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Abstract. Non-rigid registration of MR images to a common reference
image results in deformation fields, from which anatomical differences
can be statistically assessed, within and between populations. Without
further assumptions, nonparametric tests are required and currently the
analysis of deformation fields is performed by permutation tests. For
deformation fields, often the vector magnitude is chosen as test statistic,
resulting in a loss of information. In this paper, we consider the three
dimensional Moore-Rayleigh test as an alternative for permutation tests.
This nonparametric test offers two novel features: first, it incorporates
both the directions and magnitude of the deformation vectors. Second,
as its distribution function is available in closed form, this test statistic
can be used in a clinical setting. Using synthetic data that represents
variations as commonly encountered in clinical data, we show that the
Moore-Rayleigh test outperforms the classical permutation test.1

1 Introduction

Mice have been used in genetic research as models for a variety of diseases
occurring in the human population. They allow researchers to study the devel-
opment of genetic diseases, to improve early diagnoses and subsequent treat-
ment. Non-invasive imaging techniques, e.g. MRI, allow localized investigation
of 3D anatomical structures of interest [1]. This provides a useful tool for in
vivo structural and functional phenotyping, especially in the brain [2]. Since the
introduction of non-rigid registration of brain images, a variety of new applica-
tions for brain research have emerged. Non-rigid registration is used in clinical
practice to register MR images taken from different biological populations to a
common average. The resulting deformation fields indicate and localize differ-
ences between pairs of images. Their second order statistics are stored in atlases
to characterize variability within a population (intra-group variability) [3, 4].

1 J.L. Prince, D.L. Pham and K.J. Meyers (Eds.): IPMI 2009, LNCS 5636, pp 564 –
575, 2009. c⃝ Springer-Verlag Berlin Heidelberg 2009
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A major challenge in this area of research is not only to highlight the intra-
group variability but to also assess inter-group variability, especially with regard
to structural anatomical differences and their possible causes. For instance, in
genetic research with transgenic mice, mutants are compared with their wild-
types, where the group difference is determined by only one gene. To test and
localize possible anatomical differences, statistical testing is required. In human
brain research, similar problems have been addressed in functional brain images.
BOLD signals are compared between and within groups to characterize differ-
ences in brain activation. A logical first choice for the statistical analysis of such
data are permutation tests with their minimal assumptions [5, 6].

In contrast to the statistical analysis of fMRI signals, the statistical analysis
of deformation fields requires handling vector data instead of scalars. Further-
more, in genetic research, usually transgenic mouse with the same genetic back-
ground (apart from the gene of interest) are compared, resulting in populations
with low intra-variability[3], but often also very subtle inter-group differences,
thus requiring a highly sensitive test. Chen et al. presented a test statistic using
the standard deviation of the lengths of deformation vectors, for which different
mouse strains (129S1, SvImJ, C57/B16 and CD1) were subjected to permuta-
tion tests [7]. However, since they were analyzing the complete brain, they had
to limit their tests to 500 permutations because of time considerations. In mouse
strains for which there result large inter-group differences, this might be suffi-
cient. The minimal p-value that can be resolved with 500 permutations is 1

500+1 ,
without correcting for multiple comparisons. Obviously, a larger number of per-
mutations is required to resolve smaller significance probabilities. Furthermore,
by using only the lengths of the deformation vectors, valuable information, in
particular that encoded in the directionality, is lost. A first step to improve on
this situation is the use of Hotelling’s t2-test with voxelwise estimated covari-
ances of the vector field. This test statistic can also be used in the setting of a
permutation test as in [6]. Unfortunately permutation tests are highly compu-
tationally expensive, even taking into account algorithmic improvements [8], so
alternatives for the permutation tests have been considered: among others, the
Brunner - Munzel test[9].

The goal of this work is to show the applicability of the 3D Moore-Rayleigh
test for the quantitative groupwise comparison of images, and to propose the
Moore-Rayleigh test as an alternative to permutation testing. The 2D case of
this test was first introduced by Moore [11] who numerically obtained critical
values. We generalized his idea to k dimensions and determined the closed form
of the densitity and the distribution function for three dimensional vector data.
Because its test statistic is available in closed form, the test does not require
much computational effort. We evaluate it empirically with simulated clinical
data of known ground-truth and compare it to the performance of a permutation
test and a variant of the Mann-Whitney test. Furthermore, we show that the
Moore-Rayleigh test outperforms permutation testing on account of sensitivity.
For the compactness of this paper, in Section 2 we introduce the Moore-Rayleigh
test only for the three-dimensional case and describe how this method is applied
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in the two-sample problem. In Section 3 experimental results on simulated data
are given and the method is compared to currently popular methods. Finally,
we conclude the paper with a summary and discussion in Section 4.

