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ABSTRACT

Prostate cancer treatment by radiation therapy requires an ac-

curate localisation of the prostate. For the treatment planning,

primarily computed tomography (CT) images are used, but

increasingly magnetic resonance (MR) images are added, be-

cause of their soft-tissue contrast. In current practice at our

hospital, a manual delineation of the prostate is made, based

on the CT and MR scans, which is a labour-intensive task. We

propose an automatic segmentation method, based on non-

rigid registration of a set of prelabelled MR atlas images. The

algorithm consists of three stages. Firstly, the target image is

nonrigidly registered with each atlas image, using mutual in-

formation as the similarity measure. After that, the best regis-

tered atlas images are selected by comparing the mutual infor-

mation values after registration. Finally, the segmentation is

obtained by averaging the selected deformed segmentations

and thresholding the result. The method is evaluated on 22

images by calculating the overlap of automatic and manual

segmentations. This results in a median Dice similarity coef-

ficient of 0.82.

Index Terms— image segmentation, atlas matching, mag-

netic resonance imaging, prostate

1. INTRODUCTION

Prostate cancer is often treated by radiation therapy. During

the radiation, precise targeting of the prostate is important:

neighbouring tissue (rectum and bladder) should be spared,

while the tumour should receive a maximum dose. Accurate

localisation of the prostate is therefore required.

Computed tomography images are commonly used for the

treatment planning, because of the electron density informa-

tion they provide. For delineation of the prostate, MR images

can be used in addition to the CT images, because of their

good soft-tissue contrast. In current clinical practice at the

University Medical Center Utrecht a manual delineation of

the prostate is made, based on the CT and MR scans, which

is a labour-intensive task. Figure 1 shows two example MR

slices together with their manual delineations. The images
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(a) The base of the prostate (b) The seminal vesicles

Fig. 1. Two example MR slices, zoomed in on the region of

interest, with manually delineated prostate (white line).

are acquired with a Philips 3T scanner. The MR protocol, a

balanced FFE gradient echo sequence, was optimised for vis-

ibility of the prostate and rectum.

In this paper, we investigate an automatic segmentation

method based on atlas matching. The atlas consists of a set of

manually labelled images. All atlas images are matched to the

patient’s image that should be segmented. Then, a selection

is made of the atlas images that match well to the patient’s

image. Finally, the propagated manual segmentations of the

selected atlas images are combined into a single segmenta-

tion of the patient’s image. Multiple atlas images are used,

instead of a single image, to account for the large anatomical

variability between subjects and for the differences in bladder

and rectum filling. Note that the seminal vesicles are consid-

ered part of the prostate.

The segmentation method described above is similar to

the work of Rohlfing et al. [1]. The difference lies in the atlas

selection stage that is added here, which has a small, but sig-

nificant, positive effect on the segmentation quality. The non-

rigid registration method consists of three steps. Firstly, an

affine registration is performed, secondly, a nonrigid B-spline

based method, and, finally, a nonrigid registration of a region

of interest. We show that the last step significantly improves

the results for our application.

2. METHOD

The method consists of three stages: registration of all at-

las images to the patient image, selection of atlas images that

match well to the patient image, and combination of the de-
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formed atlas label images. A set of N accurately labelled im-

ages, which serve as an atlas, are assumed to be available. The

ith image in this atlas set is referred to as Ai(x). The corre-

sponding label image is called Li(x), a binary image, where

‘ones’ represent prostate tissue and ‘zeros’ everything else.

The patient’s image to be segmented is denoted by P (x). The

goal of the automatic segmentation method is to produce a la-

bel image L̂P (x) that accurately defines the prostate of the

patient. Ideally, this label image should be equal to a manual

segmentation LP (x) created by a radiation oncologist.

2.1. Registration

In the registration stage, each atlas image Ai is matched to the

patient image P . A coordinate transformation Ti(x) is esti-

mated that maximises the similarity of P and the deformed

atlas Ai ◦ Ti. We use mutual information as the measure of

similarity [2].

The registration is performed in three steps. Firstly, global

pose differences are compensated for by an affine registra-

tion. After that a nonrigid registration is performed, using

a coordinate transformation that is parameterised by cubic

B-splines [3]. Finally, a second nonrigid registration is per-

formed, where the mutual information is evaluated only on a

region of interest around the prostate. This forces the regis-

tration algorithm to ‘concentrate’ on the most important re-

gion. The region of interest is defined on the atlas image by

a 20 times repeated dilation of the atlas label image Li using

a 3×3×3 kernel approximating a sphere. The experiments

described in this paper are performed both with and without

the last registration step, in order to evaluate its effect on the

segmentation results.

