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Abstract
In present-day medical practice it is often necessary to nonrigidly align image
data. Current registration algorithms do not generally take the characteristics
of tissue into account. Consequently, rigid tissue, such as bone, can be
deformed elastically, growth of tumours may be concealed, and contrast-
enhanced structures may be reduced in volume. We propose a method to
locally adapt the deformation field at structures that must be kept rigid, using a
tissue-dependent filtering technique. This adaptive filtering of the deformation
field results in locally linear transformations without scaling or shearing. The
degree of filtering is related to tissue stiffness: more filtering is applied at
stiff tissue locations, less at parts of the image containing nonrigid tissue.
The tissue-dependent filter is incorporated in a commonly used registration
algorithm, using mutual information as a similarity measure and cubic B-splines
to model the deformation field. The new registration algorithm is compared
with this popular method. Evaluation of the proposed tissue-dependent filtering
is performed on 3D computed tomography (CT) data of the thorax and on 2D
digital subtraction angiography (DSA) images. The results show that tissue-
dependent filtering of the deformation field leads to improved registration
results: tumour volumes and vessel widths are preserved rather than affected.

1. Introduction

Nonrigid image registration is an important technique in the field of medical image processing
(Hill et al 2001, Lester and Arridge 1999, Maintz and Viergever 1998). It performs the task
of finding the spatial correspondence between two images, i.e. it searches for a one-to-one
mapping from voxels in one image to voxels in the other image. This mapping is called
the transformation. Commonly, first a rigid or affine registration is performed to capture
the global transformation. The rigid or affine transformation is then used as a starting point
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for a nonrigid registration, which searches for local deformations. An example of a popular
nonrigid registration algorithm is that of Rueckert et al (1999).

A possible drawback of such a general nonrigid registration approach is that all tissue in
the image volume is treated nonrigidly. The rigidity or stiffness of different tissue types is not
taken into account. The implicit assumption that all tissue is deformable is violated in at least
three situations.

(a) Truly rigid tissue. Bone tissue that is present in the image volume must not be allowed
to deform. Treating the bones as deformable tissue can lead, for example, to undesired
thickening and bending of ribs (Staring et al 2005).

(b) Temporal changes of tissue. An example is the study of tumour progression in a patient. A
successful nonrigid registration will achieve a perfect fit between tumours of two different
time points, effectively concealing tumour growth or shrinkage. To visualize the tumour
growth with a difference image, the tumours have to be kept rigid.

(c) Intensity changes of tissue. Local intensity changes can be induced, for example, by
injection of a contrast agent. Rohlfing et al (2003) and Tanner et al (2000) demonstrate
that contrast-enhanced breast lesions in MR are compressed after intensity-based nonrigid
registration. In Rohlfing and Maurer (2001) shrinkage is reported for contrast-enhanced
vessels in CT digital subtraction angiography (CT-DSA).

In cases (b) and (c) the tissue is not truly, i.e. physically, rigid. However, in order to prevent
undesired volume changes of these structures, they should be regarded as undeformable.

Several methods are reported in the literature to address this issue. Some of these
methods add a regularization or penalty term to the registration, thereby constraining the
transformation. Rohlfing et al (2003) achieve incompressibility by penalizing a deviation of
the determinant of the Jacobian of the transformation from 1. The method does not distinguish
between different tissue types, nor does it enforce rigidity of stiff tissue. Loeckx et al (2004)
employ a rigidity penalty term to certain structures by penalizing a deviation of the Jacobian
from orthonormality. Other ways to enforce rigidity of structures have also been presented.
Tanner et al (2000) propose to couple the control points of a B-spline deformation to enforce
rigidity on certain structures. It is assumed that the rotational part of the deformation can be
captured by the initial rigid registration. Another approach is taken by Little et al (1997),
who constrain the nonlinear part of a deformation at rigid locations by multiplication with a
weight function. Multiple rigid transformations are used by Arsigny et al (2005), each defined
on different parts of the image, but influencing each other. Edwards et al (1998) model the
deformation field using a three-component deformation model, consisting of rigid, elastic
and fluid structures. Brock et al (2005) have employed a finite element method to introduce
tissue-specific parameters. For the viscous fluid algorithm a locally adaptable regularization
technique is proposed that spatially varies the viscosity parameter (Lester et al 1999).

A structure is kept rigid during registration if and only if the underlying deformation field
represents a locally rigid transformation. We propose to achieve rigidity of certain structures
by filtering the deformation field.

