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Medical images that are to be registered for clinical application often contain both structures that
deform and ones that remain rigid. Nonrigid registration algorithms that do not model properties of
different tissue types may result in deformations of rigid structures. In this article a local rigidity
penalty term is proposed which is included in the registration function in order to penalize the
deformation of rigid objects. This term can be used for any representation of the deformation field
capable of modelling locally rigid transformations. By using a B-spline representation of the de-
formation field, a fast algorithm can be devised. The proposed method is compared with an uncon-
strained nonrigid registration algorithm. It is evaluated on clinical three-dimensional CT follow-up
data of the thorax and on two-dimensional DSA image sequences. The results show that nonrigid
registration using the proposed rigidity penalty term is capable of nonrigidly aligning images, while
keeping user-defined structures locally rigid. © 2007 American Association of Physicists in Medi-
cine. �DOI: 10.1118/1.2776236�
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I. INTRODUCTION

Image registration is an important technique in the field of
medical imaging. In many clinical situations several images
of a patient are made in order to analyze the patient’s situa-
tion. These images are acquired with, for example, x-ray
scanners, magnetic resonance imaging �MRI� scanners, com-
puted tomography �CT� scanners, and ultrasound scanners,
which provide knowledge about the anatomy of the subject.
A combination of patient data, monomodal or multimodal,
often yields additional clinical information not apparent in
the separate images. For this purpose, the spatial relation
between the images has to be found. Image registration is the
task of finding a spatial one-to-one mapping from voxels in
one image to voxels in the other image. Good reviews on the
subject are given in Refs. 1–3.

Popular nonrigid image registration algorithms, as de-
scribed by Rueckert et al.4 and Mattes et al.,5 do not take the
rigidity of different tissue types into account. This can lead to
undesired effects in three situations:

• The image contains various tissue types, each with its
own mechanical stiffness. An example is the presence of
rigid objects like bones or surgical instruments in a soft
tissue region. Not taking into account the spatially vary-
ing stiffness during the registration likely results in un-
wanted distortions of these rigid objects.6

• Structural changes over time �e.g., tumor growth� need
to be visualized. Differences that are not of interest
�e.g., due to breathing or heart beat� should be compen-
sated for by the nonrigid registration, while the relevant
differences induced by changes in the objects of interest

should be retained. This would lead to a subtraction
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image from which the relevant changes are immediately
clear.

• The visibility of structures varies between acquisitions.
For instance, in pairs of precontrast and postcontrast
images, like angiography images, vessels are visible in
one image and not or only partially in the other.
Intensity-based registration algorithms are designed to
minimize the difference between two images, resulting
in compression of the contrast-enhanced structures.
Rohlfing et al.7 and Tanner et al.8 report shrinkage of
contrast-enhanced breast lesions in MRI. Rohlfing
et al.9 report shrinkage for contrast-enhanced vessels in
CT-DSA.

In all three situations the objects of interest should be con-
sidered as locally rigid by the registration algorithm.

Other possibilities to detect structural changes over time
exist. For example, the deformation field as found by non-
rigid registration can be analyzed. This is commonly done by
looking at the determinant of the Jacobian of the transforma-
tion, see Refs. 10 and 11 and references therein. A discussion
on the advantages and disadvantages of the two approaches
can be found in the literature.12,13

Several methods to constrain deformations have been de-
scribed in the literature. One that is well known and widely
used is to employ a regularization term to penalize undesired
transformations. Typical regularization terms include the
bending energy of a thin plate,4 the linear elasticity
constraint,14,15 and the incompressibility constraint.7,16 Meth-
ods that specifically enforce rigidity on structures have also
been proposed. Tanner et al.8 propose to couple the control
points of a B-spline deformation to impose rigidity on certain
structures. Another approach is taken by Little et al.,17 who

use modified basis functions to describe the deformation. At
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rigid locations the deformation is constrained. Arsigny
et al.18 use multiple rigid transformations on different parts
of the image, which they fuse in such a way that the trans-
formation is invertible. Recently, some approaches were
published19,20 in which rigidity is enforced by penalizing de-
viation of the Jacobian of the transformation from orthonor-
mality.

In this article we propose a novel penalty term that is
capable of locally penalizing nonrigid transformations,
which we call a rigidity penalty term. It is based on three
criteria that a transformation must meet in order to be rigid:
The transformation should be affine, and the rotation matrix
of the transformation should be orthonormal and proper. Our
rigidity penalty term is a weighted combination of three
terms, each imposing one of these conditions. While parts of
the proposed rigidity penalty proved to be similar or identical
to penalty terms used by other authors,4,7,19,20 we demon-
strate that imposing the complete rigidity penalty term per-
forms better than each of the terms separately. First results of
the method were published previously.21 In Sec. II we con-
struct the rigidity penalty term and prove its validity. Non-
rigid registration using the rigidity penalty term is compared
against a standard unconstrained nonrigid registration algo-
rithm in Sec. III. Special attention is paid to the sensitivity of
the results to the choice of the parameters controlling the
rigidity penalty term. We end with a discussion and conclu-
sion in Sec. IV.

II. METHOD

Registration of a moving image IM�x� :�M �Rd�R to a
fixed image IF�x� :�F�Rd�R, both of dimension d, is the
problem of finding a displacement u�x� that makes
IM�x+u�x�� spatially aligned to IF�x�. The quality of align-
ment is defined by a distance or similarity measure S, such
as the sum of squared differences �SSD�, the correlation ra-
tio, or the mutual information �MI� measure.

Because this problem is ill-posed, a regularization or pen-
alty term P is often introduced that constrains u. The regis-
tration problem is formulated as an optimization problem in
which the cost function C is minimized with respect to u,
with

C�u;IF,IM� = − S�u;IF,IM� + �P�u� , �1�

where � weighs similarity against regularity. This formalism
is used in many other papers.4,7,14–16,19 Note that at the mini-
mum of C the derivatives of the similarity measure and the
regularization term are not necessarily zero. Rather, a bal-
ance is found between the two, which is influenced by the
parameter �. Therefore, the penalty term cannot be regarded
as a hard constraint; it is sometimes referred to as a soft
constraint.

