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An automatic method for delineating the prostate �including the seminal vesicles� in three-
dimensional magnetic resonance scans is presented. The method is based on nonrigid registration of
a set of prelabeled atlas images. Each atlas image is nonrigidly registered with the target patient
image. Subsequently, the deformed atlas label images are fused to yield a single segmentation of the
patient image. The proposed method is evaluated on 50 clinical scans, which were manually seg-
mented by three experts. The Dice similarity coefficient �DSC� is used to quantify the overlap
between the automatic and manual segmentations. We investigate the impact of several factors on
the performance of the segmentation method. For the registration, two similarity measures are
compared: Mutual information and a localized version of mutual information. The latter turns out to
be superior �median �DSC�0.02, p�0.01 with a paired two-sided Wilcoxon test� and comes at no
added computational cost, thanks to the use of a novel stochastic optimization scheme. For the atlas
fusion step we consider a majority voting rule and the “simultaneous truth and performance level
estimation” algorithm, both with and without a preceding atlas selection stage. The differences
between the various fusion methods appear to be small and mostly not statistically significant �p
�0.05�. To assess the influence of the atlas composition, two atlas sets are compared. The first set
consists of 38 scans of healthy volunteers. The second set is constructed by a leave-one-out ap-
proach using the 50 clinical scans that are used for evaluation. The second atlas set gives substan-
tially better performance ��DSC=0.04, p�0.01�, stressing the importance of a careful atlas defi-
nition. With the best settings, a median DSC of around 0.85 is achieved, which is close to the
median interobserver DSC of 0.87. The segmentation quality is especially good at the prostate-
rectum interface, where the segmentation error remains below 1 mm in 50% of the cases and below
1.5 mm in 75% of the cases. © 2008 American Association of Physicists in Medicine.
�DOI: 10.1118/1.2842076�
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I. INTRODUCTION

Prostate cancer treatment by radiation therapy requires an
accurate localization of the prostate: Neighboring tissue �rec-
tum and bladder� should be spared, while the tumor should
receive a prescribed dose. For the treatment planning, com-
puted tomography �CT� images are primarily used, but in-
creasingly magnetic resonance �MR� images are added, be-
cause of their soft-tissue contrast.1,2 Several studies1,3 have
demonstrated that the additional use of MR images for pros-
tate delineation leads to a reduced interobserver variation
and a smaller estimated prostate volume. In current practice
at our hospital a manual delineation of the prostate is made,
based on the CT and MR scans, which is a labor-intensive
task and requires training. Therefore, automating this process

is desired.
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Figure 1 shows two example MR slices together with
their manual delineations. The MR protocol, a balanced
steady-state free precession �bSSFP� sequence, was opti-
mized for visibility of the prostate and rectum. An extensive
review of the prostate’s anatomy visible on MR images can
be found in Ref. 2. The major components of the prostate are
the central gland, the peripheral zone, and the seminal
vesicles, each having different appearances on the bSSFP
MR scans. The shape and size of the seminal vesicles vary
heavily among people. The central gland and the peripheral
zone together have the size of a walnut �around 25 ml� in
healthy subjects. Prostate cancer develops most frequently in
men over 50. With increasing age, a large group of men also
suffers from benign prostate hypertrophy �BPH�, which can

result in substantial growth of the central gland.
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Challenges for automatic segmentation of the prostate in
MR images include the presence of imaging artifacts due to
air in the rectum and inhomogeneities of the magnetic field,
the large anatomical variability between subjects, the differ-
ences in rectum and bladder filling, and the lack of a normal-
ized “Hounsfield” unit for MR. Four examples of imaging
artifacts, taken from the clinical test data described in Sec.
III A 2, are shown in Fig. 2.

Recent surveys of the literature on automatic segmenta-
tion of the prostate can be found in Refs. 4 and 5. Existing
work has mainly focused on statistical model based ap-
proaches. In Ref. 6, a pseudo-three-dimensional �3D� active
shape model is used to segment the prostate without seminal
vesicles in MR images. In Ref. 4, a method is proposed that
combines a statistical model for the prostate with region-
growing methods for the rectum and the bladder. The semi-
nal vesicles are not included and manual initialization is re-
quired. In Ref. 7 a method to segment pelvic CT images is
presented that uses intrasubject nonrigid registration of a
manually segmented planning scan.