Filtering of deformation fields has been used in other situations, for example in optical
flow like registration algorithms. In these cases the filtering is typically used to regularize
the deformation field to get more plausible results. Thirion (1998) uses a Gaussian kernel to
smooth the deformation field. This kernel is not adapted to the underlying tissue type; it is
fixed for the entire image volume. Cachier et al (1999) use the Demons algorithm, which
they adapt with a filtering of the deformation field. They derive and employ a priori and
a posteriori smoothing weights for the filtering; these weights vary over the image, but do
not depend on the tissue type. Another method to smooth the deformation field is used by
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Stefanescu et al (2004). They regularize the deformation field by smoothing it with a Gaussian
kernel with a standard deviation depending on the spatial position. They propose to take a large
standard deviation in areas where little deformation is expected (e.g., rigid areas), and vice
versa. At boundaries of rigid and nonrigid tissue the deformation field within the rigid objects
is influenced by the nonrigid deformations of its surroundings. Both the extent and strength
of this influence are quite large, because a large standard deviation is used. Also, a scaling of
the deformation field within rigid objects is not prevented with this method. Therefore, that
approach is not suitable for the problem we address. To ensure rigidity of the deformation
field, an asymmetric kernel is needed with a large standard deviation inside the rigid object
and a small one outside.

The filter we propose has the property that undesired deformations at rigid structures are
addressed, while the surroundings are free to deform. The deformation field is adapted by
filtering the deformation field in a tissue-dependent way: the filter is different for each voxel,
depending on the stiffness of the underlying tissue. In this way some parts of the image can be
kept rigid, whereas other parts are allowed to deform freely. In section 2 the proposed tissue-
dependent filter for regularizing the deformation field is described in detail. Incorporation of
the filter in the registration algorithm is also described in that section.

For evaluation two applications are considered: the study of tumour progression in CT
thorax imaging (an example of case (b)) and the study of the vasculature at several regions in
the human body in DSA imaging (an example of case (c)). The validation of the algorithm is
described in section 3, and the paper is concluded in section 4.

2. Method

Registration of a moving image IM(x) : �M ⊂ R
D �→ R to a fixed image IF (x) : �F ⊂

R
D �→ R, both of dimension D, is the problem of finding the deformation field d, or

equivalently the transformation T (x) = x + d(x), that spatially aligns IM(x + d(x)) and
IF (x). Registration can be defined as a minimization problem:

d̂ = arg min
d

C [IF (x), IM(x + d(x))] , (1)

where C denotes a cost function and d̂ the optimal solution.
As discussed in the introduction, registration can result in a deformation field d̂(x) which

is nonrigid at rigid structures. The filter we propose filters the deformation field adaptively,
based on the content of a ‘stiffness coefficient’ image c(x).

2.1. Filter design

For rigid tissue the corresponding part of the deformation field should be linear without scaling
or shearing. Given the deformation field d, we achieve this by calculating a weighted mean
m(x) of d over a neighbourhood Nx of x ∈ �F :

m(x) �
∑
x∈Nx

c(T (x))d(x)

/ ∑
x∈Nx

c(T (x)), (2)

where c(x) is the stiffness coefficient image with values between 0 and 1. The stiffness
coefficient image indicates, for each voxel, the relative stiffness of the underlying tissue.
In case

∑
x∈Nx

c(T (x)) = 0, we choose m(x) = d(x), to avoid division by zero. In
order to control the degree of filtering, we define a filtered deformation field F(d(x)) by
assigning a value close to the locally weighted mean deformation m(x) when the stiffness
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coefficient c(x) is high, and a value close to the original deformation d(x) for low stiffness
coefficients:

F(d(x)) � (1 − c(T (x)))d(x) + c(T (x))m(x). (3)

For neighbourhoods on the edge of rigid and nonrigid structures, the weighted mean m(x) is
determined mainly by the voxels having a high stiffness coefficient. In other parts of the image
equation (2) yields an averaging, also in the nonrigid parts. By defining the tissue-dependent
filtering as in (3), it is controlled to what extent the weighted mean is used, such that it is only
employed at rigid parts of the image. The result is a more homogeneous, linear deformation
field at regions with a high c(x), where tissue is more stiff. At regions with a low c(x) the
deformation field is unaffected by the filtering, and therefore those regions can deform freely,
as desired.

To obtain the stiffness coefficient image c(x) it is necessary to process the moving image,
for example by segmenting the relevant structures and assigning a stiffness coefficient (a value
within [0, 1]) to the voxels. For CT images the Hounsfield units can be rescaled to values in
[0, 1], since stiffer material usually implies a higher attenuation value. In this work we focus
on the registration method, and therefore we have opted for a simple manual segmentation.