The regularization term P cannot only be considered as a
way to achieve well-posedness, but also as a way to enforce
desirable properties on the transformation. We propose a
regularization term Prigid�u ; IM� that penalizes deformations
of rigid objects, which we call the rigidity penalty term. This

penalty term can be weighted locally, so that some parts of
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the image are restricted to rigid movement, while other parts
may be penalized partially or may deform freely.

In the following sections we describe the general registra-
tion algorithm �Sec. II A�, derive the rigidity penalty term
�Sec. II B�, and describe how this penalty term can be effi-
ciently computed if the deformation field is parameterized by
B-splines �Sec. II C�.

II.A. Registration algorithm

We employ a registration framework largely based on the
papers of Rueckert et al.4 and Mattes et al.5 The deformation
field u is parameterized by cubic B-splines,4 with parameters
�. The similarity measure S is the mutual information mea-
sure implemented according to Thévenaz and Unser:22

MI��;IF,IM� = �
��LM

�
��LF

p��,�;��log2� p��,�;��
pM��;��pF���� ,

�2�

where LF and LM are the sets of histogram bin centers of the
fixed and moving image, respectively, p is the joint discrete
probability, and pF and pM are the marginal discrete prob-
abilities. B-spline Parzen windows are used to estimate the
joint probabilities,

p��,�;�� =
1

�IF� �
xi�IF

wF��/�F − IF�xi�/�F�

· wM��/�M − IM�xi + u��xi��/�M� , �3�

with wF and wM the fixed and moving Parzen windows, �F

and �M the histogram bin widths, and u� the B-spline defor-
mation field. The marginal probabilities are obtained by sum-
ming Eq. �3� over � or �.

For the optimization of the cost function C, an iterative
stochastic gradient descent optimizer is used:

�k+1 = �k − ak

�C
��

, �4�

where �C
�� =− �S

�� +� �P
�� , and ak�0 is the size of the step taken

in the negative direction of the derivative. Thévenaz and
Unser22 derived an analytical expression for the derivative
�S /��. In this article the analytical expression is evaluated
approximately. Instead of evaluating the derivative over all
voxels of the fixed image, i.e., taking all xi� IF in Eq. �3�,
only a randomly chosen subset of IF is used. This random
subset is renewed every iteration. Klein et al.23 showed that
using this stochastic gradient descent optimizer the compu-
tation time per iteration can be significantly decreased, with-
out affecting the rate of convergence and final precision. In
this article, a decaying function of the iteration number k is
used for computing the gain factor: ak=a / �k+A��, where
a�0, A�1, and 0	�	1 are user-defined constants. This
function, and practical guidance for choosing the parameters,
is suggested by Spall.24 A multiresolution approach is taken
to avoid local minima, using a Gaussian pyramid with a sub-

sampling factor of 2 in each dimension.
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II.B. Construction of the rigidity penalty term

In this section we derive three conditions that must hold
for a transformation u�x�+x to be a rigid transformation.
These three conditions are combined in one penalty term, our
rigidity penalty term Prigid�u ; IM�, constructed such that de-
viation from these three conditions is penalized. For the sake
of clarity the penalty term is derived in 2D. The results can
be readily extended to 3D, or even nD.

For a displacement field u to be rigid, it must hold that

u�x� + x = Rx + t , �5�

with R and t a rotation matrix and a translation vector,
respectively. Three conditions on u�x�+x can be derived:

affine: A rigid transformation is an affine function in x,
giving the affinity conditions ACkij�x�, which state that
the second order derivatives of u to x have to be zero:

ACkij�x� =
�2uk�x�
�xi � xj

= 0, �6�

for all k , i , j=1,2, not counting duplicates. Rueckert
et al.4 penalize deviation from this constraint to enforce
smoothness.
orthonormality: For the matrix R to be a rotation ma-
trix it must be orthonormal. This defines the orthonor-
mality conditions �k=1

2 rkirkj =
ij, for all i , j=1,2, with
rij the elements of R, and 
ij the Kronecker delta func-
tion. From Eq. �5� it follows that

�ui

�xj
=rij −
ij, for all

i , j=1,2. Hence, the orthonormality conditions OCij can
be rewritten as

OCij�x� = �
k=1

2 � �uk�x�
�xi

+ 
ki�� �uk�x�
�xj

+ 
kj� − 
ij = 0,

�7�

for all i , j=1,2, again not counting duplicates. Note that,
since rij =

�ui

�xj
+
ij �Eq. �5��, the rotation matrix R is the

Jacobian of the transformation u�x�+x. Therefore, the
OC term is equal to forcing orthonormality of the Jaco-
bian, which is used in Loeckx et al.19 and Ruan et al.20

properness: A matrix R satisfying the orthonormality
conditions can still be proper or improper, meaning that
the determinant can still be either 1 or −1, respectively.
An improper orthonormal matrix corresponds to a rota-
tion with an inversion �mirroring�. Therefore we need to
impose the properness condition PC�x�=det�R�−1=0,
with the elements rij of the matrix R again expressed
in derivatives of u to x. Note that, since R is the
Jacobian of the transformation u�x�+x, this condition
basically amounts to an incompressibility constraint,
see also Ref. 7.

