example be used by an
adversary wanting to change a watermarked image of a crime scene, because this image identifies
him as the perpetrator. His goal will be to change the watermarked image in such a way that he
can no longer be identified as the guilty person, but that it is not visible in the watermark that the
image has been altered.

Attacks on watermarks can be divided into three cases, namely attacks with the goal to remove the
watermark, synchronization attacks and ambiguity attacks, see Subsection2.5.2, 2.5.3and2.5.4
respectively.

2.5.2 Removal attacks

Removal attackshave the goal to completely remove a watermark or damage a watermark to an
extent that the watermark detector cannot detect it anymore. Generally, there are two types of
removal attacks: one that processes the watermarked signal without analyzing it, and one that
analyzes the watermarked signal in order to remove the watermark.

The first category, simple removal attacks, works both on the host signal and the watermark, and
it affects the quality of both. Because the watermark energy is usually much lower than the host
signal energy, the watermark is faster degraded than the host signal.

The second category, the analysis removal attacks, tries to analyze or estimate the watermark.
After this analysis it is attempted to remove the watermark. These kinds of attacks are a lot
smarter than simple attacks, and they usually affect the watermark, but keep the host signal more
or less intact.

Examples of simple removal attacks are

Lossy compression: Examples of lossy compression techniques are JPEG (Joint Photographic
Experts Group: named after the committee that defined it) and MPEG (Motion Pictures
Experts Group: data compression standard for motion-video and audio) compression. These
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Attacks on watermarked data

Attacks aimed at the watermark

Removal attacks Synchronisation attacks

Simple removal

• Geometrical transformation

• Pixel deletion / substitution

• Mosaic attack

• Scramble / unscramble attack

Analysis removal

• Non-linear filtering

• Statistical averaging

• Collusion attacks

• Embedder / detector ob-
servation

• Lossy compression

• Noise addition

• DA- & AD-conversion

• Transcoding

• General filtering

Attacks aimed at the host signal

Ambiquity attacks

Figure 2.7: An overview of possible attacks on a watermarked signal. This overview is based on
[32]. Some of the attacks are normal processing and other deliberate attacks.
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techniques usually work on the parts of the data that are less important for the perceptual
quality of the signal. Watermarking techniques usually also work in these parts, therefore it
is likely that the watermark gets damaged due to lossy compression techniques.

Noise addition: The added noise is usually random and uncorrelated with the host signal and,
more importantly, the watermark. Therefore it is unlikely that the noise affects the detection
of the watermark, unless the power of the noise is very high. In this case the perceptual
quality of the watermarked signal is highly degraded, which is usually also unwanted by an
attacker.

DA- & AD-conversion: Digital-to-Analog and Analog-to-Digital conversion takes place for ex-
ample if a digital image is printed and then scanned again, or when a digital movie is
recorded on an analog videotape. In these cases the watermarked signal, and also the water-
mark, is not completely the same as it was in the digital case. Some embedding techniques,
like LSB modification (see Subsection2.6.2), are not robust against these degradations.

Transcoding: The process of going from one representation of data to another is called transcod-
ing. Examples are going from a bitmap (BMP) image file to a GIF file (Graphics Interchange
Format) and re-encoding an MPEG-stream into a higher or lower bit rate. This affects the
watermarked signal and the watermark could be damaged or even lost.

General filtering: General filtering techniques can be used to remove a watermark. Low pass
filtering for example, might be able to remove a pseudo-random noise watermark, since the
watermark is essentially a high frequency noise [32].

Examples of analysis removal attacks are

Non-linear filtering: Using these techniques watermarks can be estimated and a watermark can
be removed by subtracting this estimate from the watermark data. In this way an estimate
from the unwatermarked host signal is obtained.

Statistical averaging: If an attacker has a number of signals (images, video-frames), all water-
marked with the same watermark, it is possible to average all images and extract an estimate
of the watermark from this average. This only works if the watermarks are not dependent of
the host signal.

Collusion attacks: In this case there are a number of copies of one host data, watermarked with
different watermarks. Combining all these copies, it is possible to estimate the original host
signal by statistical averaging.

Embedder / detector analysis: An attacker possessing a watermark detector is able to look for
the smallest modifications made on the watermarked signal, which renders the watermark
undetectable. An attacker possessing a watermark embedder is able to watermark unwa-
termarked material and obtaining the watermark by taking the difference. After this it is
possible to subtract the watermark from the original signal. If this modified host signal
is then watermarked, the result is approximately the same as the original unwatermarked
material.
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2.5.3 Synchronization attacks

In the case ofsynchronization attacks, an attacker will not try to remove the watermark, but just to
remove the synchronization with the detector, and in this way making a watermark undetectable.
The quality of the image is to a large extent unchanged.

Examples of synchronization attacks are

Geometrical transformation: By simply shifting an image a few pixels to some direction (trans-
lation), the watermark detector is unable to find the watermark (although it is still there),
while the image remains largely unchanged. Other examples of geometrical transforma-
tions are scaling, zooming, cropping and rotating.

Pixel deletion / substitution: It is possible to render a watermark undetectable by removing a
complete column of an image, or replacing it by another column. The image is still largely
the same after this operation.

Mosaic attack: With this attack an image is divided into smaller blocks. The detector will usually
fail to detect a watermark in this smaller portion. The total image can still be represented by
holding the smaller blocks together, like a mosaic.

Scramble / unscramble attack: It is used to bypass copy protection schemes in for example
DVD-players. First the watermarked and illegal copy of a video is scrambled (mixed), this
scrambled copy is played on a DVD-player, which doesn’t recognize the watermark. Then,
the copy is unscrambled in order to obtain the original copied video.

2.5.4 Ambiguity attacks

In the case ofambiguity attacksthe attacker simply tries to embed another watermark in the already
watermarked image. This way it is difficult for the detector to detect the original watermark.

2.6 Different watermarking techniques

Embedding a watermark can be done in a number of different ways. First of all it is possible to
change directly the pixel values of an image or a video frame, this is called embedding in the
spatial domain. It is also possible to find a representation of a host signal in another domain
and perform modifications on the coefficients in that domain. Examples of those domains are the
Discrete Fourier Transform (DFT) domain, the Discrete Cosine Transform (DCT) domain and the
wavelet domain, see Subsection2.6.1.

When embedding a watermark in the DCT-domain, first the Discrete-Cosine-Transform is taken
from the host signal, and then modifications are mode on the DCT-coefficients. The same holds
for the other domains.

Making these modifications can also be done in a number of different ways. Well known tech-
niques are Least Significant Bit (LSB) modification, noise-addition, Spread Spectrum techniques
(for example the Patchwork algorithm), the reordering or deletion of coefficients, warping or mor-
phing data parts, etc., see Subsection2.6.2- 2.6.4. Other watermarking processes are quantization
techniques like Quantization Index Modulation (QIM), see Chapter3.
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Figure 2.8: The embedding of a watermark in a transform domain. Representations in the trans-
form domain are denoted with capitals.

2.6.1 Domain of embedding

To embed a watermark in another domain than the spatial one, it is necessary to first make a
transform to that other domain. Then the watermarking is done in this transform domain, after
which an inverse transform is done in order to get back to the spatial domain. This is after all the
domain humans can see things in. This watermarking scheme is illustrated with Figure2.8.

Some of the most important transformations are the Discrete Fourier Transform (DFT), the Dis-
crete Cosine Transform (DCT) and the Mellin-Fourier Transform. All these transforms only give
information about the frequency of a signal. A quite new concept is that of the Discrete Wavelet
Transform (DWT). In the DWT-domain there is not only information available about the frequency
aspects of a signal, but also about the time or spatial aspects. Using the DWT it is possible to con-
trol both aspects of a signal, while watermarking it. From [27] we have:

Discrete Fourier Transform (DFT): The Discrete Fourier Transform is very well known in the
area of signal processing. It is useful for controlling the frequency aspects of a host signal
and the watermark. For a host signalf(x, y) of sizeN1 ×N2, the DFTF (u, v) is given by:

F (u, v) � β

N1−1∑
x=0

N2−1∑
y=0

f(x, y) exp
(−2πixu

N1
− −2πiyv

N2

)
, (2.4)

with β = (N1 · N2)−1/2. The inverse DFT (IDFT) is given by

f(x, y) � β

N1−1∑
u=0

N2−1∑
v=0

F (u, v) exp
(

2πixu

N1
+

−2πiyv

N2

)
. (2.5)

Discrete Cosine Transform (DCT): The Discrete Cosine Transform is used in lossy compres-
sion techniques, like JPEG and MPEG. It is also used in studies on visual distortions. Be-
cause of this, using the DCT gives more robustness to JPEG and MPEG compression, the
perceptual quality of a watermarked signal is more easily calculated, and it is possible to
directly embed a watermark in the compressed domain (which saves computation time and
thus costs). The DCT for a signalf(x, y) of sizeN1 × N2 is given by:

F (u, v) � 2√
N1N2

C(u)C(v)
N1−1∑
x=0

N2−1∑
y=0

f(x, y) cos
(

πu(2x + 1)
2N1

)
cos

(
πv(2y + 1)

2N2

)
. (2.6)
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whereC(u) = 1
2 for u = 0 andC(u) = 1

2

√
2 otherwise. The inverse DCT (IDCT) is given

by

f(x, y) � 2√
N1N2

N1−1∑
u=0

N2−1∑
v=0

C(u)C(v)F (u, v) cos
(

πu(2x + 1)
2N1

)
cos

(
πv(2y + 1)

2N2

)
.

(2.7)

Fourier-Mellin Transform: Most watermarking algorithm are not (very) robust against geomet-
rical attacks, see Subsection2.5.3. TheFourier-Mellin Transformis based on the translation
invariance property of the Fourier transform:

f(x1 + a, x2 + b) ↔ F (u, v) exp (−i(au + bv)) . (2.8)

Use of this property, makes the watermark robust against a spatial shift. Robustness to
rotation and scaling (zoom) can be achieved by using a log-polar mapping:

(x, y) �→
{

x = exp(ρ) cos(θ)
y = exp(ρ) sin(θ)

with ρ ∈ R andθ ∈ [0, 2π], (2.9)

whereR is the set of possible scale-factors. This way, a rotation results in a translation in
the logarithmic coordinate system and a zoom results in a translation in the polar coordinate
system.

2.6.2 Least Significant Bit (LSB) modification

Pixels in an image or a video frame are usually represented by an 8-bit number (0 - 255 inZ255).
Modifying the last bit from a pixel results in the addition of±1 in Z255. This modification is
so small, that it is very difficult to see in the image or video frame. Because modifying this last
bit introduces the smallest possible distortion, it is called the Least Significant Bit (LSB). A very
simple way of embedding a binary message in an image is by modifying the LSB such that it is
equal to the message bit. This way it is possible to embed a message bit in every pixel, so the
payload of this method is very high. But the drawback is that it is not very robust: changing the
LSB’s by a random pattern, completely removes the watermark. Therefore the capacity is very
low.

2.6.3 Spread Spectrum techniques

The embedding of a watermark usingSpread Spectrum(SS) techniques, consist of the adding of a
pseudo-random noise patternp to a host signal:

y = x + p. (2.10)

The detection is based on correlation. The correlation of the watermarked signaly with the known
patternp is determined. If the correlation is above some thresholdT , it is assumed that the water-
marked signal was indeed watermarked with patternp:

〈y, p〉 = 〈x + p̃, p〉 = 〈x, p〉 + 〈p̃, p〉 ≈ 〈p̃, p〉 (2.11)

≈
{

1 if p̃ = p


 1 otherwise
, (2.12)
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where the first approximation comes from the fact that the pseudo-random noise patternp and the
host signalx are highly uncorrelated, and the second approximation follows from the definition of
the correlation coefficient.

This Spread Spectrum technique is highly robust against simple attacks, but it is only possible to
embed one bit: watermark or no watermark. It is possible to embed more than one bit into a host
signal by dividing the host signal into smaller subsamples and embed one bit in each part. This
will come at the cost of some robustness. If an image is cropped, bits will get lost.

Another way to embed more than one bit into a host signal is by using a technique called Direct
Sequence Code Division Multiple Access (DS-CDMA) Spread Spectrum communication. Where
as normal Spread Spectrum adds only one pattern, DS-CDMA Spread Spectrum uses more than
one (N ) patterns. The embedding is then:

y = x +
N∑

i=1

βipi, (2.13)

where

βi =

{
+1 if message bit= 0
−1 if message bit= 1

. (2.14)

Detection is again done by correlation. The decision rule for patterni is:

E [(pi − Epi)(y − Ey)] =

{
> 0 then a 0 is detected

< 0 then a 1 is detected
. (2.15)

This DS-CDMA Spread Spectrum technique is (to some amount) robust against cropping, but
there is some interference between the watermark patterns.

2.6.4 Patchwork Algorithm

A very simple example of a Spread Spectrum watermarking method is thePatchwork algorithm.
The pseudo-random pattern used here consists of±1’s.

The Patchwork algorithm divides an image into two setsA andB. To embed 0, the values of the
pixels in setA are raised by 1 and the values of the pixels in setB are lowered by 1. In order to
embed 1, the values of the pixels in setA are lowered instead of raised and that ofB raised instead
of lowered. Let’s say that the setsA andB both have the sizeN . Detection is done by comparing
the differenceD of the averagesyA andyB of setA andB. If a watermark is embedded (in this
case a 0), this detection looks like:

D = yA − yB =
1
N

∑
y∈A

yi − 1
N

∑
y∈B

yi =
1
N

∑
x∈A

(xi + 1) − 1
N

∑
x∈B

(xi − 1)

= xA − xB + 2 ≈ 2, (2.16)

where it is assumed that the average of pixel values in setA equals that of setB. If a 1 is embedded
yA − yB ≈ −2 and if nothing is embeddedyA − yB ≈ 0.
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A thresholdT ∈]0, 2[ can be set, and the decision rule for the detected message bitm̂ is:

m̂ =




1 if D < −T

nothing if−T ≤ D ≤ T

0 if D > T

. (2.17)

The precise form of the setsA andB is the secret of the watermark embedders.
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Chapter 3

Quantization Watermarking

As seen in Section2.6, watermarking can be done using several techniques. The focus of this
report is on quantization watermarking. In this chapter we will explain the basics of quantization
based watermarking methods. As seen before, a watermarking process consists of the embedding
of a watermark in a host signal, the transmission of the watermarked signal over a channel mod-
elling the attacks, and the subsequent detection. Because in practice the host signal is not available
for comparison at the detector, only blind detection is considered (see Subsection2.3.7). The de-
tection of the watermark at the detector is influenced by the host signal, this is calledhost signal
interference. At the embedder the host signal is known. It is possible to use this information in
order to reduce the host signal interference on detection. The principle of using the host signal
at the embedder is known as usingside information at the encoder, a concept of Claude Shannon
[34].

Costa [11] considered this principle for an Additive White Gaussian Noise (AWGN) channel and
an i.i.d. Gaussian host signal. See Figure2.1, where the noisen is i.i.d. Gaussian noise. Costa
proposed a blind scheme that performs as well as a non-blind scheme, i.e., the detection perfor-
mance cannot be improved by giving the detector access to the original data. Host interference
at the decoder is completely absent. Chen and Wornell rediscovered the paper of Costa [11] and
introduced the principle of using side information at the encoder into the world of watermarking.
The so-called Ideal Costa Scheme (ICS) is discussed in Section3.1.

It was shown by Chen and Wornell that their previously proposed watermarking scheme [3, 4, 5, 6]
based on the so-called Quantization Index Modulation (QIM) scheme, can be explained in terms of
Costa’s scheme. An extended version of QIM, distortion compensated QIM (DC-QIM), performs
as well as the Costa scheme. In Section3.2QIM and DC-QIM are discussed.

The Costa scheme is not practical, as will be seen in Section3.1, and therefore attention is paid to
some practical implementation of the ICS, the so-called Scalar Costa Scheme (SCS), developed
by Eggers et al. [15, 17, 18]. This scheme is considered in Section3.3.

This report is focussed on binary dithered quantization, which is a simple case of the SCS or
DC-QIM. The resulting scheme is explained in simple terms in Section3.4.

In Section3.5and3.6the principles of embedding and detecting a message are treated.

The performance judgement of the different schemes is based on information theoretic notions
of capacity, rate and distortion. Good books on this subject are [12, 25]. Basic knowledge on
information theory is assumed.
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Figure 3.1: Costa’s scheme. Partially reproduced from [18]. Compare with Figure2.1.

3.1 The Ideal Costa Scheme

The communications problem, as depicted in Figure2.1, is to retrieve the messagem embedded
in a host signalx at the detector. Costa assumed that the host signalx and the noise signaln are
of lengthN and i.i.d. Gaussian distributed, i.e.,x ∼ N(0, σ2

xIN ) andn ∼ N(0, σ2
nIN ). The

interfering Gaussian noisesx andn are not known at the decoder. The encoder, however, knows
x.

At the encoder, the watermarked signal is chosen depending on the messagem, the side infor-
mationx and realizationsu of an auxiliary random variableU . Appropriate realizationsu of U
for all possible messagesm and all possible side informationx are listed in a codebookU . The
watermarkw has a lengthN equal to the length of the host signal.

In order to solve this communications problem, Costa introduced anN -dimensional random code-
bookUN with codewordsu

UN �
{

u(p) = ω(p) + αχ(p) | p ∈ {1, 2, · · · , P},

W ∼ N
(
0, σ2

W IN

)
, X ∼ N

(
0, σ2

XIN

)}
,

(3.1)

whereω(p) andχ(p) are realizations of twoN -dimensional independent random processesW and
X with Gaussian pdf, andα a real codebook parameter, with0 ≤ α ≤ 1. The size of the codebook,
i.e., the number of codewords, is given byP , typically a large number. So the codebookUN is
really a random codebook, containingP codewords of lengthN .

In the limit asN → ∞, Costa’s codebookUN achieves the capacity of communication with i.i.d.
Gaussian side informationx both at the encoder and decoder and an AWGN channel. See [11, 18]
for more details on the Ideal Costa Scheme.

The codebook is partitioned intoM disjoint sub-codebooks, withM the number of possible wa-
termark messages. Partitioning is done such that each sub-codebookUN

m contains about the same
number of codeword sequences. SoUN = UN

1 ∪UN
2 ∪ · · · ∪UN

M . This codebook is available both
at the encoder and decoder. See also Figure3.1.