We are interested in the deformed moving image. Therefore, we only have to take care
that the transformation of that image, as found by the registration, obeys restrictions of rigidity.
This means that only the relevant structures in the moving image have to be segmented.

The tissue-dependent filter F can be applied to the deformation field several times in
succession to increase the power of the filter. We define

Fk(d(x)) � F(Fk−1(d(x))), (4a)

F0(d(x)) � d(x). (4b)

When applying F multiple times (k > 1), the orientation and magnitude of the deformation
field in a neighbourhood become more similar. This effect is shown in figure 1.

The neighbourhood Nx in (2) is another parameter that can be controlled. It is chosen
to be a square in 2D and a cube in 3D, of size l × l and l × l × l voxels, respectively. For
large l the adaptive filter will linearize larger parts of the image at once, thereby increasing the
power of the filter. However, for large l, the deformation fields of two separate rigid structures
lying close together might both be within the neighbourhood. This way, the deformation
field of both rigid structures evolves to the average of them, which is undesired. Therefore, a
small neighbourhood of l = 3 is used in this study. The power of the tissue-dependent filter is
controlled with the number of successive applications k of the filter (see (4a)). In the following
section a second parameter m is introduced, which also controls the power of the filter.

Figure 1(d) illustrates that the effect of the tissue-dependent filter is first observed near
the boundary of rigid structures. After successive applications of the filter, the results are
propagated to the inside of such regions. Strong edges in the stiffness coefficient image at
the boundary of rigid and nonrigid tissue can result in sharp transitions in the deformation
field after filtering. Invertibility of the deformation field is not guaranteed. This can be easily
achieved by defining some rules on the displacement field (Stefanescu et al 2004). However,
no problems were encountered in the experiments and therefore this step is omitted. The
tissue-dependent filter is based on a weighted mean, therefore, the filtered deformation field
will eventually, for large k, evolve to a translational field, not allowing rotations of rigid
objects.

The computational complexity of the tissue-dependent filter is linearly dependent on
the size of the neighbourhood lD , the number of voxels N in the image and the number of
successive applications k : O(lDNk).
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Figure 1. The original 2D deformation field (a) stretches the underlying tissue both vertically
and horizontally. Applying the tissue-dependent filter, with c(x) = 1 everywhere, once to this
field results in (b). This field still stretches tissue, but less. After applying the adaptive filter
several times, the result is a homogeneous deformation field (c), yielding a rigid transformation
of the underlying tissue. (d) illustrates in 1D the adaptive filter applied to a scaling. The dashed
line (k = 0) shows an unfiltered deformation function that scales the data (d(x) = 0.2x). The
dashed-dotted and the solid lines refer to applying the adaptive filter 1 and 10 times, respectively,
using l = 5. Above the graph the stiffness coefficients c(T (x)) are shown: 0 referring to complete
nonrigid tissue and 1 to rigid tissue. In this case c(T (x)) is the same for all three (k = 0, 1, 10)

transformations T . The adaptive filter works from the edge of the rigid structure to the inside, and
converges after ten iterations.

2.2. Tissue-dependent nonrigid registration

This section describes how the tissue-dependent filter F is incorporated in the registration.
The registration algorithm is largely based on the papers of Rueckert et al (1999), Mattes et al
(2003) and Thévenaz and Unser (2000).

The methods described by these authors use the well-known mutual information between
the fixed image IF and the moving image IM as a cost function C. In this study the
implementation of Thévenaz and Unser (2000) is adopted, who use B-spline Parzen windows
to describe the joint histogram. This way the cost function is a continuous, differentiable
function of the transformation parameters p. The derivative of the cost function ∂C/∂p can,
therefore, be computed analytically. The deformation field d is parametrized by cubic B-
splines (Unser 1999) with parameters pBS. The B-splines modelling the deformation field
have an inherent smoothness, which is desired in registration problems. They also have local
support, which is beneficial both for modelling local transformations and for fast computation.
The derivative ∂d/∂pBS, needed for computing ∂C/∂p, is available analytically.