In this article, we propose a fully automatic method to
delineate the prostate including the seminal vesicles in 3D
MR scans. The method is based on intersubject registration
of atlas images. The atlas consists of a set of manually la-
beled MR images from multiple individuals. Using a non-
rigid registration algorithm, all atlas images are matched to
the patient’s MR image that is to be segmented. The de-
formed manual segmentations of the atlas images are com-
bined into a single segmentation of the patient’s image �label
fusion�. Multiple atlas images are used, instead of a single
image, to account for the large anatomical variability be-
tween subjects and for the differences in bladder and rectum

(a) The peripheral zone and
the central gland

(b) The seminal vesicles

FIG. 1. Two example MR slices, zoomed in on the region of interest, with
manually delineated prostate �white line�.

(a) (b)

FIG. 2. Four examples of imaging artifacts, marked by white arrows: �a� an
as black lines not corresponding to tissue boundaries, �c� low-contrast pr

inhomogeneity.
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filling. Multi-atlas based segmentation methods have given
promising results in other applications.8

Three factors that may influence the performance are in-
vestigated: The similarity measure used by the registration
process, the atlas label fusion method, and the composition
of the atlas set. In Sec. II A, the two similarity measures are
described: Mutual information and a localized version of
mutual information. For the latter we introduce a novel sto-
chastic optimization method. The atlas label fusion methods
are treated in Sec. II B. The atlas sets that are used in the
experiments are described in Sec. III.

The proposed method is evaluated on 50 clinical scans. To
determine the ground truth, each scan was manually seg-
mented by three human experts. The Dice similarity coeffi-
cient �Sec. III C� is used to quantify the overlap between
automatic and manual segmentations. The spatial distribution
of the segmentation errors is visualized using a spherical
coordinate mapping of the prostate boundary. Section IV pre-
sents the results of the experiments. First, the impact of the
three factors mentioned above is explored. Subsequently, the
accuracy of the automatic segmentation obtained with the
optimum settings is compared to the interobserver variability.
Recommendations for future work are given in Sec. V and
the article is concluded in Sec. VI.

II. METHOD

The patient’s image to be segmented is denoted by P�x�.
The goal of the automatic segmentation method is to produce
a binary label image L�x� that accurately defines the prostate
of the patient.

The proposed segmentation method follows the general
scheme of multi-atlas based segmentation methods, see, for
example, Ref. 8. A set of M accurately labeled images, which
serve as an atlas, is assumed to be available. The ith image in
this atlas set is referred to as Ai�x�. The corresponding label
image, created by a human expert, is called Li�x�. The seg-
mentation method consists of two stages: �1� Registration
and �2� label image fusion. In the registration stage, each
atlas image Ai is matched to the patient image P, using a
nonrigid registration algorithm. The resulting coordinate
transformations are applied to the label images Li. In the
label image fusion stage, the deformed label images are com-
bined into a single segmentation L of the target patient im-

(c) (d)

Susceptibility artifacts due to air in the rectum, which manifest themselves
-bladder boundary combined with a streaking artifact, �d� large intensity
d �b�
ostate
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age. Note that in all steps the images are treated as 3D vol-
umes, rather than processing them on a two-dimensional
slice-by-slice basis.

II.A. Registration

In the registration stage, each atlas image Ai is matched to
the patient image P. A coordinate transformation Ti�x� is
estimated that maximizes the similarity of P and the de-
formed atlas Ai �Ti �the symbol � represents function compo-
sition: �Ai �Ti��x�=Ai�Ti�x���. The registration is performed
in two steps. First, rough alignment of the two images is
achieved by a rigid registration. After that a nonrigid regis-
tration is performed, using a coordinate transformation that is
parameterized by cubic B-splines.9 The parameters that de-
scribe the transformation are represented by the vector �.

An important aspect of the registration method is the
choice of the similarity measure. We compare two similarity
measures: Mutual information �MI�10,11 and localized mutual
information �LMI�.12,13 The mutual information of two
d-dimensional images I�x� ,J�x� :��Rd→R is defined as
follows:

MI�I,J;�� = �
k

�
m

pIJ�k,m�log
pIJ�k,m�

pI�k�pJ�m�
, �1�

where pI and pJ denote the discrete marginal intensity prob-
abilities of I and J, respectively, and pIJ represents the dis-
crete joint intensity probability. The intensity probabilities
are estimated from a discrete set of intensity pairs
�I�xi� ,J�xi��, where the coordinates xi are sampled from the
continuous image domain �. A common choice is to use all
voxel locations, or a uniformly sampled subset of those. An
important assumption of MI is that the true intensity prob-
abilities do not vary over �. This assumption is often vio-
lated in MR scans, due to the presence of magnetic field
inhomogeneities. Therefore, it may be better to evaluate the
mutual information on multiple subregions, each having a
more stationary intensity distribution. Adding the resulting
mutual information values of all subregions gives us the lo-
calized mutual information LMI12,13