We define the rigidity penalty term Prigid�u ; IM� to be the
sum of all these conditions squared. In order to distinguish

between rigid and nonrigid tissue, the total penalty term is
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weighted by a so-called rigidity coefficient c�x�� �0,1� of
the tissue type at position x. This results in the following
expression:

Prigid�u;IM� �
1

�xc�x + u�x���x
c�x + u�x��

�	cAC�
k,i,j

ACkij�x�2 + cOC�
i,j

OCij�x�2

+ cPCPC�x�2
 . �8�

The weights cAC, cOC, and cPC determine the relative strength
of each of the three terms. The rigidity coefficient c�x� is set
to 0 for pixels x in completely nonrigid tissue, and to 1 for
rigid tissue. For other tissue types a value of c�x� is chosen
between 0 and 1. The rigidity coefficient image can be con-
structed by performing a manual or �semi-� automatic seg-
mentation of structures of interest, after which a rigidity co-
efficient can be assigned to each segment. For the case of CT
images the Hounsfield units themselves may be used, res-
caled to the range �0,1�, since more rigid tissue usually has a
higher attenuation value. This article concerns the registra-
tion method, and therefore we use a simple manual segmen-
tation. The rigidity coefficient image only has to be defined
on the moving image. The moving image deforms to the
fixed image, so specific parts of the moving image should
transform in a rigid fashion. Therefore, the regions that cor-
respond to rigid structures have to be defined on the moving
image. When computing the derivative �P /� we neglect
the derivative of c�x+u�x�� to u, the same way as overlap
changes of images are sometimes neglected in registration.22

Hence, discontinuity of c�x� is not an issue here.
The following theorem states the validity of the proposed

rigidity constraint. For clarity, we assume that c�x��0, on a
connected subregion �S of the moving image.

Theorem 1. Prigid�u ; IM�=0 if and only if the transforma-
tion u�x�+x is rigid, provided that c�x��0, ∀x��S��M.

Proof. The if part is trivial, so we prove the only if part.
Let Prigid�u ; IM�=0, which is at every location x a sum of
three nonnegative terms. Therefore, each of the three terms is
zero. Since the first term is zero, all second order derivatives
are zero, making u�x� affine. Therefore the displacement can

be written as u�x�= R̃x+ t. Given that the second term is zero
it holds that

�
k=1

2

�r̃ki + 
ki��r̃kj + 
kj� = 
ij, ∀ i, j = 1,2, �9�

since
�ui

�xj
= r̃ij. Now splitting up R̃=R− Id �giving a displace-

ment u�x�=Rx−x+ t�, gives r̃ij =rij −
ij. Substituting this in
Eq. �9� results in �k=1

2 rkirkj =
ij, ∀i , j=1,2, in which we rec-
ognize the orthonormality conditions for R. A similar argu-
ment holds for the third term, resulting in the properness
condition. Therefore R is a rotation matrix, and u�x�+x rep-
resents a rigid transformation. �

For every application the parameters cAC, cOC, and cPC
have to be tuned. A suitable first estimate for those values is
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the energy of the three terms after unconstrained registration,
relative to each other. The energy of AC is defined as

EAC =
1

�c�x + u�x���x
c�x + u�x���

k,i,j
ACkij�x�2. �10�

EOC and EPC are defined similarly. We have found that a ratio
in the order cAC:cOC:cPC=100:1 :10 is a good starting point.
The results did not appear to be overly sensitive to the choice
of the parameters, as discussed in Sec. III.

Provided that no mirroring occurs the OC term is a suffi-
cient condition for local rigidity.19,20 In the experiments OC
per se is explicitly compared with the complete penalty term.

II.C. Using B-splines

The proposed rigidity penalty term is not dependent on a
parameterization of the displacement field. We employ a
B-spline parameterization, because of the computational ben-
efits. Parameterizing the displacement field u�x� by cubic
B-splines yields in two dimensions

ui�x1,x2� = �
l�Vx

li�
3�x1 − xl1��3�x2 − xl2� , �11�

for all i=1,2, with �3�x� the cubic B-spline polynomial, li

the B-spline coefficients, and Vx the set of all control points
within the compact support of the B-spline at x. It is well
known25 that the derivatives of u�x� can also be expressed in

terms of the B-spline coefficients, using the rule
d�n�x�

dx
=�n−1�x+ 1

2
�−�n−1�x− 1

2
�. Therefore, Prigid�u ; IM� can be ex-

pressed in terms of the B-spline coefficients li. We evaluate
the rigidity constraint over the control points only, which
imposes local rigidity of the control point grid. Rigidity of
the control points in the B-spline support region of an object
guarantees rigidity of the entire object. Evaluating over the
control points only, combined with the compact support of
B-splines, gives us an efficient way to calculate Prigid�u ; IM�
and its derivatives, needed for gradient descent like optimiz-
ers.

In order to define a rigid transformation at some point x,
all control points within the compact support of the B-spline
have to be kept rigid. The nonrigid deformation in the neigh-
borhood of a rigid structure is therefore also penalized to
some extent. The precision with which a rigid region can be
defined, is determined by the density of the B-spline control
point grid and the order of the B-spline.

II.D. Synthetic example

To illustrate the effect of the three terms in Eq. �8� we
have constructed a synthetic example of size 512�512 pix-
els, see Fig. 1. The ellipsoid in the fixed image in Fig. 1�a� is
rotated and anisotropically scaled compared to the moving
image. It represents a tumor that has grown. The rectangle is
only rotated and represents a rigid object, such as a bone.
The bar is an example of a structure visible in only one of the
images, representing a situation before and after contrast up-
take in a vessel. The desired behavior of a registration algo-

rithm is that all three objects are kept rigid. Therefore, c�x�
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=1.0 on the three objects and zero elsewhere. The resulting
rigidity coefficient image is dilated with a kernel of radius
8.0 pixels �two control point spacings�. The other parameters
in Eq. �8� for this experiment are �=1.0, cAC=250.0, cOC

=2.0, and cPC=10.0. A B-spline control point spacing of 4.0

FIG. 1. Illustrating the different parts of the penalty term. �a� Fixed and
moving images are shown, together with their difference. The other images
show the result after registration using the various methods. �g� and �h�
show the result of OC and NRP, respectively, when the objects are placed a
little closer together.
pixels is used.
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In the remainder of this article the abbreviation “NRP” is
used for registration with the rigidity penalty term
Prigid�u ; IM� and “NRU” for unconstrained nonrigid registra-
tion �only a similarity term�. When only one of the condi-
tions in Eq. �8� is used, the method is referred to as “AC,”
“OC,” or “PC.”