An iterative optimization strategy is used to solve the minimization problem (1):

dt+1(x) = dt (x) + ∆t (x;pBS), (5)

where ∆t is an incremental deformation field at iteration t, as found by the optimizer.
Incorporating our tissue-dependent filtering of the deformation field in the optimization scheme
is straightforward:

dt+1(x) = Fk(dt (x) + ∆t (x;pBS)). (6)

The resulting deformation dt+1(x) is a filtered version of a B-spline based deformation field
for t > 1 and it cannot be parametrized by B-splines. It is described by a vector field. Only the
additional deformation field ∆t (x;pBS) is modelled by B-splines, which has fewer restrictions
than modelling the entire transformation with B-splines. The optimization is performed on
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∆t (x;pBS), i.e., on the B-spline coefficients only. This is computationally advantageous
compared to optimizing over the entire deformation field.

The tissue-dependent filtering does not necessarily have to be applied after every
optimization iteration. To decrease the power of the filter it can be applied after every m
iterations. Summarizing, the proposed nonrigid registration is given by the following:

(i) perform m > 0 iterations of the optimizer, resulting in a new additional deformation field
∆t (x;pBS);

(ii) calculate the deformation field d̃t+1(x) = dt (x) + ∆t (x;pBS);
(iii) filter the deformation field, i.e., calculate dt+1(x) = Fk(d̃t+1(x)) according to

equations (2), (3) and (4a), (4b).

Repeat steps (i)–(iii) until convergence.
A stochastic gradient descent optimizer is used to determine the additional deformation

field ∆t (x;pBS) in the following way: ∆t (x;pBS) = −at∂C/∂pBS, where at is the size of
the step taken in the direction −∂C/∂pBS. The stochastic gradient descent optimizer uses
an approximation of the derivative of the mutual information with respect to the B-spline
parameterspBS. Approximation is done by using only a small random subset of voxels
from the fixed image. This has been shown to accelerate registration significantly, without
compromising registration accuracy (Klein et al 2007). At each iteration a step is taken
towards the minimum of the cost function C. The size of this step at is determined by a
decreasing function of the iteration number t. This function is of the form at = a/(t + A)α ,
where a,A and α are user-defined constants. Following the suggestions in Spall (1998), in
this work A = 100.0 and α = 0.602 are used. The parameter a is related to the expected
magnitude of the deformation, and is tuned for each application. As a stopping condition a
user-defined number of iterations is used, upon which convergence is assumed. In order to
avoid local minima, a multiresolution approach is taken. A Gaussian image pyramid is used
with a subsampling factor of 2. Also a multigrid approach is taken: when the image resolution
is doubled, the B-spline control point spacing is halved. Prior to the nonrigid registration an
affine registration is performed in order to capture the global transformation between the fixed
and the moving image.

3. Experiments and results

In order to evaluate the effectiveness of the proposed tissue-dependent nonrigid registration,
it is compared with a general nonrigid registration approach based only on B-splines. This
general approach does not apply the tissue-dependent filtering of the deformation field, but
is similar to the proposed algorithm in all other respects (see the description in section 2.2).
The methods will be referred to as ‘BS’ (B-spline only based) and ‘BSF’ (B-splines with
tissue-dependent filtering of the deformation field).

The two methods are illustrated on a synthetic example (section 3.1), and compared on
clinical data, namely 3D CT follow-up data of the thorax containing lung tumours (section 3.2)
and 2D digital subtraction angiography (DSA) image data, see section 3.3. The applications
are examples of cases (b) and (c) of the list given in the introduction. Both applications
consider structures that are not physically rigid, but to prevent undesired volume changes,
they should be regarded as undeformable. Special attention is given to the influence of the
parameters k and m.

In all experiments with BSF, the size of the neighbourhood Nx in equation (2) is 3 ×
3 voxels in 2D and 3 × 3 × 3 in 3D. For both BS and BSF, the number of bins for the
calculation of the mutual information was set to 32. All experiments were performed with
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Figure 2. BS registration compared with the adaptive filtering of the deformation field. (a) The
fixed image IF , (b) the moving image IM , (c) the result with BS and (d) the result with BSF
(k = 1,m = 100, l = 3). When the neighbourhood size is increased to l = 5, or when more
filtering is applied (m = 10), the resulting images are equal to the fixed image. In (e) a profile in
the horizontal direction of the x-component of the deformation field is depicted. In the legend the
parameters (k, l, m) refer to the corresponding BSF registration. The two vertical lines indicate
the rigid part.

software developed by the authors (www.isi.uu.nl/Elastix). This registration package is largely
based on the Insight Segmentation and Registration Toolkit (Ibáñez et al 2005). Filtering the
deformation field took approximately 1 s. and 1.7 s. for k = 1 and k = 10, respectively, on
2D 5122 data. For 3D 2563 data this took 140 and 275 s. approximately. An AMD Opteron
2218 running at 2.6 GHz. was used, without multi-threading enabled.