LMI�I,J;�� =
1

N
�

xj��

MI�I,J;N�x j�� . �2�

In this equation N�x j��� represents a spatial neighborhood
centered on x j. The number of neighborhoods is denoted by
N. The neighborhood center coordinates x j are samples from
�. We may choose them to be all voxel locations, or some
subset of those. The neighborhoods N�x j� must be chosen
large enough to allow for a reliable estimation of the inten-
sity probabilities, but small enough to ensure that the influ-
ence of the inhomogeneities is negligible. We considered cu-
bic regions of 253, 503, and 1003 mm, and compared their
performance in 36 registrations on a subset of the data de-
scribed in Secs. III A 1 and III A 2. Six scans of the first data
set were registered to six scans of the second data set. The
best results in terms of the prostate overlap after registration,

see Sec. III C, were obtained with the 50�50�50 mm re-
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gion. This setting is used in all experiments that are de-
scribed in this article.

For maximization of the similarity measure we employ an
iterative optimization routine, called stochastic gradient de-
scent. The parameters � that describe the transformation are
updated in each iteration k by taking a step in the direction of
the derivative of the similarity measure with respect to �. In
Ref. 14 it is demonstrated for MI that convergence to the
solution is still achieved when the derivative is approximated
using only a very small number P of randomly sampled in-
tensity pairs. Two important conditions for this are that new
samples are selected in every iteration and that the step size
ak is a slowly decaying function of the iteration number k,

�k+1 = �k − akg̃k, �3�

ak = a/�k + A��, �4�

where g̃k represents the approximated derivative of MI, and
a�0, A�1, and 0���1 are user-defined constants. For
LMI we can use the same strategy and even extend it by
using a small set of neighborhoods, randomly selected in
every iteration. We use N=1, in other words, LMI is imple-
mented by computing MI using P intensity pairs, sampled
from a 50�50�50 mm neighborhood that is randomly se-
lected in every iteration. This approach results in equal com-
putational costs per iteration for MI and LMI, provided that
the same number of intensity pairs P are sampled to estimate
pIJ. The stochastic optimization procedure that we use is an
important difference to Refs. 12 and 13.

The registration algorithm was integrated in elastix
(www.isi.uu.nl/Elastix), a publicly available
package for medical image registration, developed by the
authors. The mutual information MI is implemented accord-
ing to Ref. 15, using a joint histogram size of 32�32 and
cubic B-spline Parzen windows. The number of samples ran-
domly selected in each iteration is set to P=2000. A four-
level multiresolution scheme is employed in both the rigid
and the nonrigid registration step. Gaussian smoothing is ap-
plied to the image data using a standard deviation of 4, 2, 1,
and 0.5 voxels in the four respective resolutions. The non-
rigid registrations are performed using a B-spline control
point spacing of 64, 32, 16, and 8 mm in all directions, for
the four respective resolutions. Per resolution, 2000 itera-
tions are performed. The step size sequence in Eq. �4� is
denned by a=2000, A=200, and �=0.6. The above de-
scribed settings were determined by trial-and-error experi-
ments on two image pairs, randomly selected from the data
set described in Sec. III A 1.

II.B. Label image fusion

The registration stage yields a set of transformations Ti,
which can be applied to the atlas label images Li, resulting in
a set of deformed label images Li �Ti, i=1, . . . ,M. These
must be combined into a single segmentation of the patient’s
image. For this purpose we consider majority voting �VOTE�
and “simultaneous truth and performance level estimation”

�STAPLE�, explained in Secs. II B 2 and II B 3, respectively.
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Both methods can be combined with a preceding atlas selec-
tion stage, which is described in Sec. II B 1. In the experi-
ments we compare VOTE and STAPLE, both with and with-
out the atlas selection procedure.

The voxels of the atlas label images Li take discrete val-
ues c�C, each corresponding to a certain tissue type �class�,
with C the set of classes. For example, “1” represents pros-
tate tissue, “2” represents the bladder, and “0” everything
else. Although the aim of our work is segmentation of only
the prostate, the label fusion procedures VOTE and STAPLE
may benefit from additionally labeled tissue types in the at-
las. In the experiments this aspect is investigated.