The NRU algorithm, see Fig. 1�b�, registers the ellipsoid
and the rectangle, and tries to eliminate the bar, since it is not
visible in the fixed image. Note that the outer border of the
rectangle is registered correctly, but the deformation field
within the object is not rigid at all. When only AC is applied
as in Fig. 1�c�, the deformations are affine at the three ob-
jects, but not rigid, since scaling is not penalized. The ortho-
normality condition nicely preserves rigidity, see Fig. 1�d�.
The PC term is volume preserving �Fig. 1�e��, but volume
preservation is not equal to rigidity. Finally, in Fig. 1�f�, the
combination of all terms is used. Rigidity of the three objects
is achieved, and the deformation field looks slightly
smoother than that of OC alone. Note, that the major axes of
the ellipsoids are not aligned in some cases. This is due to
the fact that the similarity measure has a constant value for a
range of inclination angles, as long as the smaller ellipsoid
fits entirely in the larger one.

When the three objects are placed somewhat closer to-
gether OC alone is unable to reach the optimum, resulting in
a failed registration �the ellipsoid and the rectangle are not
rigid, the rectangles do not match completely�, see Fig. 1�g�.
The use of all terms gives a smoother deformation field, and
also a good registration, see Fig. 1�h�. Note that when the
objects are placed closer together some folding appears. This
is a consequence of the use of B-splines: Invertibility of the
deformation field is not guaranteed. Since the rigidity penalty
term is independent of the representation of the deformation
field, it can also be applied in combination with a diffeomor-
phic transformation model.

In Table I the energies of the three components are given
for the several registrations of Fig. 1. Together they form a
measure of rigidity, since Theorem 1 states that each of them
is zero in case of rigidity. The three conditions help each
other in achieving rigidity, OC is the most dominant of the
three, and the total rigidity term yields the best results.

III. EXPERIMENTS AND RESULTS

In order to evaluate the effectiveness of the rigidity pen-
alty term Eq. �8�, NRP was compared to NRU. Additionally,
all registrations were performed with only the AC, OC, or

TABLE I. The energy E of the three conditions.

Method EAC EOC EPC

NRU 1.9�10−3 3.4�10+1 3.6�100

AC 5.6�10−6 3.0�10+1 3.6�100

OC 3.6�10−5 8.6�10−3 2.9�10−3

PC 4.8�10−4 6.3�10−1 2.9�10−4

NRP 1.4�10−6 1.1�10−3 1.3�10−4
PC term as penalty. An appropriate setting for � in Eq. �1�
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and for the relative strength of each of the terms of
Prigid�u ; IM�, controlled by cAC, cOC, and cPC, was determined
experimentally. Sensitivity of the results to the relative
strength of each term was also investigated.

The methods were compared on clinical data, viz., 3D CT
follow-up data of the thorax containing lung tumors �Sec.
III A�, and 2D digital subtraction angiography �DSA� image
data, see Sec. III B.

Throughout this article a 32�32 joint histogram was used
to estimate the mutual information. The parameters A and �,
needed to compute the gain factor ak in Eq. �4�, were set to
A=100.0 and �=0.602, see Ref. 24. All experiments were
performed with software developed by the authors
�www.isi.uu.nl/Elastix�. This registration package is largely
based on the Insight Segmentation and Registration
Toolkit.26 The computation time for the rigidity penalty term
scales linearly with the number of B-spline parameters, and
is about 0.06 s for 10 000 parameters in two dimensions and
about 3 s for 100 000 parameters in three dimensions, on a
standard computer �AMD Opteron 250 running on 2.4 GHz�.
The calculation of the derivative of the mutual information in
2D and 3D requires 0.11 and 1 s, respectively.

III.A. 3D CT thorax data with lung tumors

A possible way to follow disease progress over time is to
visually inspect the difference between a first scan, taken at
t0, and a registered second follow-up scan, taken at t1. For
the case of patients with lung tumors, this difference will
indicate tumor growth between two scans. Because of differ-
ences in lung inspiration levels, rigid registration is not suf-
ficient to achieve good alignment of the anatomy. However,
standard nonrigid registration methods will minimize the dif-
ference between tumors at different time points, effectively
concealing tumor growth, see Fig. 2�c�. Therefore, the tu-
mors should be considered rigid tissue by the nonrigid reg-
istration algorithm. Rigidity is evaluated with tumor volume
measurements.

III.A.1. Data description

Registration was performed on CT follow-up data sets of
the thorax of five patients having lung tumors. For each pa-
tient two or three images of different time points were avail-
able, such that in total seven registrations were performed.
The data were acquired with a Philips 16-slice spiral CT
scanner �Mx8000 IDT 16�. The images have slices of 512 by
512 voxels. The number of slices varies for the data sets,
ranging from 400 to 550. The in-plane voxel size is around
0.7�0.7 mm. Slice thickness is always 1.0 mm, and slices
were reconstructed every 0.7 mm. Before registration, each
data set was downsampled with a factor of 2 in each dimen-
sion to reduce computer memory and computational load.
Downsampling was performed by discarding odd rows, col-
umns, and slices. The five data sets contain 30 tumors in total
at time t0, with an average volume of 2.5 ml for the first scan
t0 and 5.1 ml for the follow-up t1. No new tumors had de-

veloped at t1.
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III.A.2. Experiment setup

The CT image taken at time t0 was set to be the fixed
image. The CT image taken at time t1 was used as the mov-
ing image. A coarse alignment between fixed and moving

FIG. 2. Comparison of NRU and NRP for a slice taken from 3D CT thorax
images. The tumors, located within the box �see �b��, are to be kept rigid. �a�
and �b� CT slice at time t0 �the fixed image� and time t1 �the moving image�,
respectively; �c� and �d� difference of the registration result with the fixed
image, for NRU and NRP, respectively; �e� and �f� resulting deformation
field near the tumors for NRU and NRP, respectively.