3.1. 2D Synthetic example

A 2D synthetic example image was constructed to demonstrate the behaviour of the nonrigid
registration algorithm with and without tissue-dependent filtering. Figures 2(a) and (b) show
the fixed and moving images, respectively, both of size 128 × 128 pixels. The central white
structure represents a rigid structure, for which the stiffness coefficient image c(x) was set
to 1.0. The two larger white structures represent some nonrigid image content, for which
c(x) = 0.0. A standard nonrigid registration was performed using three resolutions. At each
resolution 350 iterations of the optimizer were used. A multigrid approach was taken, with
a B-spline grid spacing at the final resolution of 64 pixels. No affine or rigid registration
was performed prior to nonrigid registration. The result of the registration is shown in
figure 2(c). It is clear that the rigid inner structure has thickened. The B-spline fails to keep
the inner rigid structure rigid, because the control points are pulled apart by the contraction
of the two outer white structures. The experiment is repeated with BSF with low filtering
power (k = 1, l = 3,m = 100), resulting in a still thickened inner structure (see figure 2(d)).
The power is increased by applying the filter more often (m = 10), and by extending the
neighbourhood size to l = 5. Both approaches result in a perfect registration. In figure 2(e) a
horizontal profile through the inner rigid structure of the x-component of the deformation field
is shown for the three BSF versions. BSF (1, 100, 3) still thickens the inner structure, while
the other two show no displacement at the centre.

3.2. 3D CT thorax data with lung tumours

Nonrigid registration is a valuable tool for following disease progress of patients over time.
A possible way to detect changes is by analysing the deformation field found by the nonrigid
registration, as is done by Rey et al (2002). Another way to evaluate this progress is
to visually inspect the difference between a first scan, taken at time t0, and a registered
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(a) (b) (c)

Figure 3. BS registration compared with BSF for the CT thorax follow-up data. Difference images
of the registration result with the fixed t0 image are shown. (a) for affine, (b) for BS and (c) for
BSF registration. The white box shows a tumour location.

follow-up scan, taken at t1. For the case of patients suffering from lung tumours, there might
be tumour growth between the first scan and the follow-up. Because of nonrigid motion
occurring between scans, a rigid registration is not sufficient to achieve good alignment of
the anatomy. However, standard nonrigid registration methods will minimize the difference
between tumours at different time points, effectively concealing tumour growth (see figure 3).
Therefore, the tumours should not be allowed to deform by the nonrigid registration algorithm.
It is assumed that the tumour volume does not change between scans due to differences in the
lung inspiration levels, because the protocol for acquiring the data was such that inspiration
levels are approximately equal. In this section, BS registration of CT thorax follow-up scans of
patients suffering from lung tumours is compared with BSF registration. Rigidity is evaluated
with tumour volume measurements.

3.2.1. Data description. Registration was performed on CT follow-up data sets of the thorax
of five patients having lung tumours. For each patient two images were taken at different time
points. The data were acquired with a 16-slice spiral CT scanner (Mx8000 IDT 16, Philips
Medical Systems, Best, The Netherlands). The images have an in-plane resolution of 512 ×
512 pixels. The number of slices varies for the data sets, ranging from 400 to 550. The
in-plane voxel size is around 0.7 × 0.7 mm. The slice thickness was always 1.0 mm and
slices were reconstructed every 0.7 mm. Before registration, each data set was downsampled
with a factor of two in each dimension by discarding odd rows, columns and slices, to reduce
computer memory and computational load. The five data sets contain thirty-six tumours in
total, with an average volume of 2.8 ± 3.4 ml for the first scan t0 and 5.9 ± 7.2 ml for the
follow-up t1. No new tumours had developed at t1.

3.2.2. Experiment setup. The CT image taken at time t0 is set to be the fixed image, the
CT image taken at time t1 the moving image. In order to get a coarse alignment between
fixed and moving images an affine registration was performed first. For both the affine and
the nonrigid registration three resolutions were employed. For the nonrigid registration the
B-spline grid spacing at the final level was 16 voxels. In the three resolutions 100, 100 and
300 iterations were used for the optimizer, respectively. In every iteration 5000 samples were
selected to calculate (the derivative of) the mutual information, see section 2.2. The parameter
a that defines the step size for the optimization algorithm was chosen 100 000.0, 70 000.0 and
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Table 1. Average lung overlap. Between brackets the parameters (k, m) are given.