II.B.1. Atlas selection

Instead of using all deformed label images we can make a
selection of atlas scans and use only their associated de-
formed label images. The selection is based on the similarity
of the patient image P and the deformed atlas images Ai �Ti.
As in Ref. 8, we measure the similarity after registration by
the normalized mutual information �NMI�.16 Let us define
the ratio ri,

ri =
NMI�P,Ai � Ti;��

maxj NMI�P,Aj � Tj;��
. �5�

An atlas Ai is selected if it satisfies ri�	, where 0�	�1 is
a tunable parameter. A value of 0 means that all atlas scans
are included in the selection. A value of 1 implies that only
the atlas scan with the highest similarity measure is used.
The settings 	=0 and 	=1 correspond to the “MUL” and
“SIM” methods, respectively, investigated in Ref. 8. In Sec.
IV, we present results for a range of 	.

The set of atlas image indices selected in this stage is
called AP. The subscript indicates that this set can be differ-
ent for each patient image.

II.B.2. Majority voting „VOTE…

To combine the deformed segmentations of the selected
atlas images into a single segmentation L�x�, majority voting
is the most straightforward method. We consider a somewhat
more general, weighted version, defined by the following
two equations:

�c�x� =
�i�AP

wi · 
�c,�Li � Ti��x��

�i�AP
wi

, ∀ c � C , �6�

L�x� = arg max
c�C

�c�x� , �7�

where �c�x� denotes the probability of class c at x, 
�·� is the
Kronecker delta function, and wi are scalar weighting fac-
tors. Equation �7� selects the class with the highest probabil-
ity as the final label. Setting wi=1 for all i yields the com-
mon majority voting procedure. By using wi=ri more weight
is assigned to atlas scans that match well to the patient im-

age. Both approaches are tested in Sec. IV.
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II.B.3. Simultaneous truth and performance level
estimation „STAPLE…

The STAPLE algorithm17,18 treats the label image fusion
as a maximum-likelihood problem, which is solved using an
expectation-maximization procedure. Intuitively, the method
is based on the following two observations: �1� If the patient
segmentation L is known, the accuracy �reliability� of each
deformed label image Li �Ti can be computed in terms of its
specificity and sensitivity, and �2� if the specificity and sen-
sitivity values of all deformed label images are known, a
better estimate of L can be generated. In Ref. 18 it is dem-
onstrated that the STAPLE algorithm gives better results than
VOTE, when used for atlas-based segmentation of bee
brains.

We run the STAPLE procedure using the disputed voxels
only, i.e., the voxels where �Li �Ti��x�� �Lj �Tj��x� for at
least one combination of i, j�AP. When the deformed label
images are reasonably similar to each other, the disputed
voxels lie on a narrow band around the prostate border. The
STAPLE algorithm needs to be initialized with a probabilis-
tic segmentation of each class. The probabilistic segmenta-
tion �c that results from VOTE, see Eq. �6�, is a reasonable
choice for this. The choice of wi in Eq. �6� may influence the
final STAPLE result, although the effect can be expected to
be small, since the VOTE procedure serves here as an ini-
tialization only. In Sec. IV both wi=1 and wi=ri are tested.

Note that, if all deformed label images indicate an over-
or undersegmentation of the prostate, the final label image L
will also be an over- or undersegmentation. This happens
regardless of the label image fusion method �VOTE or
STAPLE� and is not affected by the decision to use only the
disputed voxels.

III. EXPERIMENTS

Two data sets are available for the evaluation. The first set
consists of 38 scans, originating from healthy volunteers.
The second set consists of 50 clinical scans from prostate
cancer patients.

For the experimental evaluation of the proposed segmen-
tation method, an atlas needs to be defined. The composition
of the atlas may have a large impact on the quality of the
segmentations. The atlas should contain enough anatomical
variation, such that for every target patient image a few atlas
images are present that are reasonably similar to the patient
image, allowing for successful registration. If the images are
of very high quality, the diversity of the atlas may not be so
important anymore, since the registration algorithm would
match any pair of images successfully. We evaluate the in-
fluence of the atlas composition in our application by per-
forming two types of experiments. In the first experiment the
volunteer data set serves as an atlas and the clinical data set
serves as a test set. The second experiment is a leave-one-out
test, using only the patient data.

All experiments are performed both with MI and LMI as
the similarity measure for registration. Also, the various atlas

label fusion procedures described in Sec. II B are tested. The
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results are evaluated by comparing the automatically gener-
ated segmentations with manual segmentations.