TABLE II. Quantitative results for the 3D CT thorax data. The last five colum
grouped according to true tumor growth vt1

/vt0
. The number of lung or tumo

n.

vt1

vt0
: all

vt1

vt0
: �

Method Lung overlap rreg r

rigid 0.93±0.05 0.99� /1.05 0.99�

NRU 0.97±0.01 0.78� /1.24 0.96�

AC 0.98±0.01 0.89� /1.16 1.04�

OC 0.99±0.01 0.96� /1.08 1.02�

PC 0.98±0.01 0.95� /1.06 0.97�

NRP 0.99±0.01 0.98� /1.05 1.02�

n 7 30
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image was obtained by a rigid registration. For the rigid reg-
istration three resolutions were used, for the nonrigid regis-
tration four. For nonrigid registration the resolution of the
B-spline grid is adapted each resolution: for the four resolu-
tions the grid spacing was set to 64, 32, 16, and 8 voxels,
respectively. The number of optimization iterations for the
first three resolutions was 300, for the last one 1200. For
every iteration 5000 samples were used to calculate the de-
rivative of the mutual information. The parameter a in the
gain factor �see below �4�� was set to 150 000, 120 000,
70 000, and 20 000, for the four resolutions, respectively. For
the nonrigid registrations using the rigidity penalty term, a
crude manual segmentation of the tumors was used to define
c�x�, setting c�x� to 1.0 for voxels within the tumor and to
0.0 elsewhere. The weight � was set to 4.0, and the weights
of the three terms were chosen cAC=100.0, cOC=1.0, and
cPC=2.0. In the final resolution the rigidity coefficient image
was dilated with a radius of 16 voxels �two B-spline control
points� to achieve �almost� complete rigidity of the tumors,
as discussed in Sec.II C.

III.A.3. Results

As can be seen from Figs. 2�c� and 2�e�, NRU fails to
keep the tumors rigid. Therefore, the difference in size due to
growth cannot be appreciated. Using a crude segmentation of
the tumors, NRP succeeds in keeping the tumors rigid, see
the deformation field in Fig. 2�f�. From the difference image
in Fig. 2�d� it is immediately clear that the tumors have
grown, whereas the rest of the image was registered with
equal accuracy as for the unconstrained nonrigid registration.

The accuracy of the registration was measured by calcu-
lating the lung overlap of the registered image with the fixed
image. For this purpose, automatic lung segmentations were
made with an algorithm based on the method by Hu et al.,27

described in detail in Ref. 28. The overlap measure is defined
as

overlap �
2�L1 � L2�
�L1� + �L2�

, �12�

where Li is the set of all voxels within the lung, and �Li�
denotes the size of set Li. The averages and standard devia-
tions of lung overlap were calculated over all data and are

ow the geometric mean and standard deviation of the tumor volume ratios,
gmentations the means and standard deviations are based on, is indicated by

vt1

vt0
: �1, 3

2
� vt1

vt0
: � 3

2 ,3� vt1

vt0
: �3, � �

rreg rreg rreg

1 0.96� /1.08 0.99� /1.03 1.02� /1.05
4 0.93� /1.06 0.73� /1.15 0.69� /1.34
5 1.01� /1.11 0.85� /1.12 0.84� /1.16
3 1.00� /1.06 0.96� /1.09 0.91� /1.04
3 1.00� /1.04 0.94� /1.06 0.91� /1.03
4 1.00� /1.05 0.97� /1.03 0.95� /1.06
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reported in Table II. The results show that good lung overlap
was achieved with all nonrigid registration algorithms. This
is confirmed by visual inspection of the results.

For evaluation of the rigidity of the tumors, precise
manual segmentations of the tumors were used. Tumor vol-
ume measurements were performed to see if the registration
is volume preserving, a condition for rigidity. Tumor volume
before registration at t1 is denoted by vt1

; tumor volume after
registration with algorithm reg is denoted by vreg. The vol-
ume after registration was computed by applying the result-
ing transformation to the manual segmentation of the tumour
in the moving image, and subsequently calculating the vol-
ume of the transformed segmentation. Volume preservation
is expressed by the ratio rreg between the tumor volume after
registration and at t1 �since t1 is the moving image�:
rreg=vreg /vt1

. If a nonrigid registration is volume preserving
for a tumor, then vreg=vt1

, and rreg=1.0; if a tumor is com-
pressed rreg�1.0. For ratios it is better to use the geometric
mean g and the geometric standard deviation �g, instead of
their arithmetic counterparts. This can be easily seen from a
small example. Say, we have two ratios 0.5 and 2.0. The
arithmetic mean of those two ratios is 1.25, whereas the geo-
metric mean equals 1.0, rating a two time increase in volume
equal to a two time decrease. From the definition of the
geometric standard deviation it follows that �g�1.

The geometric mean volume ratios and standard devia-
tions are reported in Table II, where the symbol �/ is used to
indicate the distinction with the arithmetic mean and stan-
dard deviation. Geometric means were calculated for four
volume ratio groups and for all ratios together. The tumors
were grouped according to true tumor growth vt1

/vt0
. The

sixth column in Table II, for example, is about the group of
tumors with true tumor growth between 3/2 and 3.