Before registration Affine BS BSF (10, 1) BSF (1, 1) BSF (1, 10)

0.64 ± 0.22 0.92 ± 0.06 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02

50 000.0 for the three resolutions. For BSF, a crude manual segmentation of the tumours was
used to define c(x), setting c(x) to 1.0 for voxels within the tumour and to 0.0 elsewhere. The
BSF method was tested with varying strength of the adaptive filtering, with (k,m) = (1, 10),
(1, 1) and (10, 1).

3.2.3. Results. The accuracy of the registration is measured by calculating the lung overlap
of the registered image and the fixed image. For this purpose, automatic lung segmentations
were made with an algorithm based on the method by Hu et al (2001), described in detail in
Sluimer et al (2005). The segmentation does not include the lung vasculature and the tumours.
The overlap measure is defined as

overlap � 2|L1 ∩ L2|
|L1| + |L2| , (7)

where Li is the set of all voxels within the lung and |Li | denotes the size of set Li . The
average and standard deviation values of lung overlap were calculated over all data, and are
reported in table 1. The results show that a good lung overlap was achieved with both nonrigid
registration algorithms. This is confirmed by visual inspection of the results (see figure 3 for
an example).

For the evaluation of the rigidity of the tumours, a second manual segmentation of
the tumours in the moving image is used. The second segmentation was performed in
a precise manner, unlike the segmentation used for BSF. Tumour volume measurements
were performed to evaluate if the registration is volume preserving, a condition for rigidity.
Volume preservation is expressed by the ratio r between the tumour volume after registration,
denoted by vreg, and the tumour volume at t1 (since t1 is the moving image), denoted by
vt1 : rreg = vreg/vt1 . The tumour segmentation after registration is determined by applying
the coordinate transformation to the tumour segmentation of the moving image. Linear
interpolation was used in this step. If a nonrigid registration is volume preserving for a tumour,
the volume ratio will be 1.0; if a tumour is compressed rreg < 1.0. For ratios it is better to use
the geometric mean and standard deviation, instead of their arithmetic counterparts. This can
be easily seen with a small example. Say, we have two ratios 0.5 and 2.0. The arithmetic mean
of those two ratios is 1.25, whereas the geometric mean equals 1.0, rating a two times increase

in volume equal to a two time decrease. The geometric mean is defined as µg = n

√∏n
i=1 ri

reg.

From the definition of the geometric standard deviation it follows that σg � 1. The geometric
mean volume ratios and standard deviations are reported in table 2, where the symbol ×/ is
used to indicate the distinction with the arithmetic mean and standard deviation. Geometric
means were calculated for four volume ratio groups and for all ratios together. The tumours
were grouped according to tumour growth vt1/vt0 . The third group, for example, is the group
of tumours with tumour growth between 3/2 and 3. Table 2 shows that volume was much
better preserved with BSF, compared to BS. For a low strength of the adaptive filter (BSF
(1, 10)) volume-preservation is low, which increases by increasing the power (BSF (1, 1)
and BSF (10, 1)). Volume is by definition preserved for rigid registration. Residual volume
differences of the BSF method can partly be explained by the fact that the tissue-dependent
nonrigid registration obtains a trade-off between the rigidity of tumours and the maximization
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(a) BS (b) BSF (10,1)

Figure 4. Deformation fields for the CT thorax follow-up data around a tumour, following from
the (a) BS and the (b) BSF registration. Where BS compresses the tumour (rBS = 0.69), BSF
retains rigidity (rBSF = 0.98).

Table 2. Geometric mean tumour volume ratios. Between brackets the parameters (k, m) are
given.

Group vt1 /vt0 rrigid rBS rBSF (1, 10) rBSF (1, 1) rBSF (10, 1)

(0, 1] 1.00 ×/ 1.00 1.06 ×/ 1.03 1.01 ×/ 1.01 1.00 ×/ 1.00 0.99 ×/ 1.00
(1, 3/2] 1.00 ×/ 1.00 1.09 ×/ 1.11 1.03 ×/ 1.03 1.02 ×/ 1.02 1.02 ×/ 1.02
(3/2, 3] 1.00 ×/ 1.00 0.89 ×/ 1.04 0.93 ×/ 1.04 0.97 ×/ 1.02 0.99 ×/ 1.01
(3, ∞) 1.00 ×/ 1.00 0.88 ×/ 1.05 0.93 ×/ 1.04 0.96 ×/ 1.02 0.98 ×/ 1.01
All 1.00 ×/ 1.00 0.95 ×/ 1.08 0.96 ×/ 1.04 0.99 ×/ 1.02 0.99 ×/ 1.02

of similarity. Especially when there are large tumour volume differences between t0 and t1 (the
fourth group in table 2), volume preservation is harder to obtain. Examples of the deformation
fields after BS and BSF registration are given in figure 4. Unlike BS, the deformation field for
BSF is clearly rigid at the tumour location.