According to [18] the embedding of a messagem into the host signalx is equivalent to finding a
sequenceu0 in the setUN

m such thatw = u0 − αx is nearly orthogonal in the Euclidean sense to
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x. If the length of the codewordsN goes to infinity the probability that no such sequenceu0 exist,
goes to zero exponentially.

Subsequently, the watermarked signaly = x+w = (1−α)x+u0 is transmitted over the AWGN
channel and the received signal isr = y + n.

Decoding is done by finding a sequenceu in the entire codebookUN such thatu − αr is nearly
orthogonal tor. The probability that there is only one such sequenceu0 is high if N goes to
infinity. The indexm̂ of the sub-codebookUN

m̂ containingu is the decoded message.

Costa showed that for the codebook (3.1), for N → ∞, and with optimal parameterα∗, with

α∗ =
σ2

w

σ2
w + σ2

n

=
1

1 + 10−WNR/10
, (3.2)

the capacity is

CICS =
1
2

log
(

1 +
σ2

w

σ2
n

)
, (3.3)

which is equal to the capacity of the transmission scenario where the host signalx is known to the
decoder [18]. So the Costa scheme is optimal in the sense that it is capacity achieving. Here the
WNR is theWatermark-to-Noise Ratiowhich is defined as

WNR � 10 log10

(
σ2

w

σ2
n

)
. (3.4)

So, not knowing the host signal at the decoder does not decrease capacity. Note that the capacity
depends only on the WNR and is independent fromx. Also note that this capacity is only achieved
for a huge random codebook size, therefore this is not a practical way of achieving full capacity.

3.2 Quantization Index Modulation

Chen and Wornell proposed a watermarking scheme which they called Quantization Index Mod-
ulation. They showed that this scheme is a special case of the Ideal Costa Scheme [6, 7]; QIM
is ICS withα = 1. They also showed that QIM is not capacity achieving compared to the ICS,
but in fact close. Therefore they proposed an improvement of QIM, which they called Distortion
Compensated QIM (DC-QIM). This DC-QIM scheme is in fact equal to the ICS and therefore
optimal. The principle of QIM is explained in Subsection3.2.1and the extension of this scheme
(DC-QIM) is treated in Subsection3.2.2.

3.2.1 Quantization Index Modulation

Chen and Wornell view the embedding functiony = s(x; m) as an ensemble of functions of the
host signalx, indexed by the messagem. For the distortion to be small it is required thaty andx
are close in distance, sos(x; m) ≈ x, ∀m. For this system to be robust it is required that the em-
bedding functions are far away in some sense for different messages, sod(s(x; mi), s(x, mj)) �
0, ∀i, j, i �= j, with d(u, v) some distance measure. At least the ranges should be non-intersecting,
because else there will be some values ofs from which it is not possible to uniquely determinem.
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= 1 level

×

×

××

×

©
× = 0 level

Figure 3.2: Reproduced from [9]. QIM for information embedding. The points marked with×’s
and©’s belong to two different quantizers, each with its associated index. The minimum distance
dmin measures the robustness to perturbations, and the sizes of the quantization cells, one of which
is shown in the figure, determine the distortion. Ifm = 0, the host signal is quantized to the nearest
×. If m = 1, the host signal is quantized to the nearest©.

According to [9] these two requirements suggest thats should be discontinuous and quantizers are
a class of discontinuous, approximate-identity functions. Chen and Wornell use quantizers for the
embedding.

For a messagem of lengthl and alphabet-sizeD, i.e., m ∈ {1, 2, · · · , D}l, there areDl quan-
tizers. In order to embed a messagem(j), the host signal is quantized with thejth quantizer,
j ∈ {1, 2, · · · , Dl}, i.e.,y = s(x; m(j)) is the point in thejth quantizer-set closest tox.

For example let the message lengthl = 1 andD = 2, som ∈ {0, 1}, see Figure3.2for illustration.
Now two quantizers are needed, and their corresponding set of reconstruction points are shown in
Figure3.2with ×’s and©’s.

Detection is done using a minimum distance decoder. The received signalr is quantized with all
quantizers, i.e.,s(r; m) is calculated∀m. The quantizer for which the distance with the received
signald(r, s(r; m)) is minimal, is assumed to be the original embedded message. So the decoding
problem is [9]:

m̂ = arg min
m

d(r, s(r; m)) (3.5)

Embedding and detection procedures are illustrated in Figure3.3for l = 1 andD = 2.

3.2.2 Distortion Compensated Quantization Index Modulation

Watermarking is always a matter of trading off the rate and the induced distortion of the em-
bedding against the robustness. In order to improve this tradeoff Chen and Wornell introduced
distortion compensation. They scale all the quantizers by a factor1/α, whereα ≤ 1, which in-
creases the squared minimum distancedmin by a factor1/α2, thereby increasing robustness, but
also the distortion is increased by this factor. Adding back a fraction1 − α of the quantization
error to the quantized value, compensates for this additional distortion. This last step is called
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Figure 3.3: Embedding is shown form = 0. The host signalx is quantized to the nearest× in
order to get a watermarked signaly. At the detector a signalr is received, which is not equal to
y due to a noise attack. The nearest reconstruction point is again an× and therefore a message
m = 0 is detected.

distortion compensation. The minimum distance using distortion compensation is at least equal
to the original minimum distance, but possibly larger. In that case the robustness is improved,
whereas the embedding induced distortion is equal for both cases. The embedding formula for
DC-QIM is now

s(x; m) = Q∆/α(x; m) + (1 − α)
(
x −Q∆/α(x; m)

)
, (3.6)

whereQ∆/α(x; m) is themth quantizer of an ensemble whose reconstruction points are separated
by a distance∆ before scaling are separated by a distance∆/α after scaling. The first term
of Equation (3.6) is normal QIM embedding and the second term is the distortion compensation
term. The quantizer is possibly high dimensional, which relates to the large codebook from the
Ideal Costa Scheme.

Chen and Wornell found that the optimal scaling parameterα∗ which ”optimizes the rate distortion
- robustness tradeoffs” is equal toα∗ of the ICS (3.2). This is not surprising, because, as stated
before, DC-QIM is an equivalent but different formulation of the ICS [18].

3.3 Practical watermarking schemes

As explained below, both ICS and DC-QIM are not practical. Therefore practical schemes were
developed by several people. Chen and Wornell came with a practical version of QIM, which they
called Dither Modulation (DM). This scheme can easily be extended to the distortion compensated
case. Eggers proposed a practical version of the Costa scheme [15, 17, 18], which he called the
Scalar Costa Scheme (SCS). SCS is discussed in Subsection3.3.1and DM in Subsection3.3.2. In
Section3.4attention is focussed on the simple case where there are only two quantizers: in fact a
binary SCS scheme, or also a binary DC-QIM scheme.
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3.3.1 The Scalar Costa Scheme

The reason why the Costa scheme is not practical, is the used huge random codebook. Searching
this codebook is comprehensive because of the size and because there is no structure on this
codebook. Therefore Eggers proposed to use a suboptimal, structured codebook, without changing
the main concept of Costa’s idea. Eggers called this scheme the Scalar Costa Scheme (SCS). Like
Costa’s scheme, this scheme is also independent from the host signal, because a random key
sequenced is used.

The codebookUN of Costa, see Equation (3.1), is structured by Eggers as a product codebook
UN = U1 ⊗ U1 ⊗ · · · ⊗ U1 of N identical one-dimensional component codebooks. Because of
the use of the one-dimensional (scalar) component codebooks, Eggers refers to this watermarking
scheme as the ScalarCosta Scheme. The one-dimensional component codebooksU1 are separated
into D disjoint parts, whereD is the size of the alphabetD = {0, 1, · · · , D − 1}. SoU1 =
U1

0 ∪ U1
1 ∪ · · · ∪ U1

D−1. Taking a product codebook is equivalent with sample wise quantization.
Separating the one-dimensional component codebookU1 is equivalent with using quantizers that
are shifted versions of each other. The one-dimensional codebookU1 with the use of a secret key
d is chosen to be

U1(α, ∆, D, d) =
{

u = (k + d)α∆ + m
α∆
D

| m ∈ D, k ∈ Z

}
(3.7)

and themth sub-codebook is given by

U1
m(α, ∆, D, d) =

{
u = (k + d)α∆ + m

α∆
D

| k ∈ Z

}
, (3.8)

where∆ is the step size used for quantization. Without knowingd it is impossible to reconstruct
the codebookUN used for the watermark embedding.

Using the product codebook is equivalent to calculating the quantization sample-wise, i.e., for
eachn ∈ {1, 2, · · · , N} calculate

qn = Q∆

{
xn − ∆

(mn

D
+ dn

)}
−
(
xn − ∆

(mn

D
+ dn

))
, (3.9)

whereQ∆{·} denotes scalar uniform quantization with step size∆, soQ∆{z} =
⌊

z
∆

⌉
∆, with

�·� rounding to the nearest integer. The watermark is then given byw = αq and the watermarked
signal isy = x + w = x + αq.

It is shown in [20, 24, 31] that for a uniformly distributed key sequenced thatq andw are statisti-
cally independent fromx.

Eggers gives the following relation betweenα, the quantization step size∆ and the watermark
powerσ2

w:

α =
σw

√
12

∆
. (3.10)

Because this scheme is suboptimal, the capacity will be lower than the Costa capacity, see Equation
(3.3). Also the value of the optimalα∗ will be different. Eggers found a numerical solution for
this optimalα∗. However, no analytical solution has been found yet [8]. In Chapter8 we will give
an implicit analytical expression for the optimalα∗.

SCS decoding is similar to ICS decoding as described in Section3.1, except that a different code-
book is used. If the product codebookUN is treated as a quantizer, than decoding is equivalent to
quantizing the received valuer to the closest codeword.
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3.3.2 Dither Modulation

Embedding using quantization and a dither signald gives an embedding functions(x; m) = q(x+
d)−d. In [9] Chen and Wornell give some practical examples of Dither Modulation: Coded Binary
Dither Modulation with Uniform Scalar Quantization and Spread-Transform Dither Modulation.
See this article for more details.

3.4 Embedding by binary dithered quantization with uniform quan-
tization step size

This report focuses on the case of binary dithered quantization with uniform quantization step
size. Binary means that the alphabetD has size 2, soD = {0, 1}. This means that the message
m consists of 0’s and 1’s only; The message is considered to be a binary message. Dithered
quantization means that the quantization cells and reconstruction points are shifted versions of
each other, it is the same as saying that Dither Modulation is used. A uniform quantization step
size refers to the fact that the reconstruction points are uniformly spread over the quantization
space.

This section gives a simple explanation of the workings of a watermarking embedding algorithm
that uses the principles of the SCS, or a practical implementation of DC-QIM. In Subsection3.4.1
the basic watermarking scheme, without dither and distortion compensation, is given. The princi-
ple of dithering is further explained in Subsection3.4.2and distortion compensation is treated in
Subsection3.4.3.

In this report the watermarking of images is considered, so the host signalx is in fact an image.
It is convenient to view an image as a matrix of pixel values, where the pixel values represent the
intensity or the color of a pixel.

For the case of an 8 bit grey-scale image, every pixel consists of one value in the setZ255 � {z ∈
Z | 0 ≤ z ≤ 255}, representing the luminance. For an 8 bit color image, every pixel consists
of three values, representing either red, green and blue color intensities (for an RGB image), or
one luminance and two chrominance values (for a YUV image). Each of these values are again
in the setZ255. From now on, when we talk about changing a pixel value, we mean changing
the luminance value. An RGB image and a YUV image are linearly related and can be simply
converted into each other.

3.4.1 The basic scheme

A messagem is a sequence of bits of a certain length, sayl (So,m ∈ {0, 1}l). It is possible to
embed a message bitmi, i ∈ {1, 2, · · · , l}, in a pixel of choice with valuexj , j ∈ {1, 2, · · · , N}.
Using QIM, pixels are quantized to values in the set{z ∈ Z255 | z = k

2∆, k ∈ Z}. So the value
of a pixel is no longer represented by the values in the setZ255, but by fewer values. The values
in the new set are called the quantization levels. A level with valuek∆, k ∈ Z is associated with
message bit 0 and is defined to be an even level. The levels associated with 1 are shifted versions
of the even levels, they are shifted by∆/2. These levels have a value(k + 1

2)∆, k ∈ Z and are
defined to be odd levels. Here,∆ represents the minimal distance between two equal levels, so the
minimal distance between two odd or two even levels, and is called thequantization step size. See
Figure3.4.
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Figure 3.4: The basic idea behind QIM: the host signal valuex is rounded to the nearest odd or
even level, depending on the message bit one wants to embed. Here we show the embedding of a
1, so the watermarked signalyQIM is the odd level abovex. The quantization step size∆ is the
minimal distance between two equal levels.

Watermarking is done by rounding a pixel value to a level, this is calledquantization. Embedding
1 in a pixel is done by quantizing the valuex to the value of the nearest odd level. Embedding 0
is done by quantizing the value ofx to the value of the nearest even level. See Figure3.4 for an
illustration of this principle.

The process of embedding a message bit in a pixel is also illustrated with the following example.

Example 3.1. Suppose a pixel has a valuex = 123 and suppose a quantization step size is used of
∆ = 20. So, even levels are given by values in the set{0, 20, 40, · · · , 120, 140, · · · } and odd levels
are given by values in the set{10, 30, 50, · · · , 110, 130, · · · }. If the message bit corresponding to
the pixel is0, this message bit is embedded by altering the pixel value toyQIM = 120 (120 is the
closest even level).1 is embedded by altering the pixel value toyQIM = 130 (130 is the closest
odd level).

The quantization of a pixel valuex to the nearest odd or even level is mathematically done in the
following way:

The watermarked value using QIMyQIM is chosen as close as possible tox, whereyQIM is an
integer times the quantization step size∆ for embedding 0, i.e.,yQIM = k0∆, k0 ∈ Z, and an
integer times the quantization step size plus an offset1

2∆ for embedding 1, i.e.,yQIM = (k0+ 1
2)∆.

That is, choosek0 ∈ Z such thatyQIM − x is minimal, or

k0 = arg min
k∈Z

∣∣∣x −
(
k +

m

2

)
∆
∣∣∣ , (3.11)

wherem ∈ {0, 1} represents the message bit. The solution of (3.11) is

k0 =

⌊
x − 1

2m∆
∆

⌉
. (3.12)
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So for each pixel we have the codebook

U1 (∆) =
{

u =
(
k +

m

2

)
∆ | m ∈ {0, 1}, k ∈ Z

}
. (3.13)

Compare this with the component codebook of Eggers, withα = 1, D = {0, 1}, soD = 2, and
d = 0, see Equation (3.7).

Consequently, the embedding formula of the basic QIM scheme becomes

yQIM =
(
k0 +

m

2

)
∆ =

⌊
x − 1

2m∆
∆

⌉
∆ +

m∆
2

, (3.14)

which can be compared withy = x + αq, with q as in (3.9), for α = 1, D = 2 andd = 0.

Example 3.2. (Continued) The watermarked pixel valueyQIM using QIM can also be calculated

using Equation (3.14). Then we haveyQIM =
⌊

123− 1
2
m·20

20

⌉
· 20 + m·20

2 , which givesyQIM = 120
for m = 0 andyQIM = 130 for m = 1.

3.4.2 Dithering

As said before, embedding information in every pixel of an image using QIM, causes every pixel
to have a value a multiple of half the quantization step size. This way the statistics of an image
are changed. This is undesirable, because a watermarked image should be difficult to distinguish
from the original one. It is very easy to find out what the quantization levels are and what the
quantization step size∆ is, just by drawing a histogram of the pixel values of the watermarked
image; The values will be centered around the quantization levels. This is illustrated by Figure
3.5. Information about the quantization levels can be used to remove the watermark. For security
reasons it is undesirable to reveal this information and for perceptibility reasons it is undesirable
to change the image statistics.

Another disadvantage of the above described basic scheme is the appearance of contour lines in
the watermarked imageyQIM. While in the original image a smooth change to another color can
be seen, in the watermarked image these changes will go with jumps; The bigger the quantization
step size∆, the bigger the jumps. This is illustrated with Figure3.6.

These disadvantages can be overcome by introducingdither. Dither shifts the levels by a valued,
so nowy = k∆ + d, where the ditherd is chosen differently for different pixels. The quantization
procedure is now to first add a valued to the original pixel valuex, then quantize this new value
x + d to the nearest odd or even level and finally subtract the ditherd again. This kind of dither is
calledsubtractive dither.

As said before, for every pixel a different dither value is chosen. This way, the contour lines
disappear, giving the watermarked image better perceptual quality. This effect can be seen in
Figure3.6. We have watermarked the monarch image with parameter∆ = 35. Because dither
adds different values to different pixels, the values of the watermarked image will be no longer
centered around the levels. It is not possible anymore to know what the quantization levels are by
analyzing the watermarked image (See Figure3.5).

The new quantization formula using QIM with dithering is now (for comparison see Equation
(3.14)):
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(a) Histogram of original imagemonarch.bmp

0 50 100 150 200 250

(b) Histogram of the watermarked image
monarch.bmp using the basic QIM scheme
without dither modulation.

0 50 100 150 200 250

(c) Histogram of the watermarked image
monarch.bmp using the basic QIM scheme
with dither modulation.

Figure 3.5: The effect of dither: Using the basic QIM scheme quantization levels can be read
off easily (Subfigure3.5(b)); This is not possible anymore using dither modulation (Subfigure
3.5(c)). Watermarking is done here using QIM (with or without dither) with a quantization step
size∆ = 35. This is taken quite large, for illustrative reasons. Histogram3.5(c)does not resemble
histogram3.5(a)in this case, because the large∆ causes a large distortion.

yQIM+d =

⌊
x + d − 1

2m∆
∆

⌉
∆ − d +

m∆
2

. (3.15)

Compare Equation (3.15) with the watermarking formula given in Equation (3.9), with α = 1.
For a uniformly distributed dither sequence the watermarkw is statistically independent from the
host signalx. The dither sequence must be known at the embedder and the detector. Therefore
the dither sequence is determined in advance. Following Chen [8] the dither is chosen uniformly
distributed over the range[−1

4∆, 1
4∆].

At the detector the dither sequence is first added to the received image before proceeding with the
detection process. The detection procedure is explained in Section3.6.
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(a) Original imagemonarch.bmp

(b) Watermarked image using the basic QIM scheme
without dither modulation.

(c) Watermarked image using the basic QIM scheme
with dither modulation.

Figure 3.6: The effect of dither: Contour lines, introduced by the basic QIM scheme (Subfigure
3.6(b)), disappear with dither modulation (Subfigure3.6(c)). Watermarking is done using a large
quantization step size∆ = 35.