III.A. Data

III.A.1. Volunteer data

The volunteer data set consists of 38 MR scans, acquired
with a Philips 3T scanner �Gyroscan NT Intera, Philips
Medical Systems, Best, The Netherlands� using a flex-M coil
and a balanced steady-state free precession �bSSFP� se-
quence with fat suppression. The scans originate from eight
healthy volunteers �age 42–51 years, mean 47� and were
made in the context of another study. Seven volunteers were
scanned five times, one volunteer was scanned three times.
The time between two scans was at least one day, and the
volunteers were asked to try to vary the content of their
rectum and bladder, to get as much variety between the scans
as possible. The scans have a dimension of 512�512�90
voxels of size 0.49�0.49�1.0 mm. Manual segmentations
are available for each scan. The segmentations were made by
an experienced observer and approved by a radiation oncolo-
gist �observer A, see Sec. III A 2�. Note that the seminal
vesicles are considered part of the prostate. Besides the pros-
tate, the bladder and the rectum were also labeled. The dis-
tribution of prostate volumes is visualized in Fig. 3 by the
black bars of the histogram.

III.A.2. Patient data

The 50 clinical scans were acquired using the same pro-
tocol as the scans in the volunteer data set and originate from
50 prostate cancer patients �age 51–79 years, mean 69�, who
were scheduled for external beam radiation therapy. The pa-
tients did not have any loco-regional or distant metastases.
For 35 patients the disease status was T3,4N0M0. The rest
was classified as T1,2N0M0. In each scan the prostate was
segmented by three observers. Observer A is a radiation on-
cologist and has the most experience �ten years� of the three
observers. Observer B is a resident radiation oncologist and
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FIG. 3. Histogram of prostate volumes. The mean volume �� st.dev.� is
52�6 ml for the volunteers and 82�36 ml for the patients.
observer C is a medical physicist specialized in the field of
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prostate radiotherapy. We constructed an additional “gold
standard” LG by combining the three segmentations LA, LB,
and Lc using majority voting, with equal weights wi. Note
that only the prostate was delineated in the patient data.
Bladder and rectum were not labeled. The distribution of
prostate volumes as defined by LG is shown in Fig. 3 by the
gray bars. Clearly, a much larger range of prostate volumes is
present in the patient data set than in the volunteer data set. It
is well known that men in the age group of the patients often
suffer from benign prostate hypertrophy �BPH�. This can re-
sult in a substantial increase of the prostate volume.

III.B. Experiment description

III.B.1. Experiment I

In Experiment I the volunteer data set serves as an atlas
and the clinical data set serves as a test set. For the label
image fusion algorithms, VOTE and STAPLE, two choices
of C �see Sec. II B� are considered: C= �background, prostate�
and C= �background, prostate, rectum, bladder�, where
“background” is defined as anything that does not belong to
one of the other classes. The resulting label image fusion
methods are referred to as VOTE2, VOTE4, STAPLE2, and
STAPLE4, where the number indicates the number of classes
in C. Note that the rectum and bladder segmentations that
come as a by-product from VOTE4 and STAPLE4 are not of
our interest. We only assess the quality of the prostate delin-
eation. As mentioned in Sec. II B, the presence in the atlas of
additionally labeled tissue types besides prostate may im-
prove the segmentation of the prostate in the target patient
image.

During the registration of the atlas images to the patient
images the similarity measure �MI or LMI� is evaluated on a
region of interest �. A rectangular region of interest of 271
�333�86 voxels was manually selected for this purpose,
roughly encompassing the prostate, bladder and rectum in all
scans. For atlas selection, see Eq. �5�, the same � is used.

III.B.2. Experiment II

The second experiment is a leave-one-out test, using only
the patient data. For each patient the atlas set thus consists of
the 49 remaining patients. The gold standard labels LG are
used as atlas label images. Only VOTE2 and STAPLE2 are
considered in Experiment II, since no manual segmentations
of the rectum and bladder are available for the patient data.
For � the same definition is used as in Experiment I.

It may be expected that the results of Experiment II are
better than those of Experiment I, since the atlas contains
more anatomical variation, as shown in Fig. 3. We evaluate
the relative impact of this difference in atlas composition,
compared to other factors that influence the performance of

the automatic segmentation method.
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III.C. Evaluation measures

The results are evaluated by comparing the automatically
generated prostate segmentations with the manual segmenta-
tions. A well-known measure of segmentation overlap is the
Dice similarity coefficient �DSC�19

DSC�X,Y� =
2	X � Y	
	X	 + 	Y	

, �8�

where X and Y represent binary label images, and 	 · 	 denotes
the number of voxels that equal 1. A higher DSC indicates a
better correspondence. A value of 1 indicates perfect overlap,
a value of 0 means no overlap at all.

The DSC does not provide insight into the spatial distri-
bution of the segmentation errors. To visualize the segmen-
tation accuracy we use a spherical coordinate mapping of the
prostate boundary.3,7 The shortest Euclidean distance be-
tween the manual and automatic segmentation boundaries is
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significant �p�0.05� improvement compared to 	= “-” with the same label
VOTE2 with the same value of 	.
computed for every point on the boundary of the manual
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segmentation. A cartographic “Mollweide equal area” projec-
tion is used to display the result, as proposed in Ref. 7.