3.3. Digital subtraction angiography

Digital subtraction angiography (DSA) is an established modality for visualizing blood vessels
in the human body. During image acquisition patient motion often occurs, due to breathing,
heart beat, activity in the intestines or movement of the body. This motion results in artefacts
in the subtraction images. In figure 5(a) a subtraction image is shown after rigid registration;
the artefacts in the original subtraction image are even larger. In order to correct for patient
motion after acquisition, a nonrigid registration is needed. Typically, a sequence of images
is taken, where different parts of the vasculature are visible at different times. To see the
whole imaged vasculature, all the images from the specific sequence have to be registered to
some fixed image. The first image, acquired just before the arrival of the contrast bolus and
known as the baseline image, is used as the fixed image. As reported in the literature (Rohlfing
et al 2003, Tanner et al 2000), nonrigid registration of images containing contrast-enhanced
structures can lead to significant compression of those structures. Switching the fixed and
the moving image and simply using BS does not guarantee that compression is avoided, and
requires the inverse of the transformation. Therefore, a nonrigid registration is required that
can treat the vasculature different from other tissue to maintain vasculature size.

3.3.1. Data description. The 2D digital x-ray angiography image data were acquired with an
Integris V3000 C-arm imaging system (Philips Medical Systems, Best, The Netherlands). In
total, 26 image sequences of 12 different patients were obtained. The image sequences were
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(a) (b) (c)

Figure 5. BS registration compared with BSF for the DSA data. Difference images of the
registration result with the fixed image are shown. (a) for rigid, (b) for BS and (c) for BSF (2, 1)
registration. Note the substantial change in vessel radius of the BS method, compared to the other
algorithms. Whereas the BS method compresses the vasculature, the BSF method is much more
capable of retaining vessel widths.

of size 512 × 512 pixels for 22 data sets and 1024 by 1024 pixels for 4 data sets; they contain
about ten images each. Intensities in the DSA images range approximately from 100 to 950,
with an arithmetic mean and standard deviation of 550 ± 180. Images were taken of different
locations in the body: abdomen (10), brain (5), hip and foot (4), heart (1), neck (5) and lungs
(1). The first image in each sequence was taken before the arrival of the contrast bolus; in the
following images the contrast agent is visible in parts of the vasculature.

3.3.2. Experiment setup. The baseline image was taken to be the fixed image. For our
experiments one image from each sequence was registered to the fixed image. The image
showing the most vasculature was manually selected as the moving image. To get a coarse
alignment between fixed and moving images, a rigid registration was performed prior to
nonrigid registration. Two resolutions were used, with a B-spline grid spacing of 32 and 16
pixels at the first and final resolution levels, respectively. For the two resolutions 600 and 300
iterations were used, respectively. At every resolution 5000 samples were used to calculate
(the derivative of) the mutual information (see section 2.2). The parameter a that defines
the step size for the optimization algorithm was chosen to be 6000.0 and 3500.0 for the two
resolutions. For the BSF registration, a crude manual segmentation of the vessels was used to
define c(x), setting c(x) to 1.0 for voxels within the vasculature and to 0.0 otherwise. The
BSF method was tested with the parameter settings (k,m) = (1, 5), (1, 1), (2, 1) and (5, 1).

3.3.3. Results. The root mean square difference (RMSD) of IM(x + d(x)) with IF (x)

at the background was calculated to see if the nonrigid registration indeed reduces motion
artefacts. The background is defined as everything within the cone beam, but outside the
manual vessel segmentation. Differences at vessel locations are not taken into account, since
these differences are meant to be large. The arithmetic means and standard deviations of the
RMSD were calculated for all 26 images. The results are reported in the top row of table 3.
Rigid registration reduced the motion artefacts. Both BS and BSF nonrigid registration
methods improved substantially on that. In figure 5 the difference image after rigid registration,
and after the two nonrigid registration methods (BS and BSF (2, 1)) is shown for an example
DSA image. Visual inspection confirms the reduction in motion artefacts, as measured by the
RMSD.
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Figure 6. A box-and-whisker plot for the difference D in background motion artefacts. The box
represents the first and third quartiles. The horizontal line in this box is the median. The whiskers
indicate the extent of the rest of the data, except for outliers. Outliers are points falling more than
1.5 times the interquartile range past the ends of the box, and are denoted by a dot.