It can be appreciated from Table II that volume was much
better preserved when applying the rigidity penalty term,
compared to unconstrained nonrigid registration. To evaluate
the difference in rigidity between NRP and NRU, a statistical
test was performed on the logarithm of rreg. The differences
of NRP with NRU, are not normally distributed �p�0.0001
for Shapiro–Wilk tests�. Therefore, we employ the Wilcoxon
signed-ranks test. Wilcoxon signed-ranks tests show that
NRP is significantly �p�0.0001, n=30� more rigid than
NRU. Volume is by definition preserved for rigid registra-
tion. However, the corresponding column in Table II shows
that the volume measurements do not result in the perfect

TABLE III. The arithmetic means and standard deviati
thorax data.

Method EAC

NRU 1.6�10−4±8.3�10−5

AC 1.5�10−5±1.7�10−5

OC 2.8�10−4±5.1�10−4

PC 7.1�10−3±1.1�10−2

NRP 5.1�10−6±6.9�10−6
value 1.0� /1.0. This indicates that part of the residual vol-
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ume difference for all methods can be explained by interpo-
lation artifacts due to resampling when computing vreg. For
the nonrigid registration methods, the residual volume differ-
ence can also be partially explained by the aforementioned
balance �Sec. II� between the intensity-based similarity mea-
sure, which yields a force that keeps compressing the tumor,
and the rigidity penalty term. This balance can of course be
influenced by the parameter �. From Table II it is observed
that the separate conditions each are less capable of preserv-
ing volume than the combined penalty term. The OC term is
again the most dominant term, and performs even better than
the PC that penalizes volume changes. The AC term is not
volume preserving, since it does not penalize scalings. In
Table III, the energies of the different components of the
penalty term are reported. It shows that when only one of the
conditions is used, the energies of the other terms also de-
cline. The three terms aid each other in achieving rigidity. To
evaluate the difference between NRP and OC for rigidity and
smoothness �i.e., EAC�, a statistical test was performed. For
rigidity the test was again performed on the logarithm of rreg.
Wilcoxon signed-ranks tests �the data is not normally distrib-
uted: p�0.0001 for Shapiro–Wilk tests� show that NRP is
significantly �p�0.01, n=30� more rigid than OC; no sig-
nificant difference was found between the EAC’s of NRP and
OC �p=0.016, n=7�. We conclude that nonrigid registration
with the total penalty term NRP is best capable of achieving
rigidity.

To investigate the sensitivity of the results to the relative
importance of each of the three terms of Prigid�u ; IM�, the
experiments were repeated while varying the weights cAC,
cOC, and cPC. Each of the weights was subsequently in-
creased and decreased by a factor of two, resulting in six
additional experiments. The results are given in Table IV,
where the three numbers after NRP refer to the setting of the
parameters cAC, cOC, and cPC, respectively. For example
NRP: 1 1

21 refers to a registration with the parameter cOC

chosen half the original value of 1.0. All other parameter
settings were taken equal to NRP above. A Wilcoxon signed-
ranks test was used to investigate the difference with NRP in
terms of rigidity and smoothness �EAC�. No significant dif-
ference for rigidity, at a confidence level of p=0.01, can be
found between NRP and its perturbations, except for NRP:
111

2 , which is significantly less rigid. No significant differ-
ence is found for NRP: 113

4 . At the same confidence level, no

f the energy E of the three conditions for the 3D CT

EOC EPC

10−1±1.4�10−1 2.8�10−2±3.1�10−2

10−2±1.1�10−1 2.3�10−2±3.8�10−2

10−3±1.2�10−2 2.2�10−2±5.6�10−2

10+0±1.1�10+1 1.5�10−3±1.3�10−3

10−3±7.6�10−3 3.6�10−4±6.2�10−4
ons o

1.4�

9.7�

7.7�

6.7�

5.2�
significant difference was found regarding smoothness. We
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conclude that the results are quite robust to the weights of the
AC, OC and PC terms relative to each other.

III.B. Digital subtraction angiography

DSA is an established modality for visualizing blood ves-
sels in the human body. During image acquisition patient
motion often occurs, due to breathing, heart beat, activity in
the intestines, or movement of the body. This motion results
in artifacts in the subtraction images. In Fig. 3�c� an example
of a subtraction image is shown. Rigid registration is not
sufficient in these cases, as shown by the difference image
after rigid registration, Fig. 3�d�, since 3D rigid motion can-
not always be corrected with a 2D rigid transformation of the
projection image, and since patient motion is usually of a
nonrigid nature.

TABLE IV. Sensitivity of the CT results to the relative importance of the thre
rigid or smooth than NRP using a Wilcoxon signed-ranks test at confidence

Method Lung overlap rreg : all

NRP 0.99±0.01 0.98� /1.05 5.1�10−6±

NRP: 1
211 0.97±0.02 0.97� /1.06 �=� 9.1�10−6±

NRP: 1 1
21 0.97±0.02 0.98� /1.05 �=� 5.7�10−6±

NRP: 111
2 0.97±0.02 0.96� /1.05 �−� 4.8�10−6±

NRP: 211 0.97±0.02 0.97� /1.06 �=� 3.1�10−6±
NRP: 121 0.97±0.02 0.98� /1.05 �=� 4.1�10−6±
NRP: 112 0.97±0.02 0.97� /1.06 �=� 5.3�10−6±

FIG. 3. Comparison of different registration algorithms for 2D DSA images
contrast bolus, the moving image; �c�–�f� are difference images of the fixed i
the result of NRU, �f� with the result of NRP. �g� and �h� Parts of the resul

�f� denote the part of the deformation field that is depicted.
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Typically, in DSA imaging a sequence of images is taken,
where different parts of the vasculature are visible at differ-
ent times. To see the entire imaged vasculature, all the im-
ages from this sequence have to be registered to some fixed
image. The first image, acquired just before the arrival of the
contrast bolus and known as the baseline image, was used as
the fixed image. As reported in the literature,7,8 nonrigid reg-
istration of images containing contrast-enhanced structures
can lead to significant compression of those structures. See
Fig. 3�e� for an example of this behavior. Switching the fixed
and the moving image and simply using NRU does not guar-
antee that compression is avoided. Another disadvantage is
that the inverse of the transformation is required. Therefore,
a nonrigid registration is required that can treat the vascula-
ture differently from other tissue, to maintain vasculature
size.

s. �+� or �−� means that the method is significantly more respectively less
l p=0.01. �=� means that no significant difference is found.

