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Multi-Atlas-Based Segmentation With Local Decision
Fusion—Application to Cardiac and Aortic

Segmentation in CT Scans
Ivana Išgum*, Marius Staring, Annemarieke Rutten, Mathias Prokop, Max A. Viergever, and Bram van Ginneken

Abstract—A novel atlas-based segmentation approach based on
the combination of multiple registrations is presented. Multiple
atlases are registered to a target image. To obtain a segmentation
of the target, labels of the atlas images are propagated to it. The
propagated labels are combined by spatially varying decision
fusion weights. These weights are derived from local assessment of
the registration success. Furthermore, an atlas selection procedure
is proposed that is equivalent to sequential forward selection from
statistical pattern recognition theory. The proposed method is
compared to three existing atlas-based segmentation approaches,
namely 1) single atlas-based segmentation, 2) average-shape
atlas-based segmentation, and 3) multi-atlas-based segmentation
with averaging as decision fusion. These methods were tested on
the segmentation of the heart and the aorta in computed tomog-
raphy scans of the thorax. The results show that the proposed
method outperforms other methods and yields results very close to
those of an independent human observer. Moreover, the additional
atlas selection step led to a faster segmentation at a comparable
performance.

Index Terms—Aortic segmentation, atlas-based segmentation,
cardiac segmentation, registration, segmentation by registration.

I. INTRODUCTION

R ELIABLE quantitative analysis in medical images, e.g.,
volume measurements, require delineation of anatomical

structures. This is a difficult task, often performed by a human
operator. Manual segmentation is time consuming, thus diffi-
cult to perform in very large number of scans, for example,
obtained in screening programs. Due to technological develop-
ments the number of images to be analyzed is increasing drasti-
cally, making manual segmentation an even less efficient option
in clinical practice. Additionally, human delineation might not
be sufficiently reproducible. Tools for automated segmentation
are therefore needed.
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Computerized segmentation methods that make use of regis-
tration are gaining popularity. The registration algorithms that
these methods rely on are generally applicable to a wide range
of medical data (see [1]–[4]) and are automatic. Improvements
in algorithms and increased computer power enable the registra-
tion of large image volumes in a reasonable amount of time. In
registration, the spatial correspondence between voxels in two
images, often called the fixed and the moving image, is deter-
mined. The moving image is transformed to the fixed image so
that both appear to be similar. Similarity is often defined by the
intensity correspondence of the two images. Examples of pop-
ular similarity metrics are the sum of squared differences (SSD),
the (normalized) correlation ratio, and the mutual information
(MI) measure.

There is a number of ways in which registration can be used
for segmentation. A detailed overview can be found in [5]. The
simplest way is by registering one manually labeled image di-
rectly to the image to be segmented (the target image). This
manually labeled image, often called the atlas, can be selected
in a number of ways, for example randomly or by visual inspec-
tion according to some predefined criterion, or it can be created
artificially. To obtain a segmentation of the target image, the
manual labeling of the atlas is transformed using the mapping
determined during the registration. This process is often called
label propagation and has been used in many studies, e.g., [3],
[6]–[10].

Alternatively, instead of selecting only one manually labeled
image as an atlas, the atlas can be constructed from a larger
number of images. From a given set of images, one is chosen
to be the reference image. All remaining images from the set
are registered to this reference. For example, in [11] and [12]
multiple images of the same patient are obtained. After all im-
ages are registered to the reference, they are subsequently aver-
aged. Therefore, the final result shows high signal to noise ratio
allowing image segmentation to be performed. The segmented
image is then used as the atlas. Another example where an atlas
has been created from multiple images is presented in [9] and
[13]–[15]. Here, the images were scans of different patients. In
both these atlas creation approaches one needs to decide how
to choose the reference image. This is done either by averaging
the transformed images and their manual labels, or by applying
the average transformation to the reference image and its seg-
mentation. To acquire a stable atlas, an iterative atlas generation
scheme has been used (see [3], [16]–[19]). The output of one
atlas generation step is used as input in the following step.

The advantage of the approaches discussed so far is that once
an atlas has been generated, only a single registration from the
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atlas to the target image is required to obtain a segmentation.
However, it is not guaranteed that the atlas is a good represen-
tation of a complete population. Also, the described approaches
depend on the success of a single registration. If the registra-
tion fails, so will the segmentation. To overcome these potential
problems and to make the method more robust, Rohlfing et al.
[3] and Heckemann et al. [20] proposed to register a number of
manually segmented images, referred to as atlases, to the target
image. This circumvents the need for a single intermediate rep-
resentation of multiple presegmented images. This multi-atlas-
based segmentation offers a number of options for obtaining the
segmentation of the target image. For example, only the result
of the most successful registration can be used for label prop-
agation, where the criterion for most successful can be derived
from the registration measure (e.