Table 3. Results for DSA data. Arithmetic means and standard deviations for the RMSD are
displayed in the top row. Geometric means and standard deviations for the vessel diameter ratios
are shown in the bottom row. Between brackets the parameters (k, m) are given.

No registration Rigid BS BSF (1, 5) BSF (1, 1) BSF (2, 1) BSF (5, 1)

RMSD 14.0 ± 6.0 13.5 ± 5.7 12.1 ± 4.2 11.8 ± 4.0 11.9 ± 4.0 11.9 ± 4.0 11.9 ± 4.0
Diameter 1.00 ×/ 1.00 1.00 ×/ 1.00 0.85 ×/ 1.16 0.91 ×/ 1.11 0.96 ×/ 1.06 0.97 ×/ 1.04 0.98 ×/ 1.03

In order to compare the reduction in motion artefacts between the different registration
methods, the difference of the RMSDs is defined as Di,j = RMSDi − RMSDj , where
i �= j are the different registration methods. This difference was calculated for several
combinations of registration methods and for all DSA data, resulting in the differences
Drigid,noreg,DBS,rigid,DBSF,rigid and DBSF,BS, where BSF is BSF (2, 1). In figure 6 a box-
and-whisker plot for these differences in motion artefacts is shown. Rigid registration reduced
the motion artefacts slightly, compared to no registration (top row). The second and third
rows show that nonrigid registration indeed improved substantially on rigid registration (rigid
versus BS and rigid versus BSF both have p < 0.05 in a two-tailed paired t-test). The bottom
row indicates that the RMSD for the BS and BSF method are similar.

The rigidity of the vasculature is evaluated by manually measuring the vessel diameter
vd at several locations. Six locations were selected for each of the 26 images, yielding a total
of 156 diameter measurements. As in the previous section, the ratios r are used to evaluate
vessel compression. The vessel diameter after registration is compared to the diameter before
registration: rreg = vdreg/vdnoreg. The geometric mean of the vessel diameter ratios is reported
in the bottom row of table 3. Standard nonrigid registration (BS) clearly resulted in the
compression of the vessels, whereas the tissue-dependent filtering (BSF (2, 1)) retained the
vessel widths. When the adaptive filtering strength is decreased (BSF (1, 1) and BSF (1, 5))
rigidity-preservation is decreased, and vice versa (BSF (5, 1)).

4. Discussion and conclusions

In common nonrigid registration approaches all tissue is treated equally, thereby deforming
rigid tissue. We propose a method that takes the rigidity of different tissue types into account,
using a tissue-dependent filtering of the deformation field. Such a filter is described in
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this work, and incorporated in a nonrigid registration framework: tissue-dependent nonrigid
registration.

In contrast to other work on filtering of the deformation field, we designed the filter
specifically to maintain the rigidity of tissue. All other work we are aware of uses filtering
to obtain smoothness of the deformation, sometimes also in a tissue-dependent manner. The
proposed filter does not affect the deformation field outside the region that is to be kept rigid,
thereby allowing the neighbouring tissue of the rigid structures to deform freely. Methods
that add a penalty term to the cost function to achieve rigidity need to weigh the penalty term
against similarity. The choice of this weight is somewhat nonintuitive and a matter of tuning.
Varying the strength of the proposed tissue-dependent filtering can be done with two intuitive
parameters (k and m). The results show that by increasing k and/or decreasing m the method
is better capable of retaining rigidity, and vice versa. For very large k the deformation field
will converge to a translational field. The proposed method also offers possibilities to move
rigid objects that are in close proximity, independently of each other by adding an object label
to the filtering process.

A segmentation of the rigid structures is needed to define which regions are to be kept
rigid. In this work we used rough manual segmentations, which is labour intensive, and
therefore not very practical in a clinical setting. Since a rough segmentation is sufficient, a
(semi-) automatic segmentation method will usually be available.

The proposed tissue-dependent nonrigid registration was evaluated on CT thorax follow-
up data and Digital Subtraction Angiography (DSA) data. It was compared against a standard
B-spline based registration approach. From the experiments on the CT thorax follow-up data it
is observed that tissue-dependent nonrigid registration is better in terms of preserving tumour
volume than a standard B-spline based approach. The DSA data show a clear improvement
of the proposed method over the B-spline method in retaining vessel widths.

Based on the results and on visual inspection of the data, it is concluded that the tissue-
dependent nonrigid registration algorithm is indeed able to model locally rigid transformations,
thereby improving registration results.
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