3.4.3 Distortion compensation

In Subsection3.2.2distortion compensation is treated. For the case of the practical scheme this
means that part of the watermarking errorε = y − x is added back:

ySCS = x + αε = x + α (yQIM+d − x) , (3.16)

where0 ≤ α ≤ 1. The watermarking formula for QIM with dithering and distortion compensation
is now:

ySCS = x + α

(⌊
x + d − 1

2m∆
∆

⌉
∆ − d +

m∆
2

− x

)
. (3.17)

This embedding formula can be compared to the codebook of the SCS, see Equation (3.7). It is
clear that (3.17) equals the SCS of Eggers, wherey = x + αq, with q given in Equation (3.9).

This process of bringing down the quantization error is illustrated in Figure3.7. Using it will
reduce the watermark distortion, but decrease robustness, as smaller changes are more difficult
to notice. Chen and Wornell [9] propose to use distortion compensation, as it can improve the
achievable rate distortion-robustness tradeoffs of QIM methods.

Now there are two parameters to control the robustness and the perceptibility of the watermark,
namely the quantization step size∆ and the distortion compensation parameterα. That is, the
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∆
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α = 0

α = 0.75
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Figure 3.7: The process of distortion compensation. The upper line represents the value of the
host signalx. Without distortion compensation (α = 1) and dithering, all values are quantized
to an odd or even level with a functionQ∆(x; m) and the watermarked signal equalsQ∆(x; m).
With distortion compensation(α ∈]0, 1[) a part of the quantization error is returned and the wa-
termarked signal equalsy.

distortionD(α, ∆) and the robustness are determined byα and∆.

In order to begin embedding, one has to know the embedding parameter pair(α, ∆). The reader
may wonder whether it is possible to simply choose a pair(1, ∆) and do just as well as the case
(α, ∆/α), i.e., embedding using QIM versus embedding using DC-QIM.

In both cases the distortion introduced by the watermark will beα2∆2

12 . Is the robustness better
for QIM? It is made clear intuitively by Figure3.8 that for equal distortion, DC-QIM has a larger
minimal distance, and thus a larger robustness. This can also be seen as follows, see Figure3.7
for reference. Supposex is uniformly distributed over the range of a quantization bin. For the
case of QIM with parameters(1, ∆) x is quantized to a quantization level. The distance from this
level to the nearest wrong level is given bydQIM = 1

2∆. For the case of DC-QIM with parameters
(α, ∆/α), the watermarked valuey is within (1 − α)1

2
∆
α of a quantization level. On averagey is

1
2(1 − α)1

2
∆
α from this level, becausey is also uniformly distributed. The distance to the nearest

wrong level is given bydDC−QIM = 1
2

∆
α − 1

2(1−α) ∆
2α = 1

4(∆
α +∆). We havedDC−QIM > dQIM

for α < 1, so DC-QIM performs better on average.

In Chapter8 it is shown that DC-QIM with parameterα ∈]0, 1] is usually better than QIM with
α = 1, by minimizing the bit error probability.

3.5 Spreading a message and repetition coding

Equation (3.17) defines a watermark embedding algorithm. In this section this algorithm is applied
on digital images. It is assumed in this section that an image is a matrix of luminance-values of
sizeN × M , so the hostx is N × M . A messagem is a series of bits of lengthl and is given
beforehand.

If the size of a messagel equals the number of image pixelsN × M , then each message bitmi,
i ∈ {0, 1, · · · , l} is associated with one pixelxij , i ∈ {0, 1, · · · , N}, j ∈ {0, 1, · · · , M} in a

34 c©Philips Electronics Nederland BV 2003



Company restricted rep 7254

0

1

0

1

0 2∆

∆

QIM

3
2
∆

0

1
2
∆

d2
min = 1

16
∆2

0 0

0

1

0

1 1
2

∆
α

∆
α

3
2

∆
α

2∆
α

d2
min = 1

16
∆2

α2

0 0

0

1

0

1 1
2

∆
α

∆
α

3
2

∆
α

2∆
α

d2
min = 1

16
∆2

α2

D = 1
12

∆2 D = 1
12

∆2

α2 D = 1
12

∆2

d2
min

d2
min d2

min

DC-QIMscaling with 1
α

Figure 3.8: The left axis represents embedding with QIM with quantization step size∆. If the
quantizers are scaled with a factor1α , the squared minimum distanced2

min and the distortionD
are increased with a factor1

α2 . This is depicted with the middle axis. Embedding using DC-QIM
with parametersα and ∆

α is depicted by the third axis. A part of the quantization error is added
back, which causes the distortion to be equal to the case of QIM. The minimum distance however
is still better than QIM, and therefore the robustness.

unique way. Ifl < N × M , then after each message bit is associated with one pixel, there are
some unwatermarked pixels left. Those pixels can be used to gain robustness. A very simple way
of doing this is to embed the messagem another time in the image. If for examplel = 1

3(N ×M),
then each message bit is associated with 3 pixels, i.e., each message bit is embedded three times
in three different pixels. Using this repetition coding, robustness can be gained, because at the
detector three estimates for theith message bit̂mi are available instead of only one. For example,
if 1 is embedded one time, and one error occurs, then 0 is detected. But if 1 is embedded three
times, and one error occurs, then for instance the series0, 1, 1 is detected. Using a majority vote
the detected message bit will bêmi = 1, which equals the embedded message bit, so no error is
made.

In order to associate message bits with image pixels, some rule must be chosen in order to do that.
It is possible to pseudo randomly connect message bits with image pixels, but we have chosen
another association rule. Because typically the message lengthl will be far less than the number
of available pixelsN × M , a messagem can be embedded several times in an image, sayK
times. This can be done in various ways. It is important that not all the pixels corresponding to
the same message bit are in the same area of an image. If for example, all third message bitsm3

are embedded in a part of an image that gets damaged after an attack, it will not be possible to
retrieve this third message bit. In order to minimize this possibility this third message bit should
be somehow uniformly spread over the image. For practical reasons it is convenient to use a clear
structure for associating the message bits with image pixels, and therefore a random function will
not be used.

For these reasons we useblock-based embedding. The message is embedded in the following way:
The image is divided in8× 8 blocks and the message is embedded in these blocks. Embedding is
started in the upper left corner of the image and works towards the lower right corner; First going
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Figure 3.9: The messagem is spread through theN × M imagex and embedded several times.
The message is embedded in8 × 8 blocks, from the upper left corner to the lower right. After
embedding in the upper left block, embedding is continued in the block immediately right to that
block, and do on. Here, the message lengthl is arbitrarily chosen asl = 50. After bit m50 is
embedded,m is embedded another time.

to the right and then downwards. After embedding in one block, we proceed with the next. This
process is illustrated with Figure3.9.

3.6 Scalar Costa Scheme detection

For detection we have to decide if the received valuer represents 0 or 1. Because 0’s and 1’s are
associated with even and odd levels, the following easy decision rule is used: If the received value
is closest to an even level, 0 is detected, but if the received value is closest to an odd level, 1 is
detected. Because subtractive dither is used, first the dither is added to the received value before
using this decision rule.

If each pixel is associated with only one message bit, then the detection is equal to the detected
message bit̂mi and the stated decision rule is equivalent to calculating

m̂ =

⌊
r + d
1
2∆

⌉
(mod 2). (3.18)

Equation (3.18) can be easily associated with Equation (3.5), the decoder for QIM.

For the case of embedding a message with repetition, there is a sequence of detection values,
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m̂1

Figure 3.10: The message bitsmi are represented by several pixels in the watermarked imagey
of sizeN × M . The detected message bitsm̂i are found, tracing back from the pixels. A message
bit is embeddedK times in the image.

calculated by Equation (3.18), associated with one message bit. The sequence first has to be traced
back to the corresponding message bit. This is the inverse operation of the block based embedding
procedure described in Section3.5. This process is illustrated in Figure3.10. A message bit is
embedded in an imageK times. At the detector the pixels representing one and the same message
bit are grouped together in a setSi.

At this point there arel sets of pixel values, where each setSi, i ∈ {1, 2, · · · , l} is associated with
one message bitmi. If a message is embeddedK times than each setSi has sizeK. The question
is now how to determine a detected message bitm̂i from these values. This can be done using
hard or soft decision decoding and is described in Subsection3.6.1.

3.6.1 Hard versus soft decision decoding

In the sequel of this section a message bitmi is not in the set{0, 1}, but in the set{−1, 1}. It
is easy to go from one representation to another by using the relationm−11 = 2m01 − 1, where
m−11 is a representation of the messagem in the set{−1, 1}, andm01 a representation of the
m in {0, 1}. This will show to be a convenient representation, because of the used detection by
correlation.

Using hard decision decodingthe values in the setsSi, i ∈ {1, 2, · · · , l} are calculated using
Equation (3.18) and then going to the representation in the set{−1, 1}. So the values inSi are
-1 or 1. The detected message bitm̂i is determined using a so-calledmajority vote, i.e., if the
majority of these values inSi are -1,m̂i = −1 and if the majority is 1,̂mi = 1. In the case of a
tie, it is undecided what̂mi will be.

Because some of the bits are more reliable than others, it is desirable to give a larger weight to the
reliable ones than to the unreliable ones. A measure of reliability is the distance from the received
value plus the ditherr + d to the nearest level. If this distance is zero, the reliability is maximal;
If this distance is1

4∆ (the maximal possible distance), the reliability of this bit is minimal. The
values in the setsSi are nowK pairs(s, L), wheres is this distance andL the value of the nearest
odd or even level (-1 or 1).

The reliability of a bit can be taken into account by using these distancess as a weight. The
detected message bitm̂i is then calculated as the weighted average over allK values corresponding
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to the message bit̂mi. This procedure of determining the detected message bit is calledsoft
decision decoding. The weights is given by

s = 1 − 4
∆

∣∣∣∣∣r + d −
⌊

r + d
1
2∆

⌉
1
2
∆

∣∣∣∣∣ . (3.19)

It can be easily seen that if a received value plus the dither is close to a level,s is close to 1 and vice
versa. Now the weighted averagem̃i for each message bit̂mi, i ∈ {1, 2, · · · , l} can be calculated
by

m̃i =

K∑
k=1

sikLik

K∑
k=1

sik

, (3.20)

wheresik andLik are the soft decision value and the nearest level respectively for theith message
bit and thekth pair from the setSi. The detected message bitm̂i is determined by

m̂i =

{
1 if m̃i ≥ 0
−1 if m̃i < 0

, (3.21)

which can be converted into a binary message by calculatingm̂01 = 1
2(m̂−11 + 1).

3.6.2 Detection by correlation

At this point the detected messagem̂ is known at the decoder. If also the original messagem is
known at the decoder then detection can be done by calculating the correlation between the original
embedded messagem and the detected onêm. For high correlations, the detected messagem̂ is
(almost) the same as the embedded messagem. For low correlations there will be too much
difference between̂m andm, so that there will not be enough evidence in order to decide that an
image is watermarked with a messagem.

If the correlation betweenm andm̂ is greater or equal to a certain thresholdT , it is said that the
watermark is detected; otherwise the watermark is not detected. The correlation is calculated by

cor(m̂, m) =
1
l

l∑
i=1

m̂imi. (3.22)

The thresholdT represents the amount of similarity betweenm̂ andm that is wanted, before it is
declared that an image is watermarked with a messagem. If T is close to 1, almost every bit of̂m
should equalm. If cor(m̂, m) = 0, thenm̂ andm are only similar for 50 % of the bits, the same
amount as one would expect from two random messages. Forcor(m̂, m) = −1 every detected
message bit̂mi, i ∈ {1, 2, · · · , l} is the opposite of the corresponding message bitmi. In the next
subsection the question of setting this threshold is treated.

It is possible that the original message is not available for comparison at the decoder. In this case
some structure onm can be used. For example, a messagem can be constructed from two parts.
The first part is known to the decoder and serves as a mean to determine whether or not a message
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is embedded. This part can be detected by correlation. The second part is an arbitrary message.
If the existence of a message is detected by means of the first part, then the second part is that
message.

So, summarizing we have the following. A messagem = m(1)m(2) consisting of two parts is
embedded in an image. The decision whether or not the received imager is watermarked is based
on: {

cor(m̂(1), m(1)) > T r is said to be watermarked

cor(m̂(1), m(1)) ≤ T r is said to be unwatermarked
, (3.23)

wherem(1) is known at the detector. Ifr is said to be watermarked, it is said to be watermarked
with the messagêm(2).

Another possibility is to choose messagesm from a codeC, som = c, c ∈ C. The detector knows
the codebook corresponding to this code. At the detector a messagem̂ is estimated. Ifm̂ is equal
to or close enough to a codewordĉ ∈ C, thenr is said to be watermarked with messageĉ.

3.6.3 The threshold setting

The threshold settingdetermines the trade-off between the false positive and the false negative
probabilities. For a high threshold setting the false positive probability will be low; It is unlikely
that in an unwatermarked image, the detected message will be almost identical to the reference
messagem. The probability that detection on an image watermarked with messagem results in
a detected messagêm almost identical tom, will be low for high thresholds, even for moderate
attacks. For lower threshold settings the false negative probabilities are lower, but the false posi-
tives probabilities are higher. The false negative probability is hard to model, so we only look at
the false positive probability in order to determine the threshold.

For an unwatermarked image it is also possible to extract a sequence of -1’s and 1’s. The false
positive probabilityPfp is now considered to be the probability that a detection will occur, i.e., the
probability that the correlation with the reference messagem is higher than the thresholdT , that
is

Pfp = P

(
1
l

l∑
i=1

nimi ≥ T

)
(3.24)

Because the reference messagem usually has an equal amount of -1’s and 1’s, it is assumed that
m is uniformly distributed withP (mi = −1) = p andP (mi = +1) = 1 − p, with p = 1

2 . We
assume that a messagen extracted from an unwatermarked image is also uniformly distributed,
with P (mi = −1) = q, P (mi = +1) = 1 − q andq = 1

2 . This assumption is valid, because
the dither makes the pixel values uniformly distributed over a quantization bin [20, 24, 31], so the
probability that a pixel value is closest to an even or an odd level is equal to1

2 .

In order to derive the probability (3.24), first the distribution ofSl = 1
l

l∑
i=1

zi, with zi = nimi, has

to be derived. We prove that the distribution ofSl can be approximated by a normal distribution:

Theorem 3.3.

lim
l→∞

P
(√

l Sl ≤ x
)

=
1
2

erf
(

x√
2

)
, ∀x ∈ R,
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whereerf(x) is the error function.

Proof: It is easy to see that thezi are also uniformly distributed withP (zi = −1) = 2pq + 1 −
p − q = r andP (zi = +1) = −2pq + p + q = 1 − r. The sumTl =

∑
yi, with theyi uniformly

distributed withP (yi = 0) = r andP (yi = 1) = 1 − r, is a binomial distribution. Note that
yi is over 0 and 1, wherezi is over -1 and 1. It is very well known (the Central Limit Theorem)
thatTl can be approximated by a normal distribution with meanlr and variancelr(1 − r), for l
sufficiently large:

lim
n→∞P

(
Tl − lr√

lr(1 − r)
√

l
≤ x

)
=

1
2

erf
(

x√
2

)
, ∀x ∈ R, (3.25)

whereerf(x) is the error function. Becausezi = 2yi − 1 is a linear function, the sum
∑

zi can
also be approached by a normal distribution with parameters

µ∑
zi

= E
[∑

zi

]
= E

[
2
∑

yi − l
]

= 2E
[∑

yi

]
− l = (2r − 1)l, (3.26)

σ2∑
zi

= var
[∑

zi

]
= var

[
2
∑

yi − l
]

= 4var
[∑

yi

]
= 4lr(1 − r). (3.27)

Now Sl = 1
l

l∑
i=1

zi can also be approached by a normal distribution with parameters

µSl
= E

[
1
l

∑
zi

]
= 2r − 1, (3.28)

σ2
Sl

= var
[
1
l

∑
zi

]
=

1
l2

var
[∑

zi

]
=

1
l

4r(1 − r). (3.29)

So

lim
l→∞

P


Sl − (2r − 1)√

1
l 4r(1 − r)

≤ x


 =

1
2

erf
(

x√
2

)
, ∀x ∈ R. (3.30)

For our case ofp = q = 1
2 , we haver = 1

2 , which gives the desired result. �

The false positive probability is equal to (see Equation (3.24))

Pfp = P (Sl ≥ T ) =

∞∫
T

√
l√

2π
e−l s2

2 ds =
1
2
erfc

(√
l

2
T

)
, (3.31)

with erfc(z) = 2√
π

∞∫
z

e−t2 dt the complementary error function.

The desired false positive probability depends on the application. For a given false positive prob-
ability it is possible to calculate the corresponding threshold using Equation (3.31). Suppose the
threshold belonging to a standard normal distribution givenPfp is T . The corresponding threshold
TX for a distributionX ∼ N(µ, σ2) is TX = µ + σT . Because in our caseµ = 0 andσ2 = l, the
thresholdTSl

= T√
l
.
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l T10−3 T exp
10−3 T10−5 T exp

10−5 T10−7 T10−15

10 0.977 0.999 1.350 0.999 1.644 2.510
50 0.437 0.439 0.604 0.600 0.735 1.123

100 0.309 0.301 0.427 0.419 0.520 0.794
500 0.138 0.137 0.191 0.188 0.233 0.355

1000 0.098 0.098 0.135 0.137 0.164 0.251

Table 3.1: Threshold settings for false positive probabilitiesPfp ∈ {10−3, 10−5, 10−7, 10−15}. T
is the theoretical derived threshold andT exp the threshold resulting from experiments.

This thresholdTSl
is calculated for the false positive probabilities{10−3, 10−5, 10−7 and10−15}.

ForPfp = 10−3 andPfp = 10−5 this threshold is also determined by experiment in order to verify
the model behind the theoretically calculated thresholds. ForPfp = 10−3, 100.000 messages are
pseudo randomly created and their correlation is calculated with an also pseudo randomly created
reference message. Then it is investigated for which threshold settingTSl

the number of false
positives is smaller than or equal to 100 (a maximum of 100 false positives out of 100.000 gives
Pfp ≤ 10−3). ForPfp = 10−5 we have taken 10.000.000 sample messages. The results are stated
in Table3.1.

For low message lengths (l = 10) the theoretical results do not match with the experimental results.
This is because the normal distribution is not a good approximation of the binomial distribution
for low values ofl. For higher values ofl both results correspond, so we conclude that the model
is correct for message lengths of at least 50. For lower message lengthsl, the thresholdT can be
determined by experiments.

