
A Comparison of Acceleration Techniques
for Nonrigid Medical Image Registration

Stefan Klein, Marius Staring, and Josien P.W. Pluim

University Medical Center Utrecht, Image Sciences Institute,
Q0S.459, P.O. Box 85500, 3508 GA Utrecht, The Netherlands

{stefan, marius, josien}@isi.uu.nl.

Abstract. Mutual information based nonrigid registration of medical
images is a popular approach. The coordinate mapping that relates the
two images is found in an iterative optimisation procedure. In every
iteration a computationally expensive evaluation of the mutual infor-
mation’s derivative is required. In this work two acceleration strategies
are compared. The first technique aims at reducing the number of it-
erations, and, consequently, the number of derivative evaluations. The
second technique reduces the computational costs per iteration by em-
ploying stochastic approximations of the derivatives. The performance of
both methods is tested on an artificial registration problem, where the
ground truth is known, and on a clinical problem involving low-dose CT
scans and large deformations. The experiments show that the stochastic
approximation approach is superior in terms of speed and robustness.
However, more accurate solutions are obtained with the first technique.

1 Introduction

Nonrigid registration is an important technique in medical image processing. A
popular class of registration methods is based on maximisation of the mutual
information similarity measure, in combination with a deformation field param-
eterised by cubic B-splines [1,2]. The large computation time of this approach is
a big disadvantage for many clinical applications. For practical use, acceleration
is required.

Registration is usually stated as a minimisation problem:

µ̂ = arg min
µ

C (µ; IF , IM ) , (1)

where C(µ; IF , IM ) denotes a cost function, and µ a vector of parameters defin-
ing the deformation field that relates the fixed image IF and the moving image
IM . In this paper the cost function is defined as the negated mutual information
similarity metric, and the deformation field is parameterised by cubic B-splines,
whose coefficients form the vector µ. To find the solution µ̂ an iterative op-
timisation strategy is employed. In many optimisation methods the parameter
update in each iteration k is based on the derivative of the cost function C with
respect to the parameters µ. The gradient descent algorithm [3] is the most
straightforward example:
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µk+1 = µk − akg(µk), k = 0, 1, 2, . . . , (2)

where g(µk) represents the derivative of the cost function, ∂C/∂µ, evaluated
at µk. A scalar gain, ak, controls the step size. Within certain conditions, the
sequence {µk} defined by (2) converges to a local minimum of the cost function.

Computation of the derivatives, g(µk), requires a considerable amount of
computational effort in nonrigid registration problems. In this work two acceler-
ation strategies are compared. The first technique aims at reducing the number
of iterations, and, consequently, the number of required derivative evaluations.
Well-known methods with an improved rate of convergence are the quasi-Newton
and nonlinear conjugate gradient [3]. The second technique focusses on the com-
putational costs per iteration by using approximations of g(µk). Acceleration
factors are given with respect to the performance of the standard gradient de-
scent method.

The acceleration strategies are compared in two types of experiments. Firstly,
an artificially created problem is considered. An image is registered to itself,
after application of a known, randomly generated deformation. Secondly, the
registration of a low-dose expiration CT chest scan to a high-dose inspiration
scan of the same patient is used as a test problem.

2 Nonrigid Registration Framework

In this section the various components of the nonrigid registration framework
are described. The design of our algorithm is largely based on the papers by
Mattes et al. [1], Rueckert et al. [2], and Thévenaz and Unser [4].

For computation of the mutual information the approach described in [4] is
used. The joint histogram is constructed using B-spline Parzen windows, which
makes it possible to formulate the mutual information as a continuous, differen-
tiable function of the parameters describing the deformation field. In all exper-
iments described in this paper, the joint histogram size is set to 32 × 32. The
deformation field is parameterised by B-splines.

The minimisation problem (1) is solved with a multiresolution strategy. For the
image data, we use a Gaussian image pyramid. The complexity of the deforma-
tion model is defined by the B-spline control point resolution. In our tests we let
it follow the image resolution: when the image resolution is doubled, the control
point resolution is doubled as well. The number of resolution levels and the final
B-spline control point spacing depend on the specific problem. At each resolution
a minimisation is performed, using one of the tested optimisation methods. When
necessary, images are rigidly registered before the nonrigid registration.