C EOC EPC

10−6 5.2�10−3±7.6�10−3 3.6�10−4±6.2�10−4

10−5 �=� 5.4�10−3±7.8�10−3 3.9�10−4±6.5�10−4

10−6 �=� 9.9�10−3±1.3�10−2 4.2�10−4±6.7�10−4

10−6 �=� 5.4�10−3±7.8�10−3 6.7�10−4±1.2�10−3

10−6 �=� 5.1�10−3±7.5�10−3 3.8�10−4±6.5�10−4

10−6 �=� 2.5�10−3±3.9�10−3 2.7�10−4±4.8�10−4

10−6 �=� 5.1�10−3±7.4�10−3 1.7�10−4±2.8�10−4

DSA baseline image, the fixed image; �b� DSA image after injection of the
, �c� with the moving image, �d� with the result of rigid registration, �e� with
eformation field for NRU and NRP, respectively. The rectangles in �e� and
e term
leve

EA

6.9�

1.2�

7.0�

6.2�

4.2�

5.9�

7.1�
. �a�
mage
ting d



4106 Staring, Klein, and Pluim: A rigidity penalty term for nonrigid registration 4106
III.B.1. Data description

Two-dimensional digital x-ray angiography image data
were acquired with an Integris V3000 C-arm imaging system
�Philips�. In total, 26 image sequences of 12 different pa-
tients were obtained. The image sequences are of size 512
�512 pixels for 22 data sets, and 1024�1024 pixels for
four data sets; they contain about ten images each. Intensities
in the DSA images range approximately from 100 to 950,
with an arithmetic mean and standard deviation of about
550±180. Images were taken of different locations in the
body: abdomen �10�, brain �5�, hip and foot �4�, heart �1�,
neck �5�, and lungs �1�. The first image in each sequence was
taken before arrival of the contrast bolus; the following im-
ages each show a part of the vasculature.

III.B.2. Experiment setup

The baseline image was taken to be the fixed image. For
our experiments one image from each sequence was regis-
tered to its fixed image. The image showing the most vascu-
lature was manually selected. To get a coarse alignment be-
tween fixed and moving image, a rigid registration was
performed prior to nonrigid registration. For nonrigid regis-
tration, two resolutions were used, with a B-spline grid spac-
ing of 16 pixels for both resolution levels. For both resolu-
tions, 600 iterations were used. For every resolution 5000
samples were used to calculate the derivative of the mutual
information. The parameter a was set to 6000.0 and 3500.0,
for the respective resolutions. For the rigidity penalty term, a
crude manual segmentation of the vessels was used to define
c�x�, setting c�x� to 1.0 for voxels within the vasculature and
to 0.0 otherwise. The weight � was set to 8.0, and the
weights of the three terms were chosen cAC=250.0, cOC

=1.0, and cPC=10.0. The rigidity coefficient image was di-
lated with a radius of 16.0 pixels to achieve complete rigidity

TABLE V. Quantitative results for the DSA data. Arithmetic means and standa
and standard deviations of the vessel diameter ratios are shown in the third
registration, together with their standard deviation. The last six rows show th
or �−� means that a method is significantly more or less rigid or smooth, r
=0.01. �=� means that no significant difference is found.

Method RMSD rreg

noreg 14.02±5.97
rigid 13.53±5.73 1.00� /1.00
NRU 11.94±4.10 0.84� /1.17 3.7�10−4±2
AC 12.06±4.38 0.96� /1.05 3.5�10−6±2
OC 12.07±4.57 0.98� /1.04 3.0�10−5±3
PC 12.13±4.44 0.98� /1.07 1.3�10−4±1
NRP 12.18±4.66 0.99� /1.02 2.5�10−7±1

NRP: 1
211 12.17±4.66 0.99� /1.02 �=� 5.0�10−7±2

NRP: 1 1
21 12.15±4.64 1.00� /1.02 �=� 3.7�10−7±1

NRP: 111
2 12.17±4.66 0.99� /1.02 �=� 2.6�10−7±1

NRP: 211 12.19±4.67 0.99� /1.02 �=� 1.4�10−7±6
NRP: 121 12.21±4.69 1.00� /1.02 �=� 1.9�10−7±1
NRP: 112 12.19±4.67 1.00� /1.02 �=� 2.7�10−7±1
of the vasculature.
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III.B.3. Results

The root mean square difference �RMSD� of the back-
ground was calculated to verify that the nonrigid registration
indeed reduces motion artifacts. The background is defined
as everything within the cone beam, but outside the manual
vessel segmentation. Arithmetic means and standard devia-
tions of the RMSD were calculated for all 26 images. The
results are reported in the second column of Table V and
show that rigid registration reduces the motion artifacts only
slightly. All nonrigid registration methods improve on that.

In order to further compare the reduction in motion arti-
facts between the different registration methods, the differ-
ence of the RMSDs is calculated as Di,j =RMSDi−RMSDj,
where i� j are the different registration methods. This dif-
ference was calculated for several combinations of registra-
tion methods and for all DSA data. A statistical t test was
performed to test the hypothesis that the difference has a zero
mean. For the difference Drigid,noreg this hypothesis is rejected
�p�0.01, n=26�. The difference of any of the nonrigid reg-
istration algorithms with rigid registration was also signifi-
cant �p�0.005�. No significant difference was found be-
tween NRU and the several nonrigid registration algorithms
with a penalty term �p�0.2�. It is clear that rigid registration
reduces the motion artifacts slightly, compared to no regis-
tration. Nonrigid registration improves substantially on rigid
registration.