As said before, the threshold setting is a trade-off between the false positive and the false negative
probability. If the threshold is chosen asT = 1, all bits must be correct, so it is very likely that
an embedded message will not be detected and the false negative probability will be high. If the
threshold is chosen asT = 0, the false positive probability will bePfp = P (Sl ≥ 0) = 1

2 (see
Equation (3.31)), which is very high.

3.7 Summary

We summarize the SCS embedding and detection methods, as they will be used throughout the
remainder of this report.

• Embedding a messagem in a host signalx is done by

ySCS = x + α

(⌊
x + d − 1

2m∆
∆

⌉
∆ − x − d +

m∆
2

)
, (3.32)

where the ditherd, the quantization stepsize∆ and the distortion compensation parameterα
are determined in advance. The ditherd is a pseudo random uniformly distributed sequence
and serves as a secret key.∆ andα are parameters to control robustness and perceptibility.
The watermarked imagey is sent over a channel, which models an attack.
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• At the detector the imager is received. The messagêm is detected by

m̂ =

⌊
r + d
1
2∆

⌉
(mod 2). (3.33)

In order to determine whether or not the received imager was watermarked, the correlation
with the reference messagem is calculated by

cor(m̂, m) =
1
l

l∑
i=1

m̂imi. (3.34)

For correlations higher than a thresholdT , the image is said to be watermarked with message
m.
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Chapter 4

Problem description and Contributions

In Chapter2 a general introduction to watermarking has been given. Because of the possible
high payloads, attention has been focussed on the class of quantization watermark systems in
Chapter3, notably Quantization Index Modulation and the extension Distortion Compensated
QIM, the Costa scheme and the Scalar Costa Scheme. For a Gaussian host signal and an AWGN
channel the DC-QIM or Costa’s scheme are optimal; They achieve the same capacity as non-blind
detection. However, these schemes are not practical. The SCS is practical and sub-optimal under
the condition thatx ∼ N(0, σ2

xIN ) and the noise is AWGN.

In the real world these conditions may not be satisfied. Digital images are usually not Gaussian
distributed and all the various attacks, discussed in Section2.5, cannot be modelled by AWGN.
For JPEG compression, for example, the noisen is highly correlated with the host signalx. For
these reasons it is necessary to adapt the SCS, so that it can also be robust against other attacks,
like, JPEG-compression and brightness scaling.

This reports focuses on two possible solutions to these deficiencies. The first solution is the use
of Error Correcting Codes (ECC). Instead of embedding a messagem into an image, it is encoded
into the coded messagemc, which in turn is embedded. At the detector an estimate of this encoded
messagêmc is retrieved. Using an error correcting decoding mechanism an estimate of the original
messagêm is found, with less errors than in the case of embeddingm directly into the image. A
short introduction to ECC’s and an experimental evaluation of the performance increase by ECC
methods is presented in Chapter5.

Another solution is the use of an adaptive quantization step size. In standard SCS the quantization
step size∆ is fixed and known at both the embedder and the detector. An adaptive quantization
step size is dependent on the host signalx. Adaptive quantization introduces robustness against
the attack of scaling the brightness values. At the same time it gives a more efficient allocation of
watermark energy, because this allocation is conform a (simple) Human Visual Model: Weber’s
law, see Section2.4. We will investigate several methods to implement adaptive quantization in
Chapter6. The performance of the several methods of adaptive quantization is compared with each
other and with fixed quantization. The robustness gain with regard to brightness scaling compared
to the use of a fixed quantization step size is also verified by experiment in this chapter.

We want to have a mathematical analysis of the performance of our adaptive quantization water-
marking system. As a measure of performance the bit error probability is taken. This bit error
probability is build up from two components: one which takes into account AWGN and uniform
noise, with a fixed quantization step size, and the other an adaptive quantization step size, without
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noise. Stochastic models for these two bit error probabilities are developed in Chapter7.

The performance of the watermarking model depends on some system parameters, like the dis-
tortion compensation parameterα. An optimal value of this parameter should be applied at the
encoder in order to get optimal performance. This optimization problem is treated in Chapter8;
The result is compared with a similar result of Joachim Eggers.

Summarizing, we have

• Improvements of current quantization based watermarking schemes have to be sought, in
order to increase robustness;

• A first improvement is the use of ECC’s. The increase of overall robustness is verified by
experiment;

• A second improvement is the use of an adaptive quantization step size. A gain in robustness
against brightness scaling is verified, both analytically and experimentally. The performance
of adaptive quantization is compared with fixed quantization by experiment;

• An analytical performance analysis of the new watermarking system is made;

• The distortion compensation parameterα is optimized for a Gaussian signal and an AWGN
channel.
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Chapter 5

Enhancing robustness using Error
Correcting Codes

In this chapter Error Correcting Codes (ECC) are discussed. These ECC provide a tool to enhance
the robustness of a watermarking system, i.e., to minimize the probability that errors are being
made when sending a message from one point to another using a watermarked signal. In Section
5.1 it is shown that indeed ECC can enhance robustness. Some well known ECC are mentioned
in Section5.2 and special attention is given to the Convolutional Codes (CC). Optimal decoding
of CC is done with a Viterbi decoder, which is described in Section5.3. Some results for the
watermarking algorithm are given in Section5.4.

5.1 The gain from using Error Correcting Codes

Coding theory started with the famous paper of Claude Shannon”A mathematical theory of com-
munication” [33] in 1948. For a communications model where a message is sent over some chan-
nel that corrupts this message, Shannon identified a number called the capacity of the channel. He
proved that for any rate below the capacity of the channel, arbitrarily reliable communication is
possible. In order to receive a message, which is equal to the message that was sent, some redun-
dancy is added to the message. This redundancy is used at the receiving side to detect and identify
the errors introduced by the channel. Adding the redundancy is calledencodinga message and
retrieving an estimate of the sent message at the detector is calleddecodinga message.

This principle can be used in watermarking by encoding the message and embedding the encoded
message into a host signal. Thus, a messagem of lengthl is encoded to get the encoded message
mc of lengthlc > l. At the detector a distorted version of the encoded messagemc is retrieved,
lets saym̂c. Using a decoder,̂mc is decoded to get an estimatêm of m. The sent and the received
message will be equal if not too many errors have occurred. See Figure5.1 for a watermarking
model with error correction coding.

In fact, the robustness requirement in watermarking is a requirement of reliable communication.
Hence Shannon’s results, as well as other results of communications theory are relevant for robust
watermarking. One of the consequences is that error correction can be used to improve robustness.

A very simple way of encoding a message is repetition coding; In this case the encoded message
mc is just a repeated version ofm. Decoding can easily be done by a majority vote, see Section
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Encoder Embedder Detector Decoder

m̂

y = x + w

m

mc w r

x n

m̂c

Figure 5.1: A general watermarking model using error correcting codes.

3.6.1. The larger the number of repetitionsK, the more reliable is the decoding outcome. The
price to be paid for this increased reliability, is the loss of rate. According to Shannon’s theorem
it is possible that communication at a certain rate is error free, provided the rate is below the
channel capacity. In order to exploit this, a better code than repetition coding is needed. Shannon’s
proof is not constructive, so no code is given that satisfies his theorem. The search for practical,
rate-achieving codes is still continuing. In the meanwhile codes are developed that approach the
Shannon limit, some of them are listed in Section5.2.

So, it is possible to use better codes than simply repetition codes. These better codes can correct
more errors that occur when processing the image. But repetition coding is still used for two
reasons: The first reason is that the watermark channel may have to operate at very high bit
error rates. Under such severe conditions, some codes stop bringing in any advantage, while the
repetition codes continue with their modest protection [2]. Concatenation of repetition codes and
more advanced codes is a way of improving decoding performance in this critical range. The
second reason is that repetition codes are very simple to implement, where better codes possibly
add a lot of complexity to the watermarking algorithm, which is usually undesired.

5.2 Convolutional Codes

In practise oftenlinear codesare used, because they are easier to describe, encode and decode
than nonlinear codes. LetAn denote the linear space of alln-tuples over the alphabetA, where
A is a field, i.e.,An = {(x1, · · · , xn) | xi ∈ A, i ∈ {1, 2, · · · , n}}. An (n, k) linear code over
the alphabetA is a code with the property that the set of codewordsC is ak-dimensional linear
subspace ofAn. Examples of linear codes are given in [25, 28]. We mention the Reed-Solomon
(RS) codes, which are used in CD players, and Convolutional Codes (CC), which we use. A class
of codes that performs close to the Shannon limit is the class of Turbo codes. Turbo codes are a
clever combination of two or more convolutional codes.

Block codesare codes that encode a message of fixed length into a codeword with a larger, but also
fixed length. For aconvolutional codehowever, the codeword is not only derived from the present
message bits, but also from a fixed amount of ’earlier’ message bits (see [28]). The number of
these earlier blocks is called thememoryof the convolutional encoder.

For convolutional codes it is known that they have good performance and are easy to implement.
Because these codes are the building blocks for the well performing Turbo codes, we use CC’s.

There are different approaches to describe convolutional codes. A lot of them can be found in [25].
This report describes the shift-register approach, see Subsection5.2.1, the convolutional represen-
tation, see Subsection5.2.2, and the state representation, see Subsection5.2.3, for explaining the
encoding stage. For the Viterbi decoding of a CC, the state-diagram and the trellis approach are
convenient, see Section5.3.
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mc = (11101000011100)000 · · ·

mt

· · · 000(1011) = m
mt−1 mt−2

mc
I = · · · 000(0100111)

mc
II = · · · 000(0110001)

+

Figure 5.2: This is a shift register of memory size 2, the memory consists of the blocksmt−1 and
mt−2. Because there is 1 input and 2 outputs, this is a rate1

2 convolutional code. The encoding
of the messagem = (1101) is illustrated. The encoding process starts and ends with state00. At
the start of the encoding process the first message bitm1 = 1 is shifted into the memory and the
output is calculated, and so on, until the last message bit is encoded. The+-operator represents
the intertwining ofmc

I andmc
II

5.2.1 Shift-register approach

In order to encode a message using a convolutional code (CC) a device is needed that is capable
of accepting an input stream of message bits and producing an encoded stream of codeword bits
as output. One way to describe such a device is as ashift-register encoder. An example of a such
an encoder is shown in Figure5.2. Important properties of a CC are the rate and the memory size.
The rate of a code is the quotient between the number of input bits and the corresponding number
of output bits. A CC depends also on preceding message bits,mt−1, · · · , mt−M , whereM is the
memory size(or the dimension of the state).

Thestatesi of an encoder is defined as the contents of the memory blocks. For the CC shown in
Figure5.2, the state is the contents ofmt−1 andmt−2, sos1 = mt−1 ands2 = mt−2. In the case
of binary messages there are2M states. For the CC of Figure5.2 there are four different states:
00, 01, 10 and 11. It is possible to go from one state to another by an input, which has as result
that the contents of the memory blocks are shifted to the right. It is for example possible for the
encoder depicted in Figure5.2 to go from state 01 to 10 with an input 1, but it is impossible to go
from 00 to 11 with any input. The possible transitions from one state to another are described by
astate diagram. The state diagram for the example encoder is depicted in Figure5.3.

Encoding can be simulated by traversing the state diagram, but it is difficult to keep track of time.
A diagram that combines the possible transitions to states and the factor time is atrellis. A trellis
that describes this for a finite time is called a truncated trellis. The truncated trellis for the example
encoder of Figure5.2 is shown in Figure5.4.

5.2.2 Convolutional representation

Theconvolutional representationof a convolutional code is given by

mc(t) =
t∑

j=−∞
h(t − j)m(j),

whereh(t) is the impulse response or the convolutional kernel of the coding system. We illustrate
this representation with an example.
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Figure 5.3: Reproduced from [25]. This is a state diagram for the encoder of Figure5.2. The
states are displayed in the squares. The arrows represent possible transitions: A dashed arrow
when the encoder input is 1 and a solid arrow for an input 0. The numbers between brackets at
the arrows are the encoder outputs corresponding to a transition from one state to another.
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Figure 5.4: Reproduced from [25]. A truncated trellis for the encoder of Figure5.2. In the top
of the figure the received messager is shown. Two errors are made at the indicated positions.
The transitions are labelled with the encoder outputs. A dashed line corresponds with an encoder
input 1 and a solid line with encoder input 0.
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Example 5.1. For the convolutional encoder given in Figure5.2 the impulse responseh(t) is
given by

h =
[
h(0) h(1) h(2) · · ·]

=
[
1 0 1 0 · · · 0 · · ·
1 1 1 0 · · · 0 · · ·

]
,

andh(t) = 0 for t < 0, and the messagem(t) is

m =
[
1 1 0 1 0 · · · 0 · · ·] ,

andm(t) = 0 for t < 0. Encodingm is now done as follows

mc(0) =
0∑

j=−∞
h(−j)m(j) = h(0)m(0) =

[
1
1

]
,

mc(1) =
1∑

j=−∞
h(1 − j)m(j) = h(1)m(0) + h(0)m(1) =

[
0
1

]
1 +

[
1
1

]
1 =

[
1
0

]
,

mc(2) =
2∑

j=0

h(2 − j)m(j) = h(2)m(0) + h(1)m(1) + h(0)m(2)

=
[
0
1

]
1 +

[
0
1

]
1 +

[
1
1

]
0 =

[
1
0

]
,

mc(3) =
3∑

j=1

h(3 − j)m(j) = h(2)m(1) + h(1)m(2) + h(0)m(3)

=
[
0
1

]
1 +

[
0
1

]
0 +

[
1
1

]
1 =

[
0
0

]
,

...

which gives as encoded message

mc =
[
1 1 1 0 0 1 0 · · ·
1 0 0 0 1 1 0 · · ·

]
,

or written down differentlymc = (11101000011100)00 · · · , which can be compared with the
output of the encoder in Figure5.2.

5.2.3 State representation

A state representationis given by{
s(t + 1) = A s(t) + B m(t),
mc(t) = C s(t) + D m(t).

(5.1)

Here,m andmc are the message and the encoded message respectively, ands is the state. The
matricesA, B, C andD are of appropriate size. The first equation in (5.1) represents the shifting
of the registers from one state to another. The second equation represents the form of the encoder.
Once again, an example will make things clear.
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Example 5.2. For the convolutional encoder given in Figure5.2 the state representation is given
by 



s(t + 1) =
[
0 0
1 0

]
s(t) +

[
1
0

]
m(t),

mc(t) =
[
0 1
1 1

]
s(t) +

[
1
1

]
m(t).

s(0) = 0

(5.2)

The coding of a messagem = (1101)00 · · · is done as follows

t = 0 =⇒ s(1) =
[
1
0

]
, mc(0) =

[
1
1

]

t = 1 =⇒ s(2) =
[
1
1

]
, mc(1) =

[
1
0

]

t = 2 =⇒ s(3) =
[
0
1

]
, mc(2) =

[
1
0

]
...

This gives as encoded messagemc = (11101000011100)00 · · · . Compare this with Figure5.2
and Example5.1.

5.3 Viterbi decoder

Convolutional codes can be decoded with a number of decoding algorithms, one of which is Viterbi
decoding. When a decoder receives a sequence, it has to estimate the sequence that was really
sent. The decoder will be optimal if it chooses the estimate that maximizes some log-likelihood
function. Viterbi decoding is convenient in the sense that it is maximum likelihood [23], but the
complexity is an exponential function of the memory depthM .

The trellis representation of the encoding process, see Figure5.4, can be used to decode a CC. But
it is needed to label the edges of the trellis with some distance measure. This distance measure
is for hard decision decoding often the Hamming distance, and for soft decision decoding the
Euclidean distance. In Figure5.5 the trellis is shown, with edges labelled with the Hamming
distance between the received encoded message bits and the possible encoder outputs. The total
Hamming distance between the received encoded messager and a codewordc is the sum of all
labels on the path corresponding to that codeword. This sum is just the length of the trellis path
corresponding to that codeword.

Decoding the received messager is a matter of finding the codeword closest tor. This is equivalent
to finding the shortest path from the start to the end of the trellis. Finding the shortest path can be
done using the Viterbi algorithm. TheViterbi algorithmis a form of dynamic programming. It is
based upon the simple observation that once the shortest paths to all states at timet is found, the
shortest paths at timet + 1 can be constructed from the former paths. The Viterbi algorithm is
illustrated by decoding a received encoded message for the example CC, as shown in Figure5.6.

More formally, the Viterbi decoding algorithm is given by the following scheme. The time is
denoted byt. The states are in the setS, and the all-zero state is denoted by0. The labels of the
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Figure 5.5: Reproduced from [25]. Another truncated trellis for the encoder of Figure5.2. This
time the transitions are labelled with the Hamming distance between the encoder output and the
received messager.

trellis of Figure5.5 are denoted bylt−1,t(u, v), whereu, v ∈ S are states. For example the label
from time 2 to 3 and state 10 to 01 in Figure5.5is equal to 2, so in this casel2,3(10, 01) = 2. The
cost of stateu ∈ S up to a timet is the length of a path from the zero state at time 0 up to state
u at the current time, and is denoted byCt(u). It is necessary to keep track of the path followed
from the zero state at time 0 to the stateu at timet. This is denoted byPt(u). Finally, B(u, v)
is equal to 0 or 1, depending whether a transition is labelled with 0 or 1 (a solid or a dashed line,
respectively). Rememberl is the message length andM the memory depth.

Step 1: (Initialization) For all states, set the costs to zero, set the followed path to an empty set
and set the time to 1, i.e.,

P0(0) = ∅
∀u ∈ S ⇒ C0(u) = 0

t = 1

Step 2: (Recursion)∀u ∈ S, do

v0 = arg min
v∈S

{Ct−1(v) + lt−1,t(v, u)}

and∀u ∈ S set

Ct(u) = Ct−1(v0) + lt−1,t(v0, u)
Pt(u) = Pt−1(v0) ∗ B(v0, u)

Step 3: If t = l + M stop, else sett = t + 1 and go to Step 2.

5.4 Experimental results for ECC in the SCS

5.4.1 Experiment description

We have implemented repetition coding and convolutional coding into the watermarking embed-
ding scheme. For our implementation it is also possible to use theconcatenationof both codes,
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Figure 5.6: The Viterbi algorithm. For each state and each time, the shortest path and the cor-
responding costs are calculated using the Viterbi algorithm. For each step the shortest path is
depicted in green. The decoded message can easily be read off, by following the shortest path (in
green), and is found to bêm = (1101).