3 Acceleration Strategies

A standard gradient descent algorithm, see (2), is used as a benchmark, to which
further results are compared. The method is implemented using a slowly decaying
gain sequence:
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ak = a/(A + k + 1)α , (3)

where a > 0, A ≥ 0, and 0 ≤ α ≤ 1 are user-defined constants.

3.1 Acceleration by Faster Convergence

In the literature many optimisation methods can be found with (theoretically)
a better rate of convergence than the gradient descent. Perhaps the most well-
known ones are the quasi-Newton and nonlinear conjugate gradient methods.

Quasi-Newton methods [3] use the following iterative scheme:

µk+1 = µk − akLkg(µk) . (4)

In this equation, Lk is a positive definite matrix that serves as an approximation
to the inverse Hessian of the cost function. For computation of the matrix Lk

second order derivatives of the cost function are not needed; only the already
computed first order derivatives are used. The scalar ak is again a gain factor
that controls the step size.

Several ways to construct the series {Lk} are proposed in the literature. The
method used in this work is a popular variant of the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm: the Limited memory BFGS (LBFGS) [5], which elim-
inates the need for storing the matrix Lk in memory.

Quasi-Newton methods are usually implemented in combination with an inex-
act line search routine, which determines a gain factor ak that ensures sufficient
progress towards the solution. In this work we use the line search routine de-
scribed by Moré and Thuente [6]. If no gain factor can be found that gives
sufficient progress, the optimisation is assumed to have converged.

Nonlinear conjugate gradient methods [3, 7] are based on the following itera-
tive scheme:

µk+1 = µk + akdk , (5)

where the search direction dk is defined as a linear combination of the current
derivative g(µk) and the previous search direction dk−1:

dk = −g(µk) + βkdk−1 . (6)

Many expressions for the scalar βk can be found in the literature [7]. In this
study we use a so-called ‘hybrid’ version, proposed in [8] and shown to be very
efficient compared to other methods. The gain factor ak is determined by the
same inexact line search routine as used with the quasi-Newton method.

3.2 Acceleration by Stochastic Approximation

By using approximated derivatives instead of the exact ones the computation
time per iteration can be reduced significantly.

The computation time of the derivative of mutual information is linearly
dependent on the number of voxels |IF | in the fixed image, and on the number
of B-spline coefficients N (the length of the parameter vector µ):

tg(µk) ∼ p|IF | + qN , (7)
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where p and q are constants. For most medical nonrigid registration problems
p|IF | tends to be much larger than qN . It is clear that we can lower the com-
putation time of a derivative evaluation by not using all the voxels, but only a
small subset of voxels.

In [9] it is demonstrated that, when using a new, randomly selected, subset
of voxels in every iteration of the optimisation process, the parameter sequence
{µk} still converges to the correct solution. Selecting a new subset of voxels in
every iteration ensures that the approximation errors will, on average, cancel
each other out. The approximation errors can be considered a source of noise εk

entering the optimisation process:

µk+1 = µk − ak (g(µk) + εk) . (8)

This scheme is often referred to as a stochastic gradient descent algorithm or
a Robbins-Monro procedure [10, 11]. It can be proven that the sequence {µk}
defined by (8) still converges to the solution µ̂, provided that the bias of the
approximation error goes to zero.

The experiments in [9] indicate that for the registration of large 3D images as
few as 2048 voxels are required in each iteration, which is adopted in our tests.
The gain sequence {ak} is defined as in the gradient descent method, see (3).

3.3 Combining the Acceleration Strategies

Naturally, the question rises whether it is possible to combine the two accelera-
tion strategies. Unfortunately, the quasi-Newton and nonlinear conjugate gradi-
ent optimisation methods are not designed to work with stochastic approxima-
tions of the derivatives. They expect noise-free derivatives to be available.

A possible strategy for these methods is to select a single subset of voxels in
the fixed image and use these samples throughout the registration process [12,1].
A disadvantage of this method is that convergence to the correct solution cannot
be guaranteed, because the approximation error bias does not go to zero.

In our tests with quasi-Newton and nonlinear conjugate gradient the samples
are selected on a regular grid using identical downsampling factors for each image
dimension.