2 3D Moore-Rayleigh Test

We consider a finite sample of N real-valued vectors X = (X1, ..., XN ). For
the application to deformation fields we only consider vectors in ℝ3, such that
Xn = (Xn,1, Xn,2, Xn,3). For the general Moore-Rayleigh test in k dimensions,
we refer to our publication [10].

If we assume that the Xn are independently drawn from a common contin-
uous distribution, the null-hypothesis is that the probability density f : ℝ3 →
[0,∞) is spherically symmetric. This implies that the density f factors into
the product of a radial probability density pr : [0,∞) → [0,∞) and the uni-
form distribution on each hypersphere r S2 = {x ∈ ℝ3 ∣ ∥x∥ = r}, such that

f(x) = pr(∥x∥)/vol(rS2). The random sum
∑N

n=1 Xn represents a random flight
with N steps whose lengths are distributed according to pr. In the one dimen-
sional case (not discussed here), this sum corresponds to a random walk.

To render the test nonparametric, the vectors are scaled by the rank of their
lengths:

SN =

N∑
n=1

nX(n)

∥X(n)∥
, (1)

where X(n) is the nth largest vector in the sample. The distribution of SN is now

independent of the actual pr. Note that
∑N

n=1
X(n)

∥X(n)∥ is a Rayleigh random flight

[12], and our SN is a Rayleigh random flight with increasing steps. The addition
of the vectors incorporates the directionality information and by weighting the
vectors by their ranks, also the vector magnitude influences the test statistic.

The test statistic of interest R∗
N is then obtained by scaling SN by N

√
N for

asymptotic simplicity:

R∗
N =

SN

N3/2
(2)

Let ®N = N3/2. The distribution function of RN = ®NR∗
N in 3 dimensions is

given by:

pr(RN = r) =
2r

¼

∫ ∞

0

t
sin rt/®N

r

N∏
n=1

sinnt

nt
dt (3)

This function can be derived by way of characteristic functions [12].

Asymptotically the distribution of R∗
N approaches a Â2

3 distribution. Of
course, for small values of N , the exact form of pr(RN = r) should be used
whenever possible. As shown in [10] the oscillating integral in eq. (3) can be
evaluated in the form of a finite series.
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2.1 The Two-Sample Problem

In the two sample problem, we are given two vector-valued random variables
X = (X1, ..., XN ) and Y = (Y1, ..., YN ). Under the null hypothesis that Xi

and Yj are identically and independently distributed according to a common
probability density f : ℝ3 → [0,∞), the differences Xi − Yj are distributed
according to the symmetrizing convolution f ∗ (−f), whose density is given by

pr(X − Y = x) =

∫
pr(X = u)pr(Y = u+ x) du (4)

Under the null hypothesis that f is spherically symmetric around its mean,
significance probabilities can be calculated from eq.̃(3). If it is assumed that X
is distributed according to a multivariate normal distribution, the use of the
Moore-Rayleigh test is justified. However the distribution of g = f ∗ (−f) is
in general only symmetric, i.e. g(x) = g(−x) for all x ∈ ℝ3 and therefore the
Moore-Rayleigh test is only approximately valid.

Of course, one would prefer to test conservatively for mere symmetry, but the
available tests are either only asymptotically nonparametric or require further
randomization of the underlying distribution [13–18].

Therefore, we suggest to use the Moore-Rayleigh test, but to bootstrap the
empirical distributions of the two samples X and Y by random sampling without
replacement (to avoid degeneracy issues when two or more vector differences
are equal) and to compare the mean of R∗

N obtained under M such samples
with eq. (3). In theory, the bootstrapping reduces the error made when the
assumptions of the Moore-Rayleigh test are only approximately fulfilled by a
factor of almost 1/

√
M , although these considerations are beyond the scope of

this paper. Here, the properties of the test so obtained are evaluated by computer
experiments.

2.2 Clinical Interpretation

Consider two sets of 3D MR images taken from different populations of equal
size. The first step in the analysis is the affine registration to an atlas A. This nor-
malization step brings all images to the same coordinate system and removes all
non-specific anatomical differences, like global orientation and the scale parame-
ters. From now on, we consider only the normalized sets of images I = (I1, ..., IN )
and J = (J1, ..., JN ).