52 c©Philips Electronics Nederland BV 2003



Company restricted rep 7254

CC
encoder

repetition
encoder

Embedder

CC
decoder
(Viterbi)

repetition
decoder

Detector

n

mc2 wm mc1

x

y = x + w

m̂ m̂c1 m̂c2 r

Figure 5.7: A watermarking model using concatenated codes.

with the convolutional code as an outer code. This means that the massagem is first encoded using
convolutional coding, resulting inmc1 with lengthlc1 , and thanmc1 is encoded using a repetition
code, resulting inmc2 , with lengthlc2 , where usuallylc2 = N . See Figure5.7for illustration.

It is possible for our implementation to use an arbitrary number of inputsk and outputsn, so any
rate k

n can be achieved. In the detector a Viterbi decoder is used. The Viterbi algorithm uses more
computer memory if a larger CC memory sizeM is used; This relation is exponential. There is a
linear relationship between the message lengthl and the decoding time. For our implementation
it is possible on a PIV 1.7 GHz with 256 MB internal memory, to use a CC memory sizeM up
till 9. We observed that the complexity of a watermarking algorithm with convolutional coding is
much larger than one without, because decoding time increases dramatically.

In order to be able to determine the performance of the watermarking algorithm, we have carried
out some experiments. Testing was done using repetition coding or a concatenated code (CC and
repetition coding together), for different rates, different watermark strengths and different attacks
with different strengths. We performed two kinds of attacks: namely AWGN and JPEG attacks.
We varied the watermark varianceσ2

w, the noise varianceσ2
n of the AWGN and the quality factor

of the JPEG compression. In order to be able to know the relative strength of the watermark
compared to the host signal, theDocument-to-Watermark Ratio(DWR) is used:

DWR = 10 log10

(
σ2

x

σ2
w

)
, (5.3)

where the document is in fact the host signal. In our experiments we have used the NASA CC,
depicted in Figure5.8, because it is known that this code has a large minimum distance.

We have done experiments on four images, namelylena.bmp, baboon.bmp, peppers.bmp
andtulips.bmp, see AppendixB. Because the experiments are limited only qualitative con-
clusions can be drawn, not quantitative.

5.4.2 Results and discussion

The results of these experiments are displayed in Figure5.9 - 5.13. The Bit Error Rates (BER’s)
in the graphs are the average BER’s for the four images used for the experiments.

Some qualitative conclusions can be drawn from these figures. We see that outcome of the exper-
iments is in line with what we would expect. In Figure5.9 it is seen that if the AWGN variance
σ2

n increases, also the BER increases. In Figure5.10we see that the BER decreases if the JPEG
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Figure 5.8: The convolutional encoder used by NASA for deep space communication. This CC has
rate 1

2 and memory depthM = 6.
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Figure 5.9: The BER as a function of the AWGN varianceσ2
n, for different rates.
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Figure 5.10: The BER as a function of the JPEG quality factor, for different rates.
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with σ2

n = 58.8.

rate = 0.1
rate = 0.01
rate = 0.0004

B
E

R
DWR

0

0.1

0.2

0.3

0.4

0.5

20 21 22 23 24 25 26 27 28 29 30

(b) Embedding with repetition code, a jpeg attack with
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Figure 5.11: The BER as a function of the DWR, for different rates.
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Figure 5.12: The BER as a function of the rate, for different DWR’s.
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Figure 5.13: Repetition coding compared with concatenated / convolutional coding.

quality factor increases. In Figure5.11we see that if the DWR increases, also the BER increases.
In all these three figures and in Figure5.12we see that if the rate decreases, the BER decreases.
All these observations are what one would expect in a watermark environment. Summarizing, we
have

• σ2
n ↑ =⇒ BER↑

• JPEG quality factor↑ =⇒ BER↓
• DWR ↑ =⇒ BER↑
• rate↑ =⇒ BER↑

In Figure5.13(a)repetition coding is compared with concatenated coding and in Figure5.13(b)
with convolutional coding. In Figure5.13(a)we see that it is better to use concatenated coding
than repetition coding alone up till a certain rate. In Figure5.13(b)we observe that convolutional
coding is better than repetition coding up till a certain noise attack strength. For higher AWGN
variances the convolutional code stops bringing in advantage, because to many bits are erroneous.
The repetition code continues bringing his modest protection in this noise variance range. This
also explains why the concatenated code is doing worse than repetition coding alone if the rate is
too high. The inner repetition code does not bring the bit error low enough if rates are too high,
and therefore the convolutional code does not work anymore. See also [2] and Section5.1.
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Chapter 6

Enhancing robustness using an adaptive
quantization step size

The Scalar Costa Scheme uses a fixed quantization step size∆, i.e., for each pixel of an image
the same∆ is used. The quantization step size is a parameter to control the tradeoff between
robustness and visibility. This is true because a large∆ separates two quantization levels by a large
distance, so a stronger noise signal is needed in order to get an error. On the other hand, for a larger
∆ the perceptual distortion is also larger. From Section2.4 it is known that larger modifications
can be made in bright areas of a signal (brightness sensitivity). Therefore robustness can be gained
in those areas by embedding with a larger step size, without losing on the perceptibility aspect.

The most important reason of using anadaptive quantizationstep size is that is gives robustness
against brightness changes. This is explained in Section6.1. Another effect of adaptive quanti-
zation is that choosing a larger quantization step size in bright areas and a smaller one in darker
regions, is less visible for the human eye.

Some of the advantages and disadvantages are described in Section6.1. In Section6.2options for
determining the adaptive quantization step size are given and reflected on.

6.1 Advantages and disadvantages

6.1.1 Advantages

There are two advantages when using an adaptive quantization step size. The first one is robust-
ness againstbrightness scaling. The second one is that the embedding strength is more or less
proportional to the perceptual sensitivity to distortions.

Because for bright image areas a larger quantization step size is chosen, a larger robustness is
achieved in those areas; Information embedded in bright areas can be retrieved at the detector
with larger reliability. The overall robustness will gain from this adaptive quantization, while the
watermark is as perceptible as in the case of a fixed quantization step size.

Suppose a simple model for determining the adaptive quantization step size is used: there is simply
a linear relation between∆ and the group of pixel valuesxi. Such a linear relationship can be
defended by referring to Weber’s law, that gives a linear relationship between the sensitivity of the
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human eye and the luminance value. So, the quantization step size is determined by

∆(x) =
γ

L

L∑
i=1

xi, (6.1)

whereL is the number of pixels in the aforementioned group and whereγ is some embedding
strength parameter. It can easily be seen that this model is brightness scale invariant. If the
brightness of an image is scaled by a factorβ, then in fact the scaled image isxscaled = βx. In the
unscaled case, detection is done with the quantization stepsize (6.1) and by calculating

m =
⌊

x

∆(x)

⌉
mod 2 =

⌊
x

γ
L

∑L
i=1 xi

⌉
mod 2. (6.2)

In the scaled case detection is done with quantization step size

∆scaled(x) =
γ

L

L∑
i=1

βxi, (6.3)

and the detection is

m =
⌊

xscaled

∆scaled(x)

⌉
mod 2 =

⌊
βx

γ
L

∑L
i=1 βxi

⌉
mod 2, (6.4)

which is equal to the detection in the unscaled case.

6.1.2 Disadvantages

For a fixed quantization step size, both at the embedder and the detector,∆ is known. For an
adaptive quantization step size∆ is a function ofx. At the embedder the quantization step size is
calculated by∆(x), but at the detector∆ has to be calculated from the received signalr, so the
quantization step size is∆(r) = ∆(y+n). This∆(r) is only an estimation of the quantization step
size used at the embedder and therefore may not be completely accurate. Because the detection
depends on the adaptive quantization step size, see Equation (3.18), the estimation error causes bit
errors in estimating the received message.

6.2 The adaptation rule

Consider the case without dither modulation and distortion compensation. Conceptually, we would
like the quantization step size to be a linear function of the corresponding pixel value, so∆(x) =
γx. Then, at the embedder QIM is done by (see Equation (3.14)):

yQIM =

⌊
x − 1

2mγx

γx

⌉
γx +

mγx

2
=

(⌊
1
γ
− m

2

⌉
γ +

mγ

2

)
x. (6.5)

In this wayyQIM does not contain information about the embedded message bit. This can be seen
by applying the detector. In order to estimate the message bit at the detector (see Equation (3.18)),
the corresponding quantization step size∆ has to be estimated witĥ∆ = γr. The message bit is
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then estimated witĥm =
⌊

r
1
2
∆̂

⌉
mod 2 =

⌊
r

1
2
γr

⌉
mod 2 =

⌊
1
1
2
γ

⌉
mod 2, which does not

depend on the encoded bit at all. Therefore, this method of determining an adaptive quantization
step size is not usable.

Therefore another adaptation rule has to be developed, which does allow actual embedding and
detection of information.

A way of making the estimation of∆ more robust, is to not only use the pixel value itself, but
rather the average of that pixel value and the surrounding ones. The surrounding pixels of a pixel
xij are the pixels that fit in a square with centerxij of sizeL = F × F . The idea is that using
this new average value, the detection result still depends on the encoded bit. Also, average values
are less sensitive to changes in the host signalx than the pixel value alone. The latter argument is
true, since if the adaptive quantization step size is chosen to be (6.1) and if due to some processing
zero mean noise is added to the watermarked image, then detection is done with a quantization
step size

∆̂(r) =
γ

L

L∑
i=1

ri =
γ

L

L∑
i=1

(xi + wi + ni) (6.6)

≈ γ

L

L∑
i=1

xi, (6.7)

if L is large enough, becauseE[w] = 0 andE[n] = 0. By applying the detector, it can be seen that
with this procedure, consistent decoding is possible.

Another possible adaptation rule is to let the step size depend in a nonlinear way on the corre-
sponding pixel, e.g. using a staircase function; Every averaged pixel value in a certain range
corresponds to the same quantization step size. Now, when at the detector a received value falls
into a certain range, no error will be made as long as this received value has not crossed the edges
of that range. For example choose

∆(x) =




4 γ if 0 ≤ x ≤ 50
7 γ if 50 < x ≤ 150
12 γ if 150 < x ≤ 255

, (6.8)

with γ the embedding strength parameter. See Figure6.1 for this staircase function. For this
staircase function errors can be made if the averaged pixel value is around the jumping points 50
and 150.

Other means of choosing a quantization step size are also possible. For example∆ could be
chosen to be the median from a sequence of pixel values. From the median it is known that it is
robust against outliers. The visual model of high values of∆ with high values of the host signal,
still applies in this case. Other possibilities involve the use of the variance or the second moment
or some clever combination of all methods of choosing∆. In this case another visual model is
applied, because a high variance is not directly related to high or low pixel values.

Instead of choosing between methods of estimating the quantization step size, we prefer to com-
bine the strength of some methods. First for each pixel the average value of the surrounding pixels
is determined, then this average value is used as input to either a linear function, or a step function.
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Figure 6.1: An example of a staircase function used to determine the adaptive quantization step
size for a pixel.

So, we use two possibilities for determining the quantization step size:

∆(x) =
γ

L

L∑
i=1

xi, (6.9)

and

∆(x) = f

(
1
L

L∑
i=1

xi

)
, (6.10)

with f(·) a staircase function, for example the staircase function of Figure6.1. This staircase
function is arbitrarily chosen. According to some experiments, it outperforms some other staircase
functions we have looked at, but it is not claimed that this is the best staircase function. Methods
that include the usage of a median, the variance or other higher moments are not considered in this
report.

In order to illustrate the use of an adaptive quantization step size we give an example.

Example 6.1. Let∆(x) be given by (6.9), with L = 9 andγ = 0.05. Let part of the host signalx
be given by

x =




...
...

...
...

...
· · · 185 188 187 190 191 · · ·
· · · 183 170 170 172 180 · · ·
· · · 180 165 181 200 205 · · ·
· · · 175 179 185 198 206 · · ·
· · · 150 190 187 194 201 · · ·

...
...

...
...

...




Suppose we want to determine∆ for the pixel in the middle, with value181. The pixels we have
to take into account are the9 pixels that are in the3 × 3 square with centerx = 181. This gives

∆ =
0.05
9

(170 + 170 + 172 + 165 + 181 + 200 + 179 + 185 + 198) = 9.
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If ∆ was to be determined with (6.10) and staircase function given by (6.8), then we would have

∆ = f

(
1
9

(170 + 170 + 172 + 165 + 181 + 200 + 179 + 185 + 198)
)

= f (180) = 12.

6.3 Experimental results for an adaptive quantization step size

The robustness properties for both methods are determined by experiment and compared in this
section. In Section7.3we will take a more theoretical look at this robustness.

6.3.1 Experiment description

We perform experiments in order to compare three adaptive quantization methods. We also com-
pare the best of the three methods with fixed quantization. We want to evaluate the robustness of
fixed and adaptive quantization against brightness scaling and AWGN and JPEG attacks.

Adaptive quantization is done by taking an average value over a square of sizeF × F = L, and
use that as an input to either one of the two staircase functions or a linear function. So,we consider
the following three adaptive quantization methods:

Method 1 ∆(x) = f

(
1
L

L∑
i=1

xi

)
, with

∆(x) =




3 γ if 0 ≤ x ≤ 50
5 γ if 50 < x ≤ 100
8 γ if 100 < x ≤ 150
10 γ if 150 < x ≤ 255

. (6.11)

Method 2 ∆(x) = f

(
1
L

L∑
i=1

xi

)
, with f(·) given by (6.8).

Method 3 ∆(x) = γ
L

L∑
i=1

xi.

We also want to compare the robustness against brightness scaling of embedding with fixed quan-
tization step size and embedding with adaptive quantization step size. Therefore the four images
of AppendixB are embedded after which scaling of the luminance component is performed on the
image. Then the altered image is used as an input to the detector. For this experiment, we use the
best method for adaptive quantization, which will appear to be method 3, see the next subsection.

Also compared are the robustness of adaptive and fixed quantization against AWGN and JPEG
attacks.

6.3.2 Results and discussion

The results of these experiments are displayed in Figure6.2, 6.3and6.4.

In Figure6.2the BER is plotted against the square root of the number of pixels in a square around
a single pixel. We see that the BER is always lower for Method 3. For higher AWGN variances
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Figure 6.2: The BER as a function ofF =
√

L, for different noise variances.
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the difference with the two other methods increases. The size of the squareL = F 2 has some
influence on the BER, but only for low values ofL. Beyond a certain point an increasingL does
not decrease the BER anymore. We conclude thatL = 11 is a good value to set at the embedder.
We conclude that Method 3 is the better method of the three. This is somewhat remarkable,
because the staircase functions only make errors in the neighborhood of the jumps and the linear
function in the whole range. Apparently, the averaging in a square range of a pixel, averages also
the errors to 0. Because of this averaging, only small errors are made by determining∆ at the
detector. These small errors are cancelled out, because of the repetition code.

The robustness against brightness scaling for a fixed and an adaptive quantization step size can
be seen from Figure6.3. It can be seen that adaptive quantization is much more robust against
brightness scaling than fixed quantization, as predicted in Subsection6.1.1. It can also be seen that
adaptive quantization is much more influenced by an increase in watermark strength compared to
fixed quantization, see the Figures6.3(a), 6.3(c), 6.3(e)and the Figures6.3(b), 6.3(d), 6.3(f).

From Figure6.4we see that the robustness against AWGN is usually better for adaptive quantiza-
tion, see Figure6.4(a)and6.4(a). For JPEG the robustness is slightly better for fixed quantization.

Summarizing, we have

• For adaptive quantization a linear relationship between the quantization step size and the
average of surrounding pixels is better than using staircase functions.

• Robustness against brightness scaling is much better for adaptive quantization compared
with fixed quantization.

• Robustness against AWGN is slightly better for adaptive quantization compared with fixed
quantization.

• Robustness against JPEG is slightly worse for adaptive quantization compared with fixed
quantization.
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(a) Repetition coding with DWR = 30 and rate = 0.01.
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(b) Concatenated coding with DWR = 30 and rate = 0.01.
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(c) Repetition coding with DWR = 25 and rate = 0.01.

adaptive∆
fixed∆

B
E

R

scaling factor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

(d) Concatenated coding with DWR = 25 and rate = 0.01.
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(e) Repetition coding with DWR = 20 and rate = 0.01.
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(f) Concatenated coding with DWR = 20 and rate = 0.01.

Figure 6.3: Adaptive quantization versus fixed quantization. The BER as a function of the bright-
ness scaling factor.
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(b) Repetition coding with rate = 0.1 and JPEG attack.
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(c) Concatenated coding with rate = 0.01 and AWGN at-
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adaptive∆
fixed∆

B
E

R

JPEG quality factor

0

0.1

0.2

0.3

0.4

0.5

60 65 70 75 80 85 90

(d) Concatenated coding with rate = 0.01 and JPEG attack.

Figure 6.4: Adaptive quantization versus fixed quantization. The BER as a function of the AWGN
variance or the JPEG quality factor.
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Chapter 7

Performance analysis

As seen in Chapter4, this report seeks an increased robustness and a performance evaluation of the
developed model. Robustness is searched especially for lossy compression and noise attacks. In
this chapter these attacks are modelled by Additive White Gaussian Noise (AWGN) and uniformly
distributed noise attacks. This model is not very good, because JPEG noise is highly correlated
with the host signal. Of course, analysis of the effect of noise attacks is made easier if the relevant
signals are assumed to be Gaussian distributed.

The effect of the two improvements over Scalar Costa Scheme (SCS), the use of Error Correcting
Codes (ECC) and an adaptive∆, are to be measured. For ECC this is only done by experiment, see
Section5.4. The improvements of an adaptive quantization step size is measured experimentally in
Section6.3. From Subsection6.1.2it is known that using an adaptive∆ introduces an additional
source of errors, due to the necessity to estimate∆ from the received signal. In this chapter also a
theoretical model is developed in order to estimate this error probability.

In Section7.1 a performance measure is given. The error probability for Gaussian and uniform
noise attacks is determined in Section7.2. In Section7.3the error probability due to the use of an
adaptive quantization step size is modelled. Finally, in Section7.4 the results are discussed and
summarized.

7.1 A measure for the performance

The performance of a watermarking scheme is measured by the bit error probability. This is the
probability that if a bit (0 or 1) is sent, a wrong bit is detected (1 or 0), i.e., the bit error probability
is P (mi �= m̂i). Another performance measure is the message error probabilityP (m �= m̂).
These two performance measures are related byP (m �= m̂) = 1 − Πl

i=1 (1 − P (mi �= m̂i)), if
themi are mutual independent.