IV. RESULTS

The experiments were performed using MI and LMI, with
VOTE2, VOTE4, STAPLE2, and STAPLE4, and with differ-
ent thresholds for atlas selection �	�. The DSC values be-
tween the automatic segmentation L and the expert segmen-
tations LA, LB, LC, and LG were computed for all 50 test
scans. Figures 4 and 5 summarize the results of Experiment I
and Experiment II, respectively. Each box and whisker in the
lower parts of the figures visualizes the distribution of
DSC�L ,LG� for a specific value of 	, when using LMI for
the registration. The 	 values can be found on the horizontal
axis. The “-” symbol refers to 	=0 combined with wi=1,
i.e., no atlas selection and equal weights. In all other cases
wi=ri was used. Values of 	 between 0 and 0.95 are not
shown, since 	=0.95 was already almost equivalent to

− 0 .95 .96 .97 .98 .99 1 − 0 .95 .96 .97 .98 .99 1

not significant
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ence between using LMI and MI. An “a” above the lower graph indicates
n method. A “b” indicates significant �p�0.05� improvement compared to
1

ct of
differ
fusio
	=0. An “a” above the lower graph indicates significant im-
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provement �p�0.05, a value p�0.01 never occurred� com-
pared to 	=“-” with the same label fusion method. A “b”
indicates significant improvement �p�0.05� compared to
VOTE2 with the same value of 	. Statistical significance
was evaluated using a paired two-sided Wilcoxon test. The
upper parts of Figs. 4 and 5 show the effect of LMI com-
pared to MI. Each group of four bars displays the medians of
the differences DSC�LLMI ,LE�−DSC�LMI ,LE�, for LE

� �LA ,LB ,LC ,LG�. Gray bars indicate that the difference is
significant according to a paired two-sided Wilcoxon statis-
tical test �p�0.01�.

The upper parts of the figures clearly show that LMI out-
performed MI in this application. The median DSC differ-
ence was positive �favoring LMI� for all settings of 	, with
all tested label image fusion methods, both in Experiment I
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FIG. 5. Results for Experiment II. The lower part of the figure shows the
effect of the two label image fusion methods, each for a range of values of
	, using LMI as the similarity measure. The upper part of the graph visual-
izes the difference between using LMI and MI. An “a” above the lower
graph indicates significant �p�0.05� improvement compared to 	= “-” with
the same label fusion method. A “b” would indicate significant �p�0.05�
improvement compared to VOTE2 with the same value of 	, but this situ-
ation never occurred.
and Experiment II. Also, the choice of ground truth �L , L ,
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LC, or LG� did not change the conclusion. Almost all differ-
ences were significant with p�0.01. Only in combination
with STAPLE4 the difference was not always significant.
However, the lower graph shows that STAPLE4 produced
the worst results of all label image fusion methods in Experi-
ment I. The advantage of LMI comes at no additional com-
putational costs, thanks to the stochastic optimization
method, as explained in Sec. II A. The measured computa-
tion time was around 15 min per registration on a single
processor Pentium 2.8 GHz personal computer. For the
implementation of LMI in Ref. 13 a computation time of
1–2 h per registration is reported. In Ref. 12 the authors
report a computation time of 30 min on a cluster of 24 pro-
cessors.

The lower graphs in Figs. 4 and 5 show that the differ-
ences between the different label image fusion methods were
mostly rather small, but statistically significant in some
cases. Selecting only the most similar atlas �	=1� gave the
worst results, which confirms the results found in Ref. 8. The
optimal value of 	 was around 0.98, for both the VOTE and
STAPLE methods. With this value, on average 22 out of 38
atlas images were selected in Experiment I and 23 out of 49
in Experiment II. In contrast to the results reported in Ref.
18, the STAPLE algorithm did not clearly improve upon the
VOTE method in our application. In Experiment I,
STAPLE2 yielded somewhat better results than VOTE2 for
	�0.96, but the difference was not statistically significant.
For higher values of 	, STAPLE2 and VOTE2 performed
equally. STAPLE4 gave worse results than VOTE4 for all 	.
In Experiment II, for all values of 	, STAPLE2 performed
slightly worse than VOTE2. The additionally labeled struc-
tures in the atlas set �rectum and bladder� taken into account
by VOTE4 and STAPLE4 did not lead to consistently better
results either. VOTE4 improved slightly upon VOTE2, but
the difference was significant only for 	�0.98. STAPLE4
performed worse than STAPLE2 for all 	. For further evalu-
ation we use VOTE2 with 	=0.98 and LMI as the similarity
measure.