A non-rigid registration defines the relation between the average and an
image I, which is found by the minimum of a similarity measure ½:

TI = min ½(I,A) (5)

Assuming that the similarity measure returns the best approximation of the
unknown relation between I and A, TI indicates the local anatomical differences
between I and A, which are coded by vectors in ℝ3.

Non-rigidly registering I and J to the atlas results in two sets of deformation
fields TI = (TI1, ..., TIN ) and TJ = (TJ1, ..., TJN ). Each anatomically homologous
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point ℎ in TI and TJ can then be subjected to the two sample Moore-Rayleigh
test, as described in Section 2.1.

The resulting p-value in a point ℎ indicates the probability that an observed
difference between groups I and J occurs by chance. A small p-value is an indi-
cation that there is a difference between I and J . It can occur that both groups I
and J are significantly different from A, but as long as the difference of I with A
is similar to the difference of J with A, the Moore-Rayleigh test will not return
a significant difference between I and J .

3 Validation

3.1 Image Formation

For the validation of the Moore-Rayleigh test an average MR volume of the
C57Bl6/Jico mouse brain was used, which was cropped to a volume of 50 x 50
x 80 voxels due to considerations of running time. This subvolume included the
ventricles, thalamus, and several fiber tracts, as illustrated in Figure 1(a).

Individual subjects (n = 30) were simulated by the introduction of artifi-
cial, spherically shaped deformations. Each such local deformation is completely
characterized by a center point c and a radius r. The length of each deformation
vector in the sphere takes a maximum of 1

2r at the center and drops radially
and linearly until the edge of the sphere, where the deformation is zero to en-
sure continuity (in fact, smoothness) with the surrounding field. By varying the
parameters c and r two groups (G1 and G2) were generated with 15 individuals
each.

The goal of this numerical experiment was to test whether and under which
conditions the Moore-Rayleigh test picks up group differences (the inter-group
variation) only or whether also inter-group variation is detected. For this reason
two spherical deformations were used in each subject, which are referred to
as sphere 1 (S1) and sphere 2 (S2) and which are shown in Figure 1(b). The
average radius and center of S1 was taken to be identical for both groups, but
in S2 a systematic difference of 5 voxels in the average radius (¢r = 5) between
G1 and G2 was introduced, the average center was kept constant. Intra-group
variation was simulated in both groups by randomly adding small variations in
the center point and uniform radius of the spheres (r ± 5 and c ± 2.5) from an
uniform distribution. The values for the inter-group and intra-group variability,
are corresponding to the ones described in the literature[3, 7].

After the creation of the individual subjects, Gaussian noise (¹=0, sd=300)
was superimposed on each image. The result is shown in Figure 1(c) for one
subject. A spherical mask was created (Figure 1(d)) that indicates the average
locations of the spherical deformations S1 and S2, and which is later used for
validation purposes. Figure 1(d) shows the average locations of S1 (lower sphere)
and S2 (upper sphere), where in S2 also the differences between the two groups
(G1 and G2) is shown.

The non-rigid registration of the 30 subjects to the average was performed
using the symmetric demons algorithm [19], as implemented in ITK [20]. This
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registration algorithm uses the mean squared difference with a smoothing factor
of 1.0 and was performed with 60 iterations. The output of the non-rigid reg-
istration is a deformation field, i.e. vectors in ℝ3 that represent the geometric
translations of voxels to their corresponding points in the atlas image.

Fig. 1. The various stages during the creation of one of the synthetic images: The
midsection of the average image (a), which is deformed by two spheres (b), and the
final image after adding gaussian noise (c). For each dataset a sphere mask is created
(d) which indicates the average locations of the spherical deformations S1 and S2 for
G1 (outer sphere) and G2 (inner sphere).

3.2 Validation Method

The output of the two-sample Moore-Rayleigh test is a probability image with
a p-value per voxel that indicates how likely it is that the null hypothesis holds
at that particular point, thus indicating how likely it is that an observed differ-
ence between groups I and J occurs by chance in that voxel. Thresholding the
probability image with a critical value ® results in a binary image that shows
the regions where a significant group difference has been detected. For the syn-
thetically generated data the locations are known where there exists a simulated
structural difference between the two groups; these are all the voxels lying in S2

(Figure 1(d)) and this knowledge is taken as ground-truth for the assessment of
the statistical tests. We use this information to quantify the performance of the
Moore-Rayleigh test by calculating the following:

True positives (TP) Amount of voxels found significant inside S2

False positives (FP) Amount of voxels found significant outside S2

false negatives (FN) Amount of voxels found not significant inside S2

true negatives (TN) Amount of voxels found not significant outside S2

For the various tests, we report the sensitivity and specificity for ®=0.05. The
sensitivity is the ratio of significant voxels which are detected correctly and
specificity is the ratio of not significant voxels which are detected correctly.

sensitivity =
TP

TP + FN
(6)
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specificity =
TN

TN+ FP
(7)

From these two measures we also calculated Receiver Operator Curves (ROCs)
that show the dependence of sensitivity and specificity on the critical values
0.0 ≤ ® ≤ 1.0.