A watermarking scheme can also be evaluated by looking at the capacity or the rate-distortion
function. The capacity of a watermarking channel and the error probability of that channel are
related. This can be understood intuitively as follows; If the capacity of a channel increases, then
it is possible to embed more bits, or to use this extra space to add redundancy. This additional
redundancy decreases the bit error probability.

The bit error probability is used in order to determine the performance of a watermarking scheme.
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Figure 7.1: The embedding process for embedding 1. Everything in the range[Q∆(x) −
1
2∆, Q∆(x) + 1

2∆] is projected onQ∆(x) for α = 1 and on[Q∆(x) − 1
2(1 − α)∆, Q∆(x) +

1
2(1 − α)∆] for α ∈]0, 1[. If, after a noise attack,r = y + n is still in the correct quantization
bin, i.e.,r ∈ [Q∆(x) − 1

4∆, Q∆(x) + 1
4∆], the received valuer is still in the detection area, and

no error is made. For the noise illustrated by the left red arrow (r1) an error will be made, for the
right red arrow (r2) a correct detection is made.

7.2 The bit error probability due to a noise attack

In this section the bit error probability for the SCS is determined. A fixed quantization step size is
used and the noise is assumed to be Gaussian or uniformly distributed. Error correction codes can
bring the bit error probability down, but for the sake of simple analysis they are not considered.

If the SCS is used, the embedding formula is Equation (3.17). Consider a pixelx. Without
distortion compensation (α = 1) embedding is done by quantizingx to the nearest odd or even
level (1 or 0, respectively). With distortion compensation (α ∈]0, 1[), the pixel valuex is altered
to a valuey somewhere between the original valuex and the quantized valueQ∆(x). See Figure
7.1 for illustration. A correct detection is made wheneverr is in the correct quantization bin,
corresponding to 0 or 1.

Assume that the image datax is uniformly distributed over the range of a quantization bin. Ac-
cording to [17] this is a reasonable assumption, because in most watermarking applications, the
host-data power is much stronger than the watermark power (σ2

X � σ2
W ). If the dither is cho-

sen appropriately,x can be made to be uniformly distributed over a quantization bin [20, 24, 31].
The added noise is assumed to be either normally distributed with zero mean and varianceσ2

N or
uniformly distributed on[−c, c], so

NU ∼ U [−c, c], pNU (n) =

{
1
2c if n ∈ [−c, c]
0 otherwise

(7.1)

NG ∼ N(0, σ2
n), pNG(n) =

1√
2πσn

e
n2

2σ2
n ,∀n ∈ R. (7.2)
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The used embedding formula is

ySCS = x + α

(⌊
x + d − 1

2b∆
∆

⌉
∆ − x − d +

b∆
2

)
. (7.3)

The bit error is independent of the value of the embedded bit. Without loss of generality, we
assumeb = 0. The dither is considered as something that gives the host signalx some desirable
properties, so without loss of generality assume thatx has the desired statistics andd = 0. Now,
the embedding formula

y = x + α (Q∆(x) − x) (7.4)

is considered, whereQ∆(x) =
⌊

x
∆

⌉
∆ is the quantization operator. For the Gaussian case we will

need the law of total probability, which reads, for two continuous stochastic variablesV andN ,

pV (v) =

∞∫
−∞

pV |N (v|n)pN (n) dn. (7.5)

So

PV (V ∈ A) =

∞∫
−∞

PV |N (v ∈ A|N = n)pN (n) dn. (7.6)

7.2.1 The derivation of the bit error probability

The detector makes an error if the received valuer = y + n is outside of one of the correct
quantization bins. For the bit error probability is does not matter whetter 0 or 1 is embedded.
Assuming 0 was embedded, then these correct quantization bins are the sets[

Q∆(x) + (4k − 1)
1
4
∆,Q∆(x) + (4k + 1)

1
4
∆
]

, k ∈ Z, (7.7)

see Figure7.2. So, no error is made ifQ∆(x) + (4k − 1)1
4∆ ≤ y + n ≤ Q∆(x) + (4k + 1)1

4∆,
for somek ∈ Z.

Therefore the bit error probability is given by:

PBE = 1 − P (R ∈ the correct quantization bin)

= 1 −
∞∑

k=−∞
P

(
Q∆(X) + (4k − 1)

1
4
∆ ≤ Y + N ≤ Q∆(X) + (4k + 1)

1
4
∆
)

. (7.8)

Theorem 7.1. The bit error probabilityPBE (7.8) can be rewritten as

PBE = 1 −
∞∑

k=−∞
P

(
(4k − 1)

1
4
∆ ≤ V + N ≤ (4k + 1)

1
4
∆
)

(7.9)
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Figure 7.2: The quantization bins for which no error is made, are depicted with the green bars.

Proof: The probability in the sum of Equation (7.8) can be rewritten as

P

(
Q∆(X) + (4k − 1)

1
4
∆ ≤ Y + N ≤ Q∆(X) + (4k + 1)

1
4
∆
)

(7.10)

= P

(
(4k − 1)

1
4
∆ ≤ Y −Q∆(X) + N ≤ (4k + 1)

1
4
∆
)

(7.11)

= P

(
(4k − 1)

1
4
∆ ≤ (1 − α) (X −Q∆(X)) + N ≤ (4k + 1)

1
4
∆
)

(7.12)

= P

(
(4k − 1)

1
4
∆ ≤ V + N ≤ (4k + 1)

1
4
∆
)

, (7.13)

where in the second lineQ∆(X) is subtracted, in the third line the embedding formula (7.4) is
substituted forY , and where we definedV � (1 − α)(X − Q∆(X)) and substitutedV in the
fourth line. �

V is interpreted as the distribution of the host signal over a quantization bin, except for a scaling
with α. By assumption,X −Q∆(X) is uniformly distributed over the range of a quantization bin.
This means thatV ∼ U [−1

2(1 − α)∆, 1
2(1 − α)∆], so

pV (v) =

{
1

(1−α)∆ if v ∈ [−1
2(1 − α)∆, 1

2(1 − α)∆]

0 otherwise
. (7.14)

This infinite sum in Equation (7.9) is hard to compute and therefore we define the truncated sum

PK
BE = 1 −

K∑
k=−K

P

(
(4k − 1)

1
4
∆ ≤ V + N ≤ (4k + 1)

1
4
∆
)

(7.15)

to be theKth order approximation to the bit error probability. Note that for allK, PK
BE ≥ PK+1

BE ≥
PBE.

The bit error probability of Equation (7.9) can be approximated byPK
BE. Depending on the values

of the noise varianceσ2
n and the quantization step size∆ this approximation is already good for
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K = 1, because for moderate noise the probability thatr will come in another quantization bin, is
very small. So, the0th order approximation for the bit error probabilityPBE, as given by

P 0
BE = 1 − P

(
−1

4
∆ ≤ V + N ≤ 1

4
∆
)

(7.16)

= P

(
|V + N | >

1
4
∆
)

, (7.17)

may already give relevant information. A better approximation is given by

P 1
BE = 1 − P

(
−1

4
∆ ≤ V + N ≤ 1

4
∆
)
− P

(
−5

4
∆ ≤ V + N ≤ −3

4
∆
)

− P

(
3
4
∆ ≤ V + N ≤ 5

4
∆
) (7.18)

= P 0
BE − P

(
−5

4
∆ ≤ V + N ≤ −3

4
∆
)
− P

(
3
4
∆ ≤ V + N ≤ 5

4
∆
)

. (7.19)

The two cases of AWGN and uniformly distributed noise, i.e.,NG ∼ N(0, σ2
N ) and NU ∼

U [−c, c], are considered in the following two sections. There we will derive formulas for the bit
error probability.

7.2.2 The bit error probability for Gaussian noise

In this subsection the bit error probability for the Gaussian case is approximated withP 0
BE and

P 1
BE. In the following theorems the formulas forP 0

BE andP 1
BE are derived.

The following facts about the error function erf and the complementary error function erfc are
used

erf(z) = 1 − erfc(z), (7.20)

erf(−z) = − erf(z), (7.21)∫
erf(z) dz = z erf(z) +

1√
π

e−z2
. (7.22)

Theorem 7.2. For α = 1,

P 0
BE = 1 − erf

(
1
4∆√
2 σn

)
. (7.23)

Proof: For the case of no distortion compensation,α = 1, the host signal is quantized to one
point, sov = 0. Using Equation (7.16) P 0

BE is calculated as

P 0
BE = 1 −

∆
4∫

−∆
4

1√
2πσn

e
n2

2σ2
n dn,

This is equal to (7.23), where (7.20) and (7.21) are used. �
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Theorem 7.3. For 0 < α < 1 we have

P 0
BE =

α − 1
2

2(1 − α)
erf

(
1
2(α − 1

2)∆√
2σn

)
− α − 3

2

2(1 − α)
erf

(
1
2(α − 3

2)∆√
2σn

)

+
2σn√

2π(1 − α)∆

(
e
−

1
4 (α− 1

2 )2∆2

2σ2
n − e

−
1
4 (α− 3

2 )2∆2

2σ2
n

)
+ 1.

(7.24)

Proof: Using distortion compensation,α ∈]0, 1[, v is distributed with a probability density func-
tion as in Equation (7.14). The approximation of the conditional bit error probability givenv
is

P (BE | V = v) = P (|V + NG| >
∆
4

| V = v) (7.25)

= P (NG >
∆
4
− V | V = v) + P (NG < −∆

4
− V | V = v) (7.26)

=

∞∫
∆
4
−v

pNG(n) dn +

−∆
4
−v∫

−∞
pNG(n) dn. (7.27)

Then we apply the law of total probability (see (7.6)), to obtain

P 0
BE =

1
2
(1−α)∆∫

− 1
2
(1−α)∆

P (BE | V = v)pV (v) dv

=

1
2
(1−α)∆∫

− 1
2
(1−α)∆




∞∫
∆
4
−v

1√
2πσn

e
−n2

2σ2
n dn +

−∆
4
−v∫

−∞

1√
2πσn

e
−n2

2σ2
n dn


 1

(1 − α)∆
dv

=

1
2
(1−α)∆∫

− 1
2
(1−α)∆

[
1
2

erfc

(
1
4∆ − v√

2σn

)
+

(
1 − 1

2
erfc

(
−1

4∆ − v√
2σn

))]
1

(1 − α)∆
dv, (7.28)

where we used (7.2) and (7.14). In order to rewrite Equation (7.28), the Equations (7.20), (7.21)
and (7.22) are used. NowP 0

BE can be rewritten as

P 0
BE = c0

b∫
a

1 dv − 1
2
c0

b∫
a

erf

(
1
4∆ − v√

2σn

)
dv +

1
2
c0

b∫
a

erf

(
−1

4∆ − v√
2σn

)
dv, (7.29)

with c0 = 1
(1−α)∆ , a = −1

2(1 − α)∆ andb = 1
2(1 − α)∆ and where we used (7.20). The first
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integral is equal to1
c0

. The second is equal to

b∫
a

erf

(
1
4∆ − v√

2σn

)
dv = −

√
2σn

b̃∫
ã

erf(u) du = −
√

2σn

[
u erf(u) +

1√
π

e−u2

]u=b̃

ã

(7.30)

= −1
2
(α − 1

2
)∆ erf

(
1
2(α − 1

2)∆√
2σn

)
−

√
2σn√
π

e
−

1
4 (α− 1

2 )2∆2

2σ2
n

+
1
2
(α − 3

2
)∆ erf

(
1
2(α − 3

2)∆√
2σn

)
+

√
2σn√
π

e
−

1
4 (α− 3

2 )2∆2

2σ2
n ,

(7.31)

where in the first line the integration variablev is changed intou, with u =
1
4
∆−v√
2σn

, ã =
1
4
∆−a√
2σn

,

b̃ =
1
4
∆−b√
2σn

, and where also in the first line Equation (7.22) is applied. In the second line the

expression is evaluated forã andb̃.

The same procedure is applied on the third integral. Taking the three integrals together again and
using Equation (7.21) gives the desired result. �

A better approximation can be calculated withP 1
BE, see Equation (7.19).

Theorem 7.4. For α = 1

P 1
BE = 1 − erf

(
1
4∆√
2 σn

)
+ erf

(
3
4∆√
2 σn

)
− erf

(
5
4∆√
2 σn

)
. (7.32)

Proof: Use (7.19), v = 0 and apply the same reasoning as in Theorem7.2. �

Theorem 7.5. For 0 < α < 1 we have

P 1
BE =

α − 1
2

2(1 − α)
erf

(
1
2(α − 1

2)∆√
2σn

)
− α − 3

2

2(1 − α)
erf

(
1
2(α − 3

2)∆√
2σn

)

+
α − 5

2

2(1 − α)
erf

(
1
2(α − 5

2)∆√
2σn

)
− α − 7

2

2(1 − α)
erf

(
1
2(α − 7

2)∆√
2σn

)

− α + 1
2

2(1 − α)
erf

(
1
2(α + 1

2)∆√
2σn

)
+

α + 3
2

2(1 − α)
erf

(
1
2(α + 3

2)∆√
2σn

)

+
2σn√

2π(1 − α)∆

(
− e

−
1
4 (α− 7

2 )2∆2

2σ2
n + e

−
1
4 (α− 5

2 )2∆2

2σ2
n − e

−
1
4 (α− 3

2 )2∆2

2σ2
n

+ e
−

1
4 (α− 1

2 )2∆2

2σ2
n − e

−
1
4 (α+1

2 )2∆2

2σ2
n + e

−
1
4 (α+3

2 )2∆2

2σ2
n

)
+ 1.

(7.33)

Proof: With (7.18) the conditional bit error probability givenV = v can be made. Applying the
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law of total probability and after some rewriting, as in the caseP 0
BE, we get

P 1
BE = c0

b∫
a

1 dv +
1
2
c0

b∫
a

erf

(
−1

4∆ − v√
2σn

)
dv − 1

2
c0

b∫
a

erf

(
1
4∆ − v√

2σn

)
dv

+
1
2
c0

b∫
a

erf

(
−5

4∆ − v√
2σn

)
dv − 1

2
c0

b∫
a

erf

(
−3

4∆ − v√
2σn

)
dv

+
1
2
c0

b∫
a

erf

(
3
4∆ − v√

2σn

)
dv − 1

2
c0

b∫
a

erf

(
5
4∆ − v√

2σn

)
dv,

(7.34)

with c0, a andb as before.

Following the same procedure as with the calculation ofP 0
BE for 0 < α < 1, this gives the desired

result. �

The0th order approximation for the case of Gaussian noise (7.24) is drawn as a function ofα for
different WNR’s in Figure8.1.

7.2.3 The bit error probability for uniform noise

Next, we will compute approximations to the bit error probability (7.9) for the case of uniformly
distributed noiseN and ”host”V . In order to establish the bit error probability, first the distribution
of the sumV + N of the two uniform distributed variablesV andN is calculated. We have that
N ∼ U [−c, c] (7.1) andV ∼ U [−1

2(1 − α)∆, 1
2(1 − α)∆] (7.14). A distinction is made between

two cases:

Weak noise case: The noise variance is smaller than the variance ofV : σ2
N ≤ σ2

V or c ≤ 1
2(1 −

α)∆;

Strong noise case: The variance ofV is smaller than the noise variance:σ2
N > σ2

V or c >
1
2(1 − α)∆.

In this subsection we will treat the weak noise case. The strong noise case can be treated com-
pletely analogously, so only the results are stated. See Figure7.3for the probability density func-
tions ofV , N and the sumZ = V + N for the weak noise case. In the following the probability
density function ofZ is derived.
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v0

pZ = pV +N

n0 n1 v1v0 + n0 0 v1 + n1v0 + n1 v1 + n0

1
v1−v0

n0 0 n1 v1v0

1
v1−v0

1
n1−n0

pNpV

Figure 7.3: The probability density functions ofN , V and the sumZ for the weak noise case:
σ2

N ≤ σ2
V .

Theorem 7.6. The probability density function ofZ for the weak noise case is given by

pZ(z) =




z−(v0+n0)
(v1−v0)(n1−n0) if z > v0 + n0 andz ≤ v0 + n1

1
(v1−v0) if z > v0 + n1 andz ≤ v1 + n0

(v1+n1)−z
(v1−v0)(n1−n0) if z > v1 + n0 andz ≤ v1 + n1

0 otherwise

(7.35)

=




z+ 1
2
(1−α)∆+c

2(1−α)∆c if −1
2(1 − α)∆ − c ≤ z ≤ −1

2(1 − α)∆ + c
1

(1−α)∆ if −1
2(1 − α)∆ + c ≤ z ≤ 1

2(1 − α)∆ − c
1
2
(1−α)∆+c−z

2(1−α)∆c if 1
2(1 − α)∆ − c ≤ z ≤ 1

2(1 − α)∆ + c

0 otherwise

(7.36)

Proof: Consider the general case thatV ∼ U [y0, y1] andN ∼ U [n0, n1]. The weak noise case is
divided again in three subcases: subcase A1 is the casez ≤ v0 + n1 (this is area 1 in Figure7.4),
subcase A2 is the casez > v0 + n1 andz ≤ v1 + n0 (this is area 2), and subcase A3 is the case
z > v1 + n0 (area 3).