Figure 6 compares the automatic segmentation results
with the interobserver variability. Each box and whisker vi-
sualizes the distribution of DSC values over all 50 patients.
For Experiments I and II the distributions of DSC�L ,LE� for
LE� �LA ,LB ,LC ,LG� are shown. In Experiment I, the median
DSC varied between 0.80 �with LC� and 0.84 �with LG�. In
Experiment II, the median varied between 0.85 �with LA, LB,
and LC� and 0.88 �with LG�. When comparing the results of
Experiment I and Experiment II the very large impact of the
atlas composition becomes clear. The median difference be-
tween the corresponding DSC values of Experiment I and II
were all significant with p�0.001, according to a paired
two-sided Wilcoxon statistical test. The interobserver overlap
values DSC�LA ,LB�, DSC�LA ,LC�, and DSC�LB ,LC� had me-
dian values of around 0.87. The results of Experiment II thus
approached the level of the interobserver variability, al-
though the human observers remained superior. The overlap
of the expert segmentations with LG was highest, which is

G A B C
not surprising, since L was constructed from L , L , and L
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by majority voting. Among the three experts, observer A had
the highest median DSC with LG. Based on this and on the
fact that observer A was the most experienced one, we
choose to use LA as a ground truth in the following analysis
of the spatial distribution of segmentation errors.

Figure 8 shows the spatial distribution of the segmenta-
tion errors. A Mollweide map of the prostate surface is given
in Fig. 7. For each test scan, the shortest Euclidean distance
between the boundaries of L and LA was computed at every
point on the boundary of LA. Subsequently, the computed
distances were projected on the Mollweide map. The results
of the 50 test scans were summarized by computing the first
quartile, median, and third quartile of the distance at every
location on the Mollweide map. Figures 8�a�–8�c� and
8�d�–8�f� show the results for Experiment I and Experiment
II, respectively. In order to assess the interobserver variation,
the distances between LB and LA and between LC and LA
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FIG. 6. The results of Experiments I and II compared to the interobserver
variability. The automatic segmentation results shown were generated using
LMI, VOTE2, and 	=0.98.
FIG. 7. Mollweide projection of the prostate boundary.
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were also calculated. These results are shown in Figs.
8�g�–8�l�. Note that different color scales are used for the
first quartile, median, and third quartile plots.

From the figures it is evident that in Experiment I the
largest errors occurred at the border between the prostate and
the bladder. In Experiment II the errors at the prostate-
bladder boundary were much smaller, and were even compa-
rable to the interobserver distance between LB and LA. The
most serious segmentation errors in Experiment II were
made in the tips of the seminal vesicles, which was con-
firmed by visual inspection of the segmentations. Both for
the automatic segmentations and for the experts, the errors at
the apex were relatively high. Somewhat larger errors were
also observed at the anterior side of the prostate. At the
prostate-rectum interface observer B and C were very close
to observer A; Figures 8�i� and 8�l� show that in 75% of the
cases the deviation remained below 1 mm. In Experiment II,
the automatic segmentation errors at the prostate-rectum in-
terface remained below 1 mm in 50% of the cases and below
1.5 mm in 75% of the cases, as shown in Figs. 8�e� and 8�f�,
respectively.

V. DISCUSSION

The accuracy of the automatic segmentation method is on
a large part of the prostate surface close to the level of inter-
observer variability, for most test images. Most serious errors
occurred around the tips of the seminal vesicles and at the
anterior side of the prostate. The automatic method showed
especially good performance at the prostate-rectum interface,
although the human observers remained superior in most
cases. Whereas a segmentation error of a few millimeters is
clinically acceptable at boundaries with muscular tissue, the
interfaces with rectum and bladder need to be delineated
with an accuracy equal to the level of interobserver variabil-
ity. Further improvement of the method is, thus, necessary.

Visual inspection of the segmentations revealed that the
large errors at the prostate-bladder boundary in Experiment I
�see Fig. 8� mainly occurred when the patient’s prostate was
very large. The volunteer data set, which is used as an atlas
in Experiment I, does not contain any examples of large
prostates, as shown in Fig. 3. Matching the atlas images to
the patient image is thus likely to fail. A large number of the
outliers observed in Fig. 6 for Experiment I can be attributed
to this. The large differences between the results of Experi-
ments I and II emphasize the importance of a proper atlas
composition. Therefore, we expect that the automatic seg-
mentation results can be further improved by explicit optimi-
zation of the atlas composition in an initial training proce-
dure.