3.3 Comparison of Test Statistic

To compare the performance of the Moore-Rayleigh test to other nonparamet-
ric methods, we implemented a permutation test (m=10.000 labellings) with
Hotelling’s t2 as test statistic as in [6]. Furthermore, we also implemented the
Mann–Whitney test [21], which is the nonparametric equivalent of the t-test, on
a rank one approximation (see Appendix A for details).

A visualization of the significant voxels for the three test statistics are given
in Figure 2. By visual inspection, better classification results were obtained us-
ing the Moore-Rayleigh test. The performance of the three test statistics are
given in Figure 3. The sensitivity and the specificity of the cut-off value of
® = 0.05 is given for the three test statistics in Table 1. The relatively low
sensitivity of the permutation tests, might be increased if more permutations
were used. Furthermore, the sensitivity of the Mann-Whitney test is comparable
with the Moore-Rayleigh test, where the Moore-Rayleigh test outperforms the
Mann-Whitney on specificity. Furthermore, the presented p-values are not cor-
rected for multi testing[23]. If multitest correction would have been applied, the
Mann-Whitney test would have shown no significance, since the Mann-Whitney
test classified voxels significantly different with a probability between 0.01 and
0.05, whereas the Moore-Rayleigh test indicates significance with a probability
of between 10−2 and 10−10.

Fig. 2. The classification result with cut-off value ® = 0.05 for the Moore-Rayleigh
test (a), the permutation test (b), and the Mann-Whitney test (c) as compared to
the ground truth(d)
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Fig. 3. The ROC of the different non-
parametric test statistics for the quanti-
tative analysis of deformation fields.

Fig. 4. The ROC of the different param-
eter settings for the robustness testing of
the Moore-Rayleigh test

3.4 Robustness Testing

Several parameters have been varied to investigate the robustness of the Moore-
Rayleigh test under various conditions. The dataset as described in 3.1 was used
as input and for each experiment only one parameter was changed to measure
its effect. The several tests are described below:
Registration Algorithm Instead of using the Demons non-rigid registration

method, a B-Spline transform[24] was applied, as implemented in elastix[25].
Since the Moore-Rayleigh test is a voxel based test, the gridspacing was set
at 2.5 voxels with a 3-level pyramid registration. Furthermore, the mutual
information metric was used.

Noise Noise is known for having a major influence on the quality of the images
and their postprocessing. The influence of noise on the hypothesis testing is
quantified by increasing the standard deviation from 300 (used in Section 3.1)
to a value of 700.

6 Neighbors With the hope of increasing the sensitivity of the test and de-
creasing the influence of noise, the deformation vectors of the six closest
neighbors (two in each coordinate dimension) for each voxel z are pooled.

¢r In this test, 15 subjects of one group are generated with a systematic differ-
ence in radius of 3 voxels between G1 and G2 (for S2), instead of 5 voxels
as in Section 3.1. The intra-group variation is kept constant at ±5 voxels as
before.

The ROCs of the Moore-Rayleigh test for these various settings are shown
in Figure 4. The sensitivity and the specificity for the cut-off value ® = 0.05 are
additionally given in Table 2. The performance of the Moore-Rayleigh test is
seen to be least influenced by the change in the nonlinear registration method.
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Moore-Rayleigh test Permutation test Mann-Whitney test

sensitivity 0.91 0.73 0.41
specificity 0.97 0.89 0.99

Table 1. Sensitivity and specificity for the Moore-Rayleigh test, the permutation test
and the Mann-Whitney test (® = 0.05 each).

Moore-Rayleigh test Registration Algorithm Noise Pooling ¢r

sensitivity 0.91 0.88 0.77 0.99 0.70
specificity 0.97 0.97 0.99 0.90 0.98

Table 2. The sensitivity and specificity (® = 0.05) for the different parameter settings
for the robustness testing of the Moore-Rayleigh test.