In each step a four-level multiresolution scheme is em-

ployed. A Gaussian image pyramid is used for the image data.

The nonrigid registrations are performed using a B-spline con-

trol point spacing of 64, 32, 16, and 8 mm, for each resolution

respectively. The transformation that maximises the similar-

ity measure is estimated by an iterative stochastic gradient

descent routine.

2.2. Atlas selection

A selection is made of the registered atlas images that are

most similar to the patient’s image. Similarity is again mea-

sured by the mutual information. The measure is computed

on the region of interest that was used in the last step of the

registration. An atlas Ai is selected if it satisfies the following

criterion:
MI (P,Ai ◦ Ti)

maxj MI (P,Aj ◦ Tj)
> α, (1)

where MI denotes the mutual information and 0 ≤ α < 1 is

a tunable parameter. A value of 0 means that all atlas scans

are included in the selection. A value approaching 1 implies

that only the atlas scan with the highest similarity measure is

used. In [1] only these extremum settings are investigated.

The set of atlas image indices selected in this stage is

called AP . The subscript indicates that this set can be dif-

ferent for each patient image.

2.3. Label image propagation

The deformed label images of the atlas set AP are combined

into a single segmentation L̂P (x) of the patient image. This is

done by averaging the deformed label images and threshold-

ing the result at a value of 0.5. This is equivalent to a majority

voting rule.

3. EXPERIMENTS

The proposed automatic segmentation method is evaluated

using a set of 38 MR scans. The scans originate from eight

volunteers and were made in the context of another study.

Seven volunteers were scanned five times, one volunteer was

scanned three times. The time between two scans was at least

one day, and the volunteers were asked to try to vary the con-

tent of their rectum and bladder, to get as much variety be-

tween the scans as possible. The scans have a dimension

of 512×512×90 voxels of size 0.49×0.49×1.0 mm. Man-

ual segmentations, made by an experienced observer and ap-

proved by a radiation oncologist, are available for each scan.

The seminal vesicles were marked separately, which allows us

to evaluate the segmentation method on the whole prostate or

on the prostate excluding the seminal vesicles. Unless men-

tioned otherwise, results are presented for segmentation of the

prostate including the seminal vesicles.

To reduce computation time and to discard areas of severe

intensity inhomogeneities caused by magnetic field inhomo-

geneities, the scans are manually cropped to a rectangular re-

gion roughly encompassing the prostate, bladder, and rectum.

This is the only step in the algorithm that requires user in-

tervention. The image intensities are brought into the same

range by intensity rescaling and histogram equalisation. His-

togram equalisation ensures that not all image intensities fall

within only a few histogram bins during computation of the

mutual information.

Out of the 38 available scans, 16 scans are manually se-

lected to form the atlas. From each volunteer two scans are

included in the atlas. The 22 remaining scans serve as a test

set, on which we evaluate the segmentation algorithm. Atlas

images that originate from the same person as the test image

are excluded from the atlas set, which results in an atlas of 14

images that is used for each test scan.

Evaluation is performed by comparing the automatically

generated segmentations with the manual segmentations. A

well-known measure of segmentation overlap is the Dice sim-

ilarity coefficient [4]:

DSC (LP , L̂P ) =
2|LP ∩ L̂P |
|LP | + |L̂P |

, (2)
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where |X| denotes the number of labelled voxels in X . To

give an indication of the sensitivity of the DSC , we have

dilated the manual segmentations of the test scans using a

spherical 3D kernel with a radius of 1, 2, and 3 pixels, and

we computed the DSC values of the manual segmentation

and their dilated versions. This yielded median DSC val-

ues of 0.91, 0.83, and 0.76, respectively. In [5], the intraob-

server reproducibility of manually delineating the prostate’s

peripheral zone on T2-weighted MR images is investigated.

A mean similarity coefficient of 0.883 is reported for 1.5T

preoperative scans, and 0.838 for 0.5T scans. Interobserver

reproducibility for delineations of the prostate in CT images

is measured in [6], where a median DSC of 0.82 is reported.