4 Experiments and Results

In two types of nonrigid registration problems, the following methods are com-
pared:

– Gradient Descent (GD), see Sec. 3,
– Quasi-Newton (QN-df ), see Sec. 3.1,
– Nonlinear Conjugate Gradient (NCG-df ), see Sec. 3.1,
– Stochastic Gradient Descent (SGD), see Sec. 3.2.

The extension df denotes the downsampling factor. Downsampling factors of 1
(full image), 2, 4, 8, and 16 are tested. In case of GD, the full image is always
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used. As explained in Sec. 3.2, the SGD method uses only 2048 voxels to calculate
the derivatives.

For all optimisation methods, the computation time per iteration is assumed
to be dominated by the time required for computing the derivative of the mu-
tual information. Moreover, the derivative’s computation time is assumed to be
mainly related to the number of voxels used. These simplifications allow us to
define the normalised computation time (NCT) up to iteration k of the optimi-
sation process:

NCT = (k + 1)V/|IF | , (9)

with V the number of voxels used to compute the derivative.

4.1 Artificial Deformation Fields

In the first evaluation procedure an image I is registered with a deformed version
of itself. To avoid interpolation errors, the deformation field ṽ is added to the
B-spline deformation field vµ that is updated during optimisation. Since the
image I is registered with itself, the desired solution is a total deformation field
that is zero everywhere. The ground truth is known, so an error measure, the
average displacement error e, can be defined:

e(µ) =
1
|I|

∑

xi∈I

‖ṽ(xi) + vµ(xi)‖ , (10)

where xi is the position of voxel i in the image volume I, and |I| the total
number of voxels in I. The speed of convergence of a method is visualised by
plotting this error measure against the normalised computation time NCT.

The experiments are performed on four 3D CT images of the heart. The im-
ages originate from chest scans. These were cropped to the area of the heart and
downsampled by a factor of two, resulting in images of 97×97×97 voxels with an
isotropic size of 1.4mm. For each image a deformation field ṽ is generated, com-
posed of randomly placed Gaussian blobs with a standard deviation of 14mm.
A 10 × 10 × 10 grid of B-spline control points defines the deformation field vµ,
yielding 3000 parameters to be optimised. No multiresolution schemes are used
in this experiment, which makes comparison of the results more straightforward.
The maximum number of iterations is limited to 2048. Three constants must be
set for the gain sequence in (3): a = 3200, A = 50, and α = 0.602.

In the following we present the test results for one of the four images. The
outcome for the other images is similar. Figure 1 shows the average displacement
error as a function of the normalised computation time for the tested methods.
A logarithmic scale is used for the time axis. It is clear that both acceleration
strategies realise considerable speed improvements compared to the standard GD
procedure. The QN and NCG method do not give acceptable results anymore
with a downsampling factor of 8, which results in 2197 selected voxels. The
methods QN-16 and NCG-16, which are omitted from the figure, perform even
worse. Without downsampling QN and NCG achieve a slightly higher accuracy
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Fig. 1. Results for one of the heart images. The graph shows the average displacement
error as a function of the normalised computation time for the tested methods.
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Fig. 2. The imposed deformation field is composed of Gaussian blobs with a standard
deviation of 7mm. The graph shows the average displacement error as a function of
the normalised computation time for the tested methods.

than the GD and SGD method. The SGD method, which works well with only
2048 voxels, is clearly the fastest.

The tests are repeated for a more difficult registration problem. The imposed
deformation field ṽ is composed of Gaussian blobs with a standard deviation of
7mm. This smaller standard deviation results in a deformation field that is very
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hard to recover, since the B-spline control point grid used during registration is
not dense enough. The test results for the same image as before are shown in
Fig. 2. It is interesting to see that the QN and NCG methods can not handle this
very ill-posed registration problem. The GD and SGD procedures remain stable.
As expected, none of the optimisation methods is able to achieve a very large
reduction of the initial average displacement error, since the B-spline control
point grid is not fine enough.

Note that the QN and NCG methods do still find a set of parameters that
decrease the mutual information. The Moré-Thuente line search, employed in
both QN and NCG to set the gain factor ak, guarantees that the cost function
decreases in every iteration, C(µk) < C(µk−1). However, in an ill-posed problem
a decreasing cost function does not imply that actual progress is made towards
the correct solution.