Visual inspection confirms the reduction in motion arti-
facts, as measured by the RMSD. An example of this is
shown in Fig. 3, where the difference images before regis-
tration, after rigid registration, and after NRU and NRP are
shown. Compression is clearly visible for NRU �Fig. 3�e��,
whereas the vessels for NRP in Fig. 3�f� are similar to the
image without registration, Fig. 3�c�. The deformation fields
in Figs. 3�g� and 3�h� show that NRU compresses the ves-

viations of the RMSD are displayed in the second column. Geometric means
remaining columns show the average values of the three conditions after

sitivity of the DSA results to the relative importance of the three terms. �+�
tively, than NRP using a Wilcoxon signed-ranks test at confidence level p

EOC EPC

10−4 1.9�10−1±1.2�10−1 4.3�10−2±2.6�10−2

10−6 1.8�10−2±1.1�10−2 3.9�10−3±2.3�10−3

10−5 6.7�10−4±2.8�10−4 1.1�10−4±5.3�10−5

10−4 2.5�10−2±2.2�10−2 1.4�10−5±1.6�10−5

10−7 3.1�10−4±1.5�10−4 7.2�10−6±3.7�10−6

10−7 �−� 3.3�10−4±1.6�10−4 7.6�10−6±3.9�10−6

10−7 �−� 6.3�10−4±3.0�10−4 8.9�10−6±5.2�10−6

10−7 �=� 3.3�10−4±1.6�10−4 1.7�10−5±8.3�10−6

10−8 �+� 2.9�10−4±1.5�10−4 7.2�10−6±3.7�10−6

10−7 �+� 1.4�10−4±7.7�10−5 5.9�10−6±3.0�10−6

10−7 �=� 3.1�10−4±1.6�10−4 2.8�10−6±1.6�10−6
rd de
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e sen
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sels, whereas the rigidity penalty term preserves rigidity.
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The rigidity of the vasculature was evaluated by manually
measuring the vessel diameter vd at several locations, see
Fig. 4 for an example. Six locations were selected for each of
the 26 images, yielding a total of 156 diameter measure-
ments. Similar to the tumor volumes in the previous section,
ratios r are used to evaluate vessel compression. The vessel
diameter after registration is compared to the diameter before
registration: rreg=vdreg /vdnoreg. The geometric mean and
standard deviation of the vessel diameter ratios are reported
in the third column of Table V. Unconstrained nonrigid reg-
istration �NRU� severely compresses the vasculature, which
is avoided with the use of Prigid�u ; IM� �NRP�. A Wilcoxon
signed-ranks test confirms that this difference is significant
�p�0.001, n=156�. Each of the three conditions preserves
the vessel diameter to a large extent. The AC term performs
slightly worse than the other two, and the combination again
gives a slight improvement, both in mean and standard de-
viation. Judging from the last three columns in Table V the
three conditions help each other in achieving rigidity. Again,
a Wilcoxon signed-ranks test was performed �the data is not
normally distributed: p�0.0001 for Shapiro–Wilk tests� on
the difference log rNRP−log rOC, and on the difference in
smoothness �EAC�. A significant difference is found for both
rigidity �p�0.01, n=156� and smoothness �p�0.01, n=26�,
showing that the combination of all terms performs best.

Experiments were repeated with cAC, cOC, cPC halved and
doubled. The results are shown in the last six rows of Table
V. Changing the relative importance of the three terms does
not change the vessel rigidity significantly �using a Wilcoxon
signed-ranks test�. Smoothness is sometimes significantly
different from NRP, see column EAC in Table V, but is still of
the order of 10−7.

IV. CONCLUSIONS AND DISCUSSION

We have proposed a novel method to keep user-defined
structures locally rigid, while performing nonrigid registra-
tion. This is achieved by including a rigidity penalty term,
derived from three rigidity conditions, in the registration cost

FIG. 4. An example of six locations where the vessel diameter is measured.
function.
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The method was evaluated on 2D and 3D clinical data. It
was compared against an unconstrained nonrigid registration
approach. From the experiments on CT thorax follow-up
data it is observed that tumor volume is preserved when ap-
plying the rigidity penalty term, in contrast with uncon-
strained nonrigid registration. The results on the DSA data
show that vessel width is also much better retained with the
rigidity penalty term.

The rigidity penalty term consists of three terms: An af-
finity, an orthonormality, and a properness condition. If used
separately, both the properness and the orthonormality con-
dition are to a large extent capable of achieving volume pres-
ervation. The affinity condition aids in regularizing the prob-
lem. The affinity and properness conditions are by
themselves not capable of achieving rigidity. The orthonor-
mality condition is the most dominant of the three terms. The
three terms aid each other in achieving rigidity, giving better
results than a single condition. Also, the results are quite
robust to changing the relative importance of each of the
terms. In conclusion, the combination of all terms is the best
choice.

Unlike the algorithm described by Tanner et al.,8 the pro-
posed method does not rely on the assumption that the rota-
tion of the rigid object was captured by the initial registra-
tion. The rigidity penalty term is suitable for any
transformation capable of modelling locally rigid transfor-
mations and therefore does not rely on particular basis func-
tions to describe the transformation,17 or on its specific
design.18 Compared to approaches that take into account
only the orthonormality of the Jacobian of the
transformation,19,20 we have shown that the proposed method
gives better results in terms of achieving rigidity and
smoothness of the resulting deformation field. Since a
B-spline parameterization of the deformation field is used,
the ability to model local deformations is limited by the
B-spline control point spacing. Therefore, segmentation er-
rors in the rigidity coefficient image are a minor problem, as
long as they remain smaller than approximately half the con-
trol point spacing.

We conclude that nonrigid registration using the proposed
rigidity penalty term is capable of nonrigidly aligning im-
ages, while keeping user-defined structures locally rigid.
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