The DSC does not provide insight in the spatial distribu-

tion of the segmentation errors. To visualise the distance be-

tween the boundaries of two approximately circular-shaped

objects, a spherical coordinate mapping is sometimes used

[6, 7]. We use this technique to assess the quality of the cor-

pus segmentation (prostate without seminal vesicles). The

position on the boundary of the corpus is parameterised by

two angles, θ and φ, where the centre of mass of the manual

segmentation serves as the centre of rotation. The shortest

Euclidian distance between the manual and automatic seg-

mentation boundaries can be plotted as a function of θ and

φ, for each test scan. The results for the 22 test scans are

summarised by plotting the first quartile, median, and third

quartile as a function of θ and φ.

4. RESULTS

The DSC values are computed for all 22 test scans, with dif-

ferent values of α. Figure 2 summarises the results in a box-
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Fig. 2. A box-and-whisker plot of the Dice similarity coef-

ficients for different values of α. The box shows the first

quartile, the median and the third quartile of the data. The

whiskers display the total range of the data. Significant dif-

ferences with respect to α = 0 and α = 0.99 are indicated by

‘a’ and ‘b’, respectively.

and-whisker plot. Each box-and-whisker visualises the distri-

bution of DSC values for a specific value of α. Results for

α between 0 and 0.4 are not shown since they are identical to

α = 0. A Wilcoxon signed rank test is performed to assess

the influence of α. Significant differences (p < 0.05) with

respect to α = 0 and α = 0.99 are indicated above the graph

by ‘a’ and ‘b’, respectively. Based on Figure 2, we conclude

that a value of α in the range 0.6-0.85 gives the best results.

For further evaluation, we select α = 0.7.

The experiments are repeated without the additional reg-

istration on the region of interest, see Sec. 2.1. Figure 3 com-

pares the DSC values for each test scan, for α = 0.7. The

median DSC value is 0.75 for the experiments without the

registration on the region of interest. With the additional reg-

istration step, a median of 0.82 is achieved. The Wilcoxon

test on the differences results in a p < 0.0001.

Figure 4 shows the spatial distribution of the segmenta-

tion errors, again for α = 0.7. A map of the surface is given

in Figure 4(a). First quartile, median, and third quartile of the

distance between the manually and automatically determined

corpus boundaries are shown in the remaining figures. From

the figures it is evident that the largest errors occur at the bor-

der between the corpus and the vesicles. In Figure 4(b) it can

be seen that in 75% of the test scans the error at the vesi-

cles was larger than 2.5 mm approximately. At the boundary

between prostate and rectum smaller errors are made. Fig-

ure 4(c) and 4(d) show that in 50% of the test cases the dis-

tance remains below 1 mm, and in 75% of the cases below

2.5 mm approximately. The edge between prostate and blad-

der is determined with similar accuracy. Highest accuracy is

found at the left and right side of the base of the prostate (θ
around 0◦, 180◦, and 360◦, φ from 90◦ to 135◦). The tip of

the apex (φ close to 180◦) is less accurately determined.
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Fig. 3. The DSC values for each test scan. Grey bars corre-

spond to the results obtained without the registration on the

region of interest; black bars present the results for the com-

plete registration method. In both cases α = 0.7 was used.
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Fig. 4. A polar map of the spatial error distribution of the

prostate segmentation, excluding the seminal vesicles.

5. CONCLUSION

An automatic prostate segmentation method for pelvic MR

images has been investigated in this work. The method is

based on matching of manually segmented atlas images. To

account for the large variability in shape, multiple atlas im-

ages are combined.

Evaluation has been performed on volunteer data. The

method was tested on 22 test scans, using an atlas consisting

of 14 images. The segmentations obtained by the automatic

segmentation method are compared to manual segmentation

by means of the Dice similarity coefficient and by plots of the

spatial error distribution. A median Dice similarity coefficient

of 0.82 is achieved. The atlas selection stage and the nonrigid

registration step that takes into account the region of interest

are both shown to improve the results significantly. In the

spatial error distribution plots, it can be seen that on a large

part of the prostate surface the segmentation errors remain

below 2-3 mm for 75% of the test scans. The most serious

segmentation errors are made in the seminal vesicles, which

is confirmed by visual inspection. Imaging artefacts caused

by air in the rectum also influence the results negatively in

some cases.

For good performance of the proposed algorithm, it is im-

portant that the atlas contains sufficient variation. Therefore,

future work includes optimisation of the atlas composition.

Furthermore, the algorithm will be evaluated on patient data.
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