4.2 Clinical Data

In this section a number of experiments with 3D CT chest scans are described.
The patients were scanned after inspiration and after expiration. The inspiration
scans were recorded with a high radiation dose; the expiration scans with a low
dose. The large deformations in combination with the noisy nature of the low-
dose scans make this a challenging registration problem.

The images were acquired with a Philips Mx8000IDT 16-slice CT scanner.
We use data of seven patients. The original images, with in-plane dimensions of
512×512 and a number of slices ranging from 400 to 800, were downsampled by
a factor of 2 in each dimension to be able to register the images on a standard PC
with one gigabyte of memory. The resulting voxel size is approximately 1.4mm
in all directions, and the images consist of about 107 voxels.

A four-level multiresolution approach is applied. At each resolution the num-
ber of iterations is fixed to 256. At the highest resolution the B-spline control
point spacing is set to 22mm, yielding a grid of about 193 control points (approx-
imately 20000 parameters). The following settings are used for the gain sequence
in GD and SGD: a = 60000, A = 50, and α = 0.602.

As is common in clinical applications of nonrigid registration, the ground
truth is not known. We assess the registration results by computing the overlap
of the lungs, L1 and L2:

Overlap =
2 · |L1 ∩ L2|
|L1| + |L2|

. (11)

Segmentations of the lungs were made by means of a method based on the
work of Hu et al. [13]. In the segmentations large pulmonary vessels are not
considered part of the lungs. For reference: a translation of one voxel in each
dimension results in a lung overlap of about 0.95.

Table 1 shows the overlap measures after rigid registration and nonrigid reg-
istration with the studied methods. Each column displays the results for a single
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Table 1. The results of CT chest scan registration for patients P1-P7. The overlap of
segmented lungs is shown after rigid registration (first row), and after nonrigid regis-
tration with different methods. Each column contains the results for a single patient.

P1 P2 P3 P4 P5 P6 P7

rigid 0.736 0.453 0.729 0.883 0.654 0.811 0.671

GD 0.925 0.802 0.951 0.972 0.951 0.975 0.914

SGD 0.922 0.799 0.945 0.966 0.945 0.972 0.909

QN-1 0.932 0.855 0.956 0.974 0.962 0.979 0.930
QN-2 0.931 0.836 0.955 0.973 0.960 0.979 0.926
QN-4 0.926 0.815 0.951 0.971 0.955 0.975 0.916
QN-8 0.905 0.797 0.934 0.960 0.936 0.965 0.898
QN-16 0.862 0.751 0.906 0.938 0.897 0.946 0.858

NCG-1 0.931 0.795 0.941 0.966 0.942 0.969 0.929
NCG-2 0.912 0.796 0.955 0.973 0.961 0.969 0.904
NCG-4 0.911 0.792 0.940 0.966 0.943 0.969 0.903
NCG-8 0.895 0.794 0.935 0.959 0.934 0.965 0.894
NCG-16 0.854 0.752 0.903 0.938 0.900 0.946 0.858

patient. All methods result in a considerable improvement on the rigid regis-
tration. The overlap measures confirm the results found in Sec. 4.1. The final
accuracy of the nonrigid registration is, compared to GD, very little affected by
the random subsampling strategy employed by SGD. The methods QN-1, QN-2,
NCG-1, and NCG-2 result in a somewhat better accuracy than GD and SGD.
With higher downsampling factors the accuracy decreases.

The most remarkable results are found in patient P2. The QN-1 and QN-2
methods seems to outperform all other methods. However, visual inspection of
the results taught us that the good overlap results come at the price of some very
unrealistic deformations. In patients P5 and P7 the same problem was observed
for the QN and NCG methods. The GD and SGD procedures only have this
problem in patient P5. This is in line with the results of Sec. 4.1, where GD and
SGD also seem to be more robust than QN and NCG.

5 Conclusion

We have compared acceleration techniques for both artificially deformed and real
clinical data. The experiments indicate that SGD achieves the largest accelera-
tion, and seems to be more robust for badly defined problems than the QN and
NCG algorithms. Without downsampling QN and NCG yield a slightly smaller
error than GD or SGD. Downsampling increases the error, and does not result
in the same acceleration as obtained by SGD.

In summary, we can conclude that the acceleration technique focussing on
reduction of the computational costs per iteration is the preferred approach.
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