In order to calculate the probability ofZ ≤ z integration is done over areai for subcase Ai,
i = 1, 2, 3. Subcase A1 gives

P (Z ≤ z) =

z−n0∫
v0

z−v∫
n0

1
(v1 − v0)

1
(n1 − n0)

dn dv =

z−n0∫
v0

z − v − n0

(v1 − v0)(n1 − n0)
dv (7.37)

=
1
2

(z − n0)2

(v1 − v0)(n1 − n0)
+

1
2v2

0 − v0(z − n0)
(v1 − v0)(n1 − n0)

, (7.38)
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2

3

1

1

2

3

(v1, n0)
n0

v0

(v0, n0)

v1

n1

(v1, n1)(v0, n1)

(z − n0, n0)

(z − n1, n1)

z = v0 + n1

z = v1 + n0

:

{
z − n0 ≤ v ≤ z − n1

n0 ≤ n ≤ z − v

:

{
z − n1 ≤ v ≤ v1

n0 ≤ n ≤ z − v

:

{
v0 ≤ v ≤ z − n0

n0 ≤ n ≤ z − v

Figure 7.4: The integration areas of the three subcases of the weak noise case.

for subcase A2

P (Z ≤ z) =

z−n1∫
v0

n1∫
n0

1
(v1 − v0)

1
(n1 − n0)

dn dv +

z−n0∫
z−n1

z−v∫
n0

1
(v1 − v0)

1
(n1 − n0)

dn dv

(7.39)

=
z − n1 − v0

(v1 − v0)
+

z−n0∫
z−n1

z − v − n0

(v1 − v0)(n1 − n0)
dv (7.40)

=
1
2(n1 − n0)2

(v1 − v0)(n1 − n0)
+

z − (n1 + v0)
(v1 − v0)

, (7.41)

and for subcase A3

P (Z ≤ z) =

z−n1∫
v0

n1∫
n0

1
(v1 − v0)

1
(n1 − n0)

dn dv +

v1∫
z−n1

z−v∫
n0

1
(v1 − v0)

1
(n1 − n0)

dn dv

(7.42)

=
z − n1 − v0

(v1 − v0)
+

v1∫
z−n1

z − v − n0

(v1 − v0)(n1 − n0)
dv (7.43)

=
z − (n1 + v0)

(v1 − v0)
+

(z − n0)(v1 + n1 − z) + 1
2(z − n1)2 − 1

2v2
1

(v1 − v0)(n1 − n0)
. (7.44)

The probability density function ofZ for the weak noise case is given bypZ(z) = d
dzP (Z ≤ z).

For our case we havev0 = −1
2(1−α)∆, v1 = 1

2(1−α)∆, n0 = −c andn1 = c, which completes
the proof. �
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0

−1
4
∆ 1

4
∆

−1
2
(1 − α)∆ − c −1

2
(1 − α)∆ + c 1

2
(1 − α)∆ − c 1

2
(1 − α)∆ + c

pZ

(a) The case1
4
∆ ≤ 1

2
(1 − α)∆ − c.

pZ

−1
2
(1 − α)∆ − c −1

2
(1 − α)∆ + c 1

2
(1 − α)∆ + c

−1
4
∆ 1

4
∆

1
2
(1 − α)∆ − c0

(b) The case1
2
(1 − α)∆ − c ≤ 1

4
∆ ≤ 1

2
(1 − α)∆ + c.

pZ

−1
2
(1 − α)∆ − c −1

2
(1 − α)∆ + c 1

2
(1 − α)∆ − c 1

2
(1 − α)∆ + c

−1
4
∆ 1

4
∆

0

(c) The case1
4
∆ ≥ 1

2
(1 − α)∆ + c.

Figure 7.5: The bit error probability for the weak noise case is the shaded area underpZ(z).
There are three possible cases, depicted in Subfigure7.5(a), 7.5(b)and7.5(c).

For the strong noise case the pdf is given by

pZ(z) =




z+ 1
2
(1−α)∆+c

2(1−α)∆c if −1
2(1 − α)∆ − c ≤ z ≤ 1

2(1 − α)∆ − c
1
2c if 1

2(1 − α)∆ − c ≤ z ≤ −1
2(1 − α)∆ + c

1
2
(1−α)∆+c−z

2(1−α)∆c if −1
2(1 − α)∆ + c ≤ z ≤ 1

2(1 − α)∆ + c

0 otherwise

(7.45)

The next step is to derive the0th order approximation of the bit error probabilityP 0
BE (see Equation

(7.16)) for uniform noise. For the weak noise case the probability density function is given by
Equation (7.36).

Theorem 7.7. For the weak noise case the0th order approximation of the bit error probability is
given by

P 0
BE =




1 − 1
2(1−α) if 0 < 1

4∆ ≤ 1
2(1 − α)∆ − c

1
2 − α∆

8c + (c− 1
4
∆)2

2(1−α)∆c if 1
2(1 − α)∆ − c ≤ 1

4∆ ≤ 1
2(1 − α)∆ + c

0 if 1
4∆ ≥ 1

2(1 − α)∆ + c

(7.46)

Proof: In order to calculate the error probability, the area under the graph ofpZ(z) is calculated,
with z ranging from−1

4∆ till 1
4∆. There are three possibilities, see Figure7.5: 1

4∆ ≤ 1
2(1 −

α)∆ − c, 1
2(1 − α)∆ − c ≤ 1

4∆ ≤ 1
2(1 − α)∆ + c and 1

4∆ ≥ 1
2(1 − α)∆ + c. The areas
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under the pdf of Figure7.5 are easy to calculate. For the last caseP 0
BE = 0. The first case gives

P 0
BE = 1 − 2 ×

(
1
4∆ · 1

(1−α)∆

)
and the second case

P 0
BE = 1 − 2 ×

(
1
2
(1 − α)∆ − c

)
· 1
(1 − α)∆

− 2 ×
1
4
∆∫

1
2
(1−α)∆−c

1
2(1 − α)∆ + c − z

2(1 − α)∆c
dz (7.47)

= 1 −
(

1 − c
1
2(1 − α)∆

)
−
[
(1 − α)∆ + 2c

2(1 − α)∆c
z − 1

2(1 − α)∆c
z2

]z= 1
4
∆

1
2
(1−α)∆−c

(7.48)

=
1
2
− α∆

8c
+

(c − 1
4∆)2

2(1 − α)∆c
. (7.49)

The three integrals together give the desired result. �

Without proof we state the result for the strong noise case (c ≥ 1
2(1 − α)∆).

Theorem 7.8. For the strong noise case the0th order approximation of the bit error probability
is given by

P 0
BE =




1 − ∆
4c if 0 < 1

4∆ ≤ −1
2(1 − α)∆ + c

1
2 − α∆

8c + (c− 1
4
∆)2

2(1−α)∆c if −1
2(1 − α)∆ + c ≤ 1

4∆ ≤ 1
2(1 − α)∆ + c

0 if 1
4∆ ≥ 1

2(1 − α)∆ + c

(7.50)

The0th order approximation for the case of uniform noise given by (7.46) and (7.50) is drawn as
a function ofα for different WNR’s in Figure8.1.

7.3 The bit error probability due to the adaptive quantization step
size

At the embedder for each pixel a quantization step size∆ is determined. In order to make a
detection it is necessary to estimate this quantization step size at the detector (this estimate is
called∆̂). Due to estimation errors, bit errors may be introduced in the detection. In this section
we analyze the dependence of the bit error probability on the estimation performance.

In Subsection7.3.1a model to determine this bit error probability is derived. An approximation
using Fourier series is given in Subsection7.3.2and the convergence of the Fourier series is exam-
ined in Subsection7.3.3. The expected error probability due to the estimation of∆ at the detector
is calculated in Subsection7.3.4.

7.3.1 Modelling the bit error probability P∆

The bit error probability due to quantization step size estimation errors is to be modelled. Because
only this error source is considered, other sources of errors are assumed to be absent. Therefore
it is assumed that no noise is added and that embedding is done without distortion compensation.
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∆̂

f∆(z)
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∆ ∆ 3
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∆

1

-1

0

1

-1

f ∆̂(z)

1
2
∆̂ ∆̂ 2∆̂

0

1

-1

f∆(z) × f ∆̂(z)

z

z

z

= error

3∆

5
2
∆̂

B

Figure 7.6: The detection error made due to the errors in the estimation of the quantization step
size. In the upper and middle plots detection with∆ and∆̂, respectively, is shown. The values of
z for which an error is made is shown in the lower plot, which is a plot of the product off∆(z)
andf ∆̂(z).

For simplicity, we also assume that the dither equals zero. The bit error probability due to the
estimation of the adaptive quantization step size at the detector is denoted byP∆.

Consider Figure7.6. This shows for some quantization step size which bit is detected, depending
on the pixel valuez. The upper plot of Figure7.6 shows which bit is detected if the correct
quantization step size∆ is used, that is if at the detector the quantization step size is estimated
correctly (̂∆ = ∆). We call this functionf∆(z), with

f∆(z) = sign

(
− cos

(
π

1
2∆

z

))
(7.51)

wheresign(z) � z
|z| if z �= 0 andsign(z) = 0 if z = 0. The middle plot of Figure7.6 shows

detection with an estimated̂∆ which is slightly bigger than the quantization step size∆ used at
the embedding side. This function is calledf ∆̂(z). An error is made for all pixel valuesz for

whichf∆(z) �= f ∆̂(z), i.e., for which the productf∆(z)× f ∆̂(z) equals -1, see the lower plot of
Figure7.6.

For ease of computation, we scale the variablez, and all related variables (∆ and∆̂), such that
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the range ofz becomes the interval[0, 1]. The probability that an error will be made is equal to

the area between the graph off∆(z) × f ∆̂(z) and the horizontal liney = 0. If we call the area
corresponding to correct detectionA (the white area in Figure7.6) and the area corresponding to
erroneous detectionB (the shaded area in Figure7.6), then we have:

A + B = 1, (7.52)
1∫

0

(
f∆(z) × f ∆̂(z)

)
pz(z) dz = A − B, (7.53)

wherepz(z) is the pdf ofz. Then the bit error probability equals:

P∆ = B =
1
2
− 1

2

1∫
0

(
f∆(z) × f ∆̂(z)

)
pz(z) dz (7.54)

=
1
2
− 1

2

1∫
0

sign
(

cos
( π

∆
z
)

cos
(

π

∆̂
z

))
pz(z) dz. (7.55)

Plots for this bit error probabilityP∆ are given in AppendixC. From these plot it is clear that the
quantization step size should be estimated with large precision, because elseP∆ increases rapidly.

This integral is very hard to evaluate due to thesign-function. Therefore, we have to approximate
the integral. We do this in the next subsection by approximating the functionsf∆(z) andf ∆̂(z)
by their Fourier series.

7.3.2 Fourier approximation

Note thatf∆(z) is a periodic function with period∆. This function can be approximated by the
Fourier series on[−1

2∆, 1
2∆]. According to Fourier theory the Fourier series off∆(z) is given by

∞∑
i=0

αigi(z), (7.56)

whereS = {g0(z), g1(z), · · · } is an orthonormal system in the Hilbert spaceH of squared in-
tegrable functions on[−1

2∆, 1
2∆] and whereαi = 〈f, gi(z)〉, with 〈·〉 an inner product. The

L2-norm on[−1
2∆, 1

2∆] is used, which is

‖f‖[− 1
2
∆, 1

2
∆]

2 =


 1

1
2∆

1
2
∆∫

− 1
2
∆

|f(z)|2 dz




1
2

(7.57)

and is derived from the inner product

〈f, g〉[− 1
2
∆, 1

2
∆] =

1
1
2∆

1
2
∆∫

− 1
2
∆

|f(z)g(z)| dz. (7.58)
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If for S the orthonormal system of sinuses and cosinuses is used, thenf∆(z) can be written as

f∆(z) =
1
2
a0 +

∞∑
n=1

an cos

(
nπ
1
2∆

z

)
+

∞∑
n=1

bn sin

(
nπ
1
2∆

z

)
, (7.59)

where theai andbi are the Fourier coefficientsαi = 〈f, gi(z)〉, so

a0 =
1

1
2∆

1
2
∆∫

− 1
2
∆

f∆(z) dz, (7.60)

an =
1

1
2∆

1
2
∆∫

− 1
2
∆

f∆(z) cos

(
nπ
1
2∆

z

)
dz and (7.61)

bn =
1

1
2∆

1
2
∆∫

− 1
2
∆

f∆(z) sin

(
nπ
1
2∆

z

)
dz. (7.62)

Becausef∆(z) is an even function,bn = 0 ∀n ∈ N. Also

a0 =
1

1
2∆

1
2
∆∫

− 1
2
∆

f∆(z) dz = 0 and (7.63)

an =
1

1
2∆

1
2
∆∫

− 1
2
∆

sign

(
− cos

(
π

1
2∆

z

))
cos

(
nπ
1
2∆

z

)
dz (7.64)

=
1

1
2∆




− 1
4
∆∫

− 1
2
∆

cos

(
nπ
1
2∆

z

)
dz −

1
4
∆∫

− 1
4
∆

cos

(
nπ
1
2∆

z

)
dz +

1
2
∆∫

1
4
∆

cos

(
nπ
1
2∆

z

)
dz


 (7.65)

= · · · =
−4
nπ

sin
(

1
2
nπ

)
=

{
0 if n even,

(−1)(n+1)/2 4
nπ if n odd.

(7.66)

This gives

f∆(z) =
∞∑

k=0

(−1)k+1 4
(2k + 1)π

cos

(
(2k + 1)π

1
2∆

z

)
, (7.67)

wheren = 2k + 1 is used. Forf ∆̂(z) the derivation is done similarly:

f ∆̂(z) =
∞∑

k=0

(−1)k+1 4
(2k + 1)π

cos

(
(2k + 1)π

1
2∆̂

z

)
. (7.68)
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So we have

P∆ =
1
2
− 1

2

1∫
0

{ ∞∑
k=0

(−1)k+1 4
(2k + 1)π

cos

(
(2k + 1)π

1
2∆

z

)

×
∞∑

k=0

(−1)k+1 4
(2k + 1)π

cos

(
(2k + 1)π

1
2∆̂

z

)}
pz(z)dz.

(7.69)

7.3.3 Convergence analysis

In this subsection the convergence of (7.69) is established. According to Theorem 11.4 of [1] the
Fourier series of a functionf converges pointwise tof if and only if(

‖f‖[− 1
2
∆, 1

2
∆]

2

)2

=
∞∑
i=1

|αi|2, (7.70)

with αi the Fourier coefficients off and where the L2-norm on[−1
2∆, 1

2∆] is used. Equation
(7.70) is known as Parseval’s formula. Forf∆ this means

(
‖f∆‖[− 1

2
∆, 1

2
∆]

2

)2

=
1

1
2∆

1
2
∆∫

− 1
2
∆

f∆(z)2 dz = 2 (7.71)

(7.72)

and
∞∑
i=1

|αi|2 =
∞∑

k=0

∣∣∣∣(−1)k+1 1
2k + 1

4
π

∣∣∣∣
2

=
16
π2

∞∑
k=0

1
(2k + 1)2

=
16
π2

π2

8
= 2, (7.73)

from which it can be concluded that the Fourier series off∆(z) and f ∆̂(z) converges point-

wise tof∆(z) andf ∆̂(z) respectively. Becausef∆(z) andf ∆̂(z) are not continuous functions,

their Fourier series does not converge uniformly, see [1]. It is known thatf∆(z) andf ∆̂(z) are
continuous on the interval[0, 1], except for some points of discontinuityz = (2k + 1)1

4∆ or
z = (2k + 1)1

4∆̂, k ∈ N. Therefore, we have that their Fourier series are uniform convergent on
any closed intervalI ⊂ [0, 1] not containing a point of discontinuity.

According to Theorem 11.4 of [1], because Equation (7.70) holds, it also holds that

lim
n→∞ ‖f − sn‖[− 1

2
∆, 1

2
∆]

2 = 0, (7.74)

where{sn} is the sequence of partial sums defined bysn(z) =
n∑

k=0

αk gk(z). Becausef∆(z) is a

periodical function, not onlylim
n→∞

1
1
2
∆

∫ 1
2
∆

− 1
2
∆
|f∆(z)−sn|2 dz = 0, but also lim

n→∞
1

1
2
∆

∫ 3
2
∆

1
2
∆

|f∆(z)−
sn|2 dz = 0, and so on. Also,lim

n→∞
1

1
2
∆

∫ 1
2
∆

− 1
2
∆
|f∆(z)−sn|2 dz = 0 implies lim

n→∞
1

1
2
∆

∫ b
a |f∆(z)−

sn|2 dz = 0, for a, b ∈ [−1
2∆, 1

2∆], because the integration term is positive. Therefore

lim
n→∞ ‖f − sn‖[0,1]

2 = lim
n→∞ ‖f − sn‖[0, 1

2
∆]

2 + lim
n→∞ ‖f − sn‖[ 1

2
∆, 3

2
∆]

2

+ · · · + lim
n→∞ ‖f − sn‖[h,1]

2 = 0,
(7.75)
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with h = (2k + 1)1
2∆, where(2k + 1) the largest integer such that it is smaller than 1.

Denote the Fourier series off∆(z) by sn and the Fourier series off ∆̂(z) by tn. Then it can be

shown thatsn tn converges tof∆(z)f ∆̂(z) in the L1-norm on[0, 1]:

‖sntn − f∆f ∆̂‖[0,1]
1 = ‖(sn − f∆)tn + f∆(tn − f ∆̂)‖[0,1]

1 (7.76)

≤ ‖(sn − f∆)tn‖[0,1]
1 + ‖f∆(tn − f ∆̂)‖[0,1]

1 (7.77)

=

1∫
0

|(sn − f∆)tn| dz +

1∫
0

|f∆(tn − f ∆̂)| dz (7.78)

=
〈|sn − f∆|, |tn|

〉[0,1]

2
+
〈
|f∆|, |tn − f ∆̂|

〉[0,1]

2
(7.79)

≤ ‖(sn − f∆)‖[0,1]
2 ‖tn‖[0,1]

2 + ‖f∆‖[0,1]
2 ‖(tn − f ∆̂)‖[0,1]

2 , (7.80)

where the second line follows from the triangle inequality, the third from the definition of the L1-
norm on[0, 1], the fourth from the definition of the L2-inner product on[0, 1] and the fifth from

the Cauchy-Schwarz inequality. Becauselim
n→∞ ‖f∆ − sn‖[0,1]

2 = 0, lim
n→∞ ‖f ∆̂ − tn‖[0,1]

2 = 0 (see

Equation (7.75)), and because‖sn‖[0,1]
2 and‖tn‖[0,1]

2 are finite, the limit of the right-hand-side of
(7.80) goes to zero and therefore

lim
n→∞ ‖sntn − f∆f ∆̂‖[0,1]

1 = 0. (7.81)

Sosntn goes tof∆f ∆̂ for n → ∞ in L1 sense. It is also known that∣∣∣∣∣∣
1∫

0

sntn dz −
1∫

0

f∆f ∆̂ dz

∣∣∣∣∣∣ ≤
1∫

0

∣∣∣sntn − f∆f ∆̂
∣∣∣ dz

n→∞−−−→ 0, (7.82)

so the integral (7.69) of the product of the two Fourier-sums is convergent.

7.3.4 Statistics

In this subsection the expected value ofP∆ as given in (7.69) is calculated. Until now we have
consideredP∆ as a deterministic function. It is also possible to see it as a stochastic variable
depending on the stochastic variables∆ and ∆̂, or alternatively on∆ and the estimation error
ε1 = ∆̂ − ∆. The mean of this stochastic variable can be calculated as

EP∆ =

∞∫
−∞

∞∫
−∞

P∆(ε1, ∆)pε1,∆(ε1, ∆) dε1 d∆. (7.83)

We need to know the probability density functionpε1,∆(ε1, ∆). Therefore we derive the distribu-
tions of the stochastic variablesε1 and∆ from the distribution of the host signal samplesx.