In previous work,20 we have investigated to put more
weight on the prostate region during registration, as a pos-
sible way to improve the results, by defining a narrow region
of interest around the prostate segmentation in the atlas scan,
and use only that part for registration. Experiments on the

volunteer data set �used also in the current manuscript�
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showed some improvement over standard MI registration,
but the use of LMI showed superior results on the same data
set.21

The MR images used to evaluate our algorithm were ac-
quired using a bSSFP sequence with fat suppression. Using
this sequence, a high resolution �0.49�0.49�1.0 mm� is

FIG. 8. The spatial distribution of automatic segmentation errors and inte
interpretation. Note that the graphs have different color scales. The automat
obtained in a scan time of about 2 min on a 3T MR scanner.
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The protocol was optimized for maximum contrast, to facili-
tate manual prostate contouring. It remains to be investigated
whether the protocol is optimal for automatic prostate seg-
mentation. The bSSFP sequence is sensitive to susceptibility
artifacts, for instance, due to the presence of air in the rec-
tum. These artifacts disturbed the nonrigid registration pro-

rver variation. Figure 7 shows a map of the prostate surface that aids in
mentation results shown were generated using LMI, VOTE2, and 	=0.98.
robse
cedure in some cases.
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The clinical test images from the patient data set are plan-
ning scans of patients scheduled for external beam radiation
therapy. In clinical practice, the calculations of the dose dis-
tributions are actually based on these scans. In the case of
brachytherapy, the dose plan may be adapted based on intra-
operative scans. We expect that the deformations induced by
the insertion of seeds do not form a problem, given the al-
ready large anatomical variability that the method is able to
cope with, and the varying states of rectum and bladder fill-
ing. Susceptibility artifacts in the images due to the presence
of the seeds will become an additional challenge though.

To the best of our knowledge, no other automatic segmen-
tation results for the prostate including the seminal vesicles
on 3D MR scans are available in the literature. In Ref. 4 a
semiautomatic segmentation method is presented for the
prostate without seminal vesicles. The method is evaluated
on 3D MR scans of 24 patients. The results are given in
terms of the “volume overlap” between manual and auto-
matic segmentations. The volume overlap is also known as
the Tannimoto coefficient �TC� and is related to the DSC by
DSC=2TC / �TC+1�.22 A mean TC of 0.78 is reported with
standard deviation �0.05, which corresponds to a DSC of
0.88�0.04. This is somewhat better than our results in Fig. 6
for Experiment II. However, the presence of the seminal
vesicles increases the surface-to-volume ratio of the seg-
mented structure, which increases the sensitivity of the DSC
measure.8 In Ref. 6, a pseudo-3D active shape modeling ap-
proach is used to segment the prostate without seminal
vesicles. The method is validated on 26 3D MR scans, on a
slice-by-slice basis, using the root mean square distance
�RMSD� between the manual and automatic segmentation. A
mean RMSD of 5.5 mm with a standard deviation of
�2.9 mm is reported. We may compare this result to Fig.
8�f�, which shows that, with our method, the segmentation
error remained at every location below 5 mm in 75% of the
test cases. While this result seems to be in favor of our
method, the RMSD values reported in Ref. 6 might be lower
if they would not have been computed on a slice-by-slice
basis, but in 3D. Also, it should be noted that both methods
mentioned above4,6 were validated on MR scans, acquired
using a 1.5 T machine, with highly anisotropic voxels.

VI. CONCLUSION

An automatic prostate segmentation method for pelvic
MR images has been proposed. The method is based on
matching of manually segmented atlas images. To account
for the large variability in shape, multiple atlas images are
combined. A computationally efficient localized mutual in-
formation similarity measure is used in the matching stage.
Evaluation was performed on a set of 50 clinical scans,
which were manually segmented by three experts.

The choice of similarity measure and the composition of
the atlas were demonstrated to be important determinants of
segmentation quality. Using localized mutual information in-
stead of standard mutual information yielded a significant
�p�0.01� improvement of around 0.02, in terms of the me-

dian Dice similarity coefficient �DSC�. Using an atlas com-
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posed of patient data instead of volunteer data resulted in a
median DSC increase of 0.04 �significant with p�0.01�, ac-
companied by a great reduction of the number of outliers.
The label image fusion procedure had only a modest influ-
ence on the results. A majority voting method with an atlas
selection level of 	=0.98 gave good results.

With the best settings, a median DSC of around 0.85 was
achieved for the prostate, which is close to the interobserver
variability of 0.87. The segmentation quality was especially
good at the prostate-rectum interface, where the segmenta-
tion error remained below 1 mm in 50% of the cases and
below 1.5 mm in 75% of the cases.
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