However, the Moore-Rayleigh test is quite sensitive on the influence of noise,
loosing sensitivity when the noise level is increased. Pooling neighboring voxels,
however, increases the sensitivity, with an accompanying loss in specificity due to
the smoothing effect this introduces. As can also be seen in Figure 4, a decrease
in inter-group variation (scenario ¢r) decreases the sensitivity. This is well ex-
plained, as the intra-group variation was kept constant, while the inter-group
variation was decreased to only 3 voxels.

4 Discussion

In this paper we presented a novel nonparametric statistical method to detect
and quantify anatomical differences between groups of MR images. Our method
is based on (a generalization of)the nonparametrical Moore-Rayleigh test, which
tests for spherical symmetry in vector data. This method uses as input the defor-
mation fields which are obtained by the non-rigid registration of all subjects to a
common reference image. Under the assumption that no registration errors were
made in the creation of the deformation fields, significant anatomical differences
between the two groups can be assessed.

Permutation tests are not routinely applicable in a clinical setting because of
the large number of permutations required. In clinical practice the number of la-
bellings is often reduced to speed up the analysis, which reduces the power of the
permutation test severely and makes it almost impossible to correct for multiple
comparisons. The method presented here, on the other hand, is computationally
fast and offers an interesting alternative to permutation tests. Although the null
hypothesis of mere symmetry is not tested, i.e. the Moore-Rayleigh test is only
approximately valid, the results are quite convincing, as shown in Section 3.3.

A further advantage of the Moore-Rayleigh test is that it is completely non-
parametric and needs no assumptions on the underlying dataset. As the test
statistic is continuous, the significance probabilities can be very low (up to 10−18

or less is numerically possible), so the Moore-Rayleigh test also results in signif-
icant voxels under correction for multiple comparisons (not shown). It was also
found to be relatively unaffected by the (non-rigid) registration method used.
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The sensitivity was most influenced by the decrease of the inter-variation to 3
voxels, but considering that the intra-variation was 5 voxels and that still more
than 70 percent of all voxels assessed as significant were true positives, it can
be concluded that the Moore-Rayleigh test is able to detect small differences
between groups. Furthermore, it was expected and indeed observed that noise,
which affects the registration algorithm, results in an increase of false positives.
As the results in Section 3.4 indicate, this problem could be addressed by pooling
the deformation vectors from neighboring voxels. Although this would result in
a loss of specificity, it is plausible that the Moore-Rayleigh test would then be
more robust to the effect of noise.

One important topic of our future work concerns the evaluation of this algo-
rithm on real clinical data. For now, we have only assessed the Moore-Rayleigh
test on simulated images, with spherically deformations. Although, it can be ar-
gued that these deformations are representative for structural deformations, as
brain atrophy. Furthermore, the main goal of this paper is to show the perfor-
mance of the Moore-Rayleigh test on the quantification of inter-group variability.
This performance can only be validated on a dataset with known inter-group and
intra-group variability. Therefore, to stay close to real data, the variabilities from
the synthetic dataset are simulated according to the descriptions of variations
of real mouse brain MRI data[3, 7].

Finally, we would like to encourage the reader to apply this method on their
own data. Therefore, the code is made publicly available and can be obtained
by sending an e-mail to the corresponding author.
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A Mann-Whitney test

The Mann Whitney test is the nonparametric equivalent to the t–test. It makes
the following assumptions:

1. The two samples are randomly and independently drawn from the same
underlying distribution.

2. The dependent variable is continuous.
3. The values of the dependent variable are at least ordinal.

As item 3 is stating, the vectors for a point need to be ordered, based on a
measure of a continuous scale (item 2). To order vectors in R3, a rank–1 approx-
imation has been performed: for each point of the average image, a covariance
matrix § is calculated based on all subjects in the two groups under considera-
tion. Using the singular value decomposition of this covariance matrix (principal
component analysis), the eigenvectors V and eigenvalues ¤ are obtained and
represent the principal modes of variation. § = U¤V ,

The first mode of variation V1, corresponding to the largest eigenvalue ¤1,1,
represents the direction of largest variance between the vectors considered for
that particular point in the average. Projecting the vectors on this direction
results in vectors all pointing in the same direction, and their lengths are then
used in the usual Mann-Whitney test. A disadvantage of this test is that only the
first principal mode of the covariance matrix is used, and therefore only partial
information on the orientation of the vectors is used, decreasing the power of
the test.