Assume that the host signal samplesx = (x1, x2, · · · , xN ) are identically and independently
distributed with meanEx = µx and variancevar(x) = σ2

x. Let the quantization step size be

determined according to∆ = γ
L

L∑
i=1

xi. Because of the Central Limit Theorem (see [19]), we have
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for sufficiently largeL thatSL =
L∑

i=1
xi can be approximated by a normal distribution with mean

µS = E
[∑

xi

]
=

∑
E [xi] = Lµx (7.84)

and variance

σ2
S = var

[∑
xi

]
=

∑
var [xi] = Lσ2

x. (7.85)

Hence,∆L = γ
LSL has a normal distribution, as well, with mean

µ∆ = E
[ γ

L
SL

]
=

γ

L
Lµx = γµx (7.86)

and variance

σ2
∆ = var

[ γ

L
SL

]
=

γ2

L2
var [SL] =

γ2

L
σ2

x. (7.87)

So the probability density function of∆L is given by

p∆(∆) =
1√
2π

√
L

γσx
e
−L

(∆−γµx)2

2γ2σ2
x . (7.88)

By assumption the watermarkw = y − x is uniformly distributed over[−∆, ∆], if α = 1, so

pw|∆(w|∆) =

{
1

2∆ if w ∈ [−∆, ∆]
0 otherwise

(7.89)

We definedε1 = ∆̂ − ∆, therefore

ε1 =
γ

L

L∑
i=1

(yi − xi) =
γ

L

L∑
i=1

(xi + wi − xi) =
γ

L

L∑
i=1

wi. (7.90)

We calculate the distribution ofε1 given∆ the same way as we did with calculating the distribution
of ∆ and we get thatε1 given∆ is normally distributed with zero mean and varianceγ2∆2

6L , so

pε1|∆(ε1) =
1√
2π

√
6L

γ∆
e
−6L

ε21
2γ2∆2 (7.91)

Using the definition of conditional probabilities we have

pε1,∆(ε1, ∆) = pε1|∆(ε1) · p∆(∆) (7.92)

=
1
2π

√
6L

γ2σx∆
e
−6L

ε21
2γ2∆2 e

−L
(∆−γµx)2

2γ2σ2
x . (7.93)

From this the expected value for the error probability due to the estimation of∆ at the detector can
be derived with (7.83). With P∆(∆, ε1) given by (7.69), where we have substituted̂∆ = ε1 + ∆,
we get the desired formula for the expected bit error probability

EP∆(µx, σx, γ, L) =

∞∫
−∞

∞∫
−∞

P∆(∆, ε1) × 1
2π

√
6L

γ2σx∆
e
−6L

ε21
2γ2∆2 e

−L
(∆−γµx)2

2γ2σ2
x dε1 d∆. (7.94)

This integral can be evaluated numerically.
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7.4 Summary

In this chapter we have developed two models in order to quantify the performance of the water-
marking model. Bit error probabilities are used as performance measure.

• The first model uses the SCS with a fixed quantization step size and an AWGN or uniform
noise channel. For Gaussian noise two approximations of the bit error probabilityPBE are
calculated. These two bit error probabilities are given by Equation (7.24) and (7.33). For
uniform noise one approximation is calculated, which is given by (7.46) and (7.50).

• The second model uses SCS with an adaptive quantization step size and an error free chan-
nel. The error probabilityP∆ due to the estimation of∆ at the detector is given by (7.55).

The bit error probabilityP∆ is approximated with the integral over two Fourier series. This is
proved to be convergent in Subsection7.3.3. The expected value ofP∆ is calculated in Subsection
7.3.4and is given by (7.94).

The two models can be used in order to give a measure of the total performance of the watermark-
ing system.
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Chapter 8

Parameter optimization

In this chapter we determine the optimal value of the distortion compensation parameterα. This
optimization is based on the bit error probabilityPBE, derived in Chapter7. Our work is related
to the work of Joachim Eggers who also optimizedα. His approach is a information-theoretic
one, based on channel capacity maximization. We have an analytical expression, which can be
optimized numerically, while Eggers has a numerical expression, which he numerically optimizes.
The resulting optimal values cannot be compared exactly, but they turn out to be very similar.

In Section8.1the optimization problem is given. A solution is given in Section8.2and compared
to the result of Eggers.

8.1 The optimization problem for α

It is assumed that embedding is done by SCS, with a fixed quantization step size∆ and an AWGN
channel. So, the same conditions are used as in Subsection7.2.2. In Section7.2an expression is
derived for the error probability under these conditions, see Equation (7.9). For Gaussian noise this
equation can be approximated with Equation (7.24) or (7.33). Both of these expressions for the bit
error probabilityPBE are dependent on the distortion compensation parameterα, the quantization
step size∆ and on the noise powerσ2

n.

Recall that the watermark is defined asw � y − x. Using Equation (7.4) this givesw =
α (Q∆(x) − x); Recall thatQ∆(X) − X ∼ U [−1

2∆, 1
2∆], see Subsection7.2.1. Therefore, the

watermark is uniformly distributed asW ∼ U [−1
2α∆, 1

2α∆]. The watermark variance is given
by

σ2
w =

(1
2α∆ −−1

2α∆)2

12
=

α2∆2

12
, (8.1)

so∆, α andσ2
w are related by

∆ =
2
√

3σw

α
. (8.2)

In [17] Eggers reports the same relationship.

Substituting this relation for∆ in Equation (7.24) leads to the following expression ofP 0
BE as a

function ofα, σw andσn:
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P 0
BE

(
α;

σ2
w

σ2
n

)
=

α − 1
2

2(1 − α)
erf

(√
3/2(α − 1

2)
α

σw

σn

)
− α − 3

2

2(1 − α)
erf

(√
3/2(α − 3

2)
α

σw

σn

)

+
α√

6π(1 − α)
σn

σw

(
e
−3/2

(
1

4α2 − 1
α

+1
)

σ2
w

σ2
n − e

−3/2
(

9
4α2 − 3

α
+1

)
σ2

w
σ2

n

)
+ 1.

(8.3)

Note thatP 0
BE only depends onα and the ratio ofσw andσn. The Watermark-to-Noise Ratio

is defined to beWNR � 10 log10

(
σ2

w
σ2

n

)
dB. For constant WNR the bit error probability of

Equation (8.3) is only a function of the distortion compensation parameterα. The value of the
WNR depends on the application. For some applications the power of the noise attack can be
quite large compared to the watermark power, for other applications the ratio betweenσ2

n andσ2
w

is around 1.

The parameterα is set at the embedder. The question is now: How to set this parameter such that
the bit error probability is minimal? Or, in mathematical terms, we need to find

α∗ = arg min
α∈]0,1]

PBE

(
α;

σ2
w

σ2
n

)
. (8.4)

This problem can be approximated by the problems

α∗
K = arg min

α∈]0,1]
PK

BE

(
α;

σ2
w

σ2
n

)
. (8.5)

An explicit expression forPK
BE is given by Equation (8.3) for K = 0 and forK = 1 by

P 1
BE

(
α;

σ2
w

σ2
n

)
=

α − 1
2

2(1 − α)
erf

(√
3/2(α − 1

2)
α

σw

σn

)
− α − 3

2

2(1 − α)
erf

(√
3/2(α − 3

2)
α

σw

σn

)

+
α − 5

2

2(1 − α)
erf

(√
3/2(α − 5

2)
α

σw

σn

)
− α − 7

2

2(1 − α)
erf

(√
3/2(α − 7

2)
α

σw

σn

)

− α + 1
2

2(1 − α)
erf

(√
3/2(α − 1

2)
α

σw

σn

)
+

α + 3
2

2(1 − α)
erf

(√
3/2(α − 3

2)
α

σw

σn

)

+
α√

6π(1 − α)
σn

σw

(
−e

− 3
2

(α− 7
2)

2

α2
σ2

w
σ2

n + e
− 3

2

(α− 5
2)

2

α2
σ2

w
σ2

n − e
− 3

2

(α− 3
2)

2

α2
σ2

w
σ2

n

+ e
− 3

2

(α− 1
2)

2

α2
σ2

w
σ2

n − e
− 3

2

(α+1
2)

2

α2
σ2

w
σ2

n + e
− 3

2

(α+3
2)

2

α2
σ2

w
σ2

n

)
+ 1.

(8.6)

In Chapter7 we also derived an expression forPK
BE for the case of uniform noise. In this case,

c =
√

3σn, see (7.1). Substituting this and (8.2) in (7.46) and (7.50) we get expressions forP 0
BE

as a function ofα and σw
σn

for the assumption of uniform noise,
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Figure 8.1: The error probabilities for different Watermark-to-Noise Ratio’s:P 0
BE for the case of

uniform and Gaussian noise andP 1
BE for the Gaussian case.
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(8.7)

The bit error probabilities (8.3), (8.6) and (8.7) are shown in Figure8.1for different WNR’s.
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Figure 8.2: The optimal distortion compensation parameterα for Gaussian and uniform noise
attacks andK = 0. For uniform noise there is a clipping point in the figure. For WNR’s larger
than this clipping point the optimal distortion compensation parameterα∗ is the set of values
between the two green dashed lines.

8.2 Bit error minimization and Eggers

Finding the optimal distortion compensation parameterα∗, concerns finding the functionα∗
(

σw
σn

)
that minimizes (8.4). This is hard to solve analytically, but for a given value ofσw

σn
the correspond-

ing valueα∗ can easily be calculated numerically.

Eggers also optimized the distortion compensation parameter. However, where we minimized the
channel bit error probability, he maximized the channel capacityC

α∗ = arg max
α∈]0,1[

C

(
α;

σw

σn

)
. (8.8)

Eggers found a numerical approximation of the capacity function. He optimized this function
numerically and found a sequence ofα∗’s for a given WNR. He approximated this sequence with
the formula

α∗
SCS =

√
σ2

w

σ2
w + 2.71σ2

n

, (8.9)

for the Scalar Costa Scheme (SCS).

A similar optimization problem can be defined for the case of uniform noise. In Figure8.2the op-
timal distortion compensation parameterα∗ is plotted against the WNR for the different problems
and approaches: problem (8.5) with K = 1, the optimalα∗ for uniform noise, Eggers’ formula
(Equation (8.9)) and for the Ideal Costa Scheme (ICS) found by Costa given by

α∗
ICS =

σ2
w

σ2
w + σ2

n

. (8.10)

We see that our model forK = 0 is almost equal to the result of Eggers. ForK = 1 we also
derived the optimalα∗. This improved bit error probability is plotted in Figure8.3.
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Figure 8.3: Optimal distortion compensation parameter for the improved model (K = 1).

The improvement forK = 1 is very small, but still it is even closer to Eggers’ function than our
earlier result withK = 0. Because of the small difference between the models forK = 0 and
K = 1, see Figure8.4, an increase in the value ofK is not expected to improve the estimate for
the optimal distortion compensation parameterα∗.

In order to determine the bit error probability in the presence of relatively strong noise, i.e., low
WNR’s, it is necessary to use higher values ofK. This can be seen from Figure8.1, where for
low WNR’s there is difference betweenP 0

BE andP 1
BE. This is explained from the fact that for

strong noise, more quantization bins need to be taken into account. This is also why higher bit
error probabilities are seen than0.5. It is also seen from Figure8.1 that for higher WNR’s, from
WNR = 0, P 0

BE andP 1
BE are practically indifferent.
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Figure 8.4: Optimal distortion compensation parameter for the two models (K = 0 andK = 1)
of Gaussian noise.
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Chapter 9

Contributions, Conclusions and
Recommendations

9.1 Contributions

During the internship we have done the following:

• A literature study of the state of the art of quantization watermarking was made. An
overview of watermarking in general and quantization based watermarking is given in Chap-
ter2 and3, respectively;

• The SCS is implemented in Matlab and C++;

• Two improvements of this scheme are developed: the use of error correcting codes and the
use of an adaptive quantization step size. The aim of the improvements is to get a better
robustness of the watermarking algorithm at an equal perceptibility level of the watermark;

• Several possibilities of the adaptive quantization method are implemented in C++;

• A convolutional encoder and a corresponding Viterbi decoder are implemented in C++. This
implementation uses an arbitrary number of inputs and outputs, so any rate is achievable.
Decoding has a high complexity, therefore it is only possible to use a memory size up to
M = 9;

• A complete watermarking embedder and detector of SCS with the two improvements is
implemented in C++;

• Two models for estimating the performance of the watermarking algorithm are developed.
This results in two bit error probabilitiesPBE andP∆;

• A detection thresholdT is calculated;

• The distortion compensation parameterα is optimized for a Gaussian host signal and an
AWGN communication channel. This optimalα∗ is compared with a similar result of Eg-
gers and is found to be equal;

• Experiments are done in order to estimate the result of the improvements.
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9.2 Conclusions

As stated in Chapter4 we are seeking an increased robustness against AWGN and JPEG attacks
and against brightness scaling. The methods we have used were Error Correcting Codes and
adaptive quantization.

From Chapter5 we conclude that ECC are a valuable tool in order to decrease the bit error prob-
ability and in this way increase robustness against all sorts of attacks. Concatenation of convolu-
tional codes and repetition codes is valuable as long as the noise introduced by the channel is low
enough. Beyond a certain noise strength CC do not add significant robustness improvements.

Adaptive quantization strongly adds to robustness against brightness scaling; It is much better than
fixed quantization. Against AWGN the improvement from adaptive quantization is limited and for
JPEG it is slightly better to use fixed quantization.

Another goal of this report is to give an analytical model for the performance of the watermark
model. This was done in Chapter7. The performance is measured by the bit error probability. The
bit error probability for the case of fixed quantization, distortion compensation and a uniform or
Gaussian noise channel is determined. This bit error probabilityPBE is a function of the distortion
compensation parameterα and the WNR. Also the bit error probability for adaptive quantization,
without distortion compensation and without a noise attack is determined. The expectation of
this bit error probabilityP∆ is a function of the mean and variance of the host signalx, and the
two parameters in order to be able to determine the adaptive quantization step size, namelyγ and
L. The developed models can be used to measure the effects of attacks and the use of adaptive
quantization on robustness.

For the case of a fixed quantization step size, distortion compensation and an AWGN channel
the optimal distortion compensation parameterα∗ is determined. Using this parameter at the
embedder, robustness in an AWGN situation is maximized. Theα∗ we found was compared with
values found by Eggers [17], and was found to be identical.

If the maximum allowed distortion from the watermarkw is known i.e., ifσ2
w andγ are known,

and if it is known in which range the attack strength is, i.e.,σ2
n is known, then the WNR can be

calculated. For this WNR the optimal distortion compensation parameterα∗ can be derived from
Chapter8. From Chapter6 we have thatL = 11 is a reasonable value to setL to. For a given host,
the two derived bit error probabilities can be calculated, giving a measure of the performance in
this situation.

9.3 Recommendations

The following topics deserve to be subject of further study:

• PBE(α) can be compared with values found by experiment, using the software that was
developed during the internship.

• The bit error probability for the case of adaptive quantization, with distortion compensation,
and with a noise attack has to be determined in order to get a reliable measure for the overall
performance of the watermarking model. Is there a relationship between the two derived bit
error probabilities and the overall one? Maybe it is possible to prove thatPtotal ≤ PBE+P∆.

• Are there other improvements, besides the use of ECC and adaptive quantization?
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• The present watermarking algorithm is not robust against synchronization and geometrical
attacks. Countermeasures have to be sought.
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Appendix A

Notation

Variables and Functions

x host signal
y watermarked signal
yM watermarked signal, watermarked using a watermarking scheme M
w watermarkw � y − x
n processing on a channel, usually considered as noise
r signal received at the detection point
m message
l message length
mc encoded message
lc encoded message length
m̂ message estimated at the detector
k key sequence
d dither sequence
α distortion compensation parameter
γ embedding strength parameter
∆ quantization step size
L number of samples in an environment
N length of signalsx, y, w, n, r, d
T threshold setting
PBE bit error probability due to a noise attack
PK

BE Kth order approximation ofPBE

P∆ bit error probability due to the estimation of∆ at the detector
erf(z) error function
erfc(z) complementary error function
Q∆(z) quantizer with step size∆
�·� rounding to the nearest integer
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Abbreviations and Acronyms

AWGN Additive White Gaussian Noise
BER Bit Error Rate
BMP BitMaP
CC Convolutional Code
DC-QIM Distortion Compensated Quantization Index Modulation
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DM Dither Modulation
DS-CDMA Direct Sequence Code Division Multiple Access
DVD Digital Versatile Disc
DWT Discrete Wavelet Transform
ECC Error Correcting Code
GIF Graphics Interchange Format
HAS Human Auditory System
HVS Human Visual System
ICS Ideal Costa Scheme
IH Information Hiding
JPEG Joint Photographic Experts Group
LSB Least Significant Bit
MPEG Motion Pictures Experts Group
MSE Mean Square Error
NASA National Aeronautics and Space Administration
pdf probability density function
SCS Scalar Costa Scheme
SNR Signal-to-Noise Ratio
SS Spread Spectrum
QIM Quantization Index Modulation
WNR Watermark-to-Noise Ratio
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Appendix B

Images

(a) lena.bmp (b) baboon.bmp

(c) peppers.bmp (d) tulips.bmp

Figure B.1: The images used for experiments.
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Appendix C

Graphs for P∆

We have plotted the bit error probabilityP∆ due to the estimation of∆ at the detector, as a function
of ∆ and the absolute errorε1 = ∆̂ − ∆, see FigureC.1 andC.2. In FigureC.1∆ is plotted for
0 ≤ ∆ ≤ 1 after scaling of the parameters, see Section7.3. For large values ofDelta, the
distortion becomes too high. Therefore, those large values are disregarded. Therefore, the relevant
range for∆ is more like0 ≤ ∆ ≤ 0.1 after scaling of the parameters, which is 0 to 25 before
scaling. See FigureC.2for a plot ofP∆ in this range.
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Figure C.1: The bit error rateP∆ as a function of∆ andε1. P∆ is shown from different angles.
∆ is in the range[0, 1].
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Figure C.2: The bit error rateP∆ as a function of∆ andε1. P∆ is shown from different angles.
∆ is in the range[0, 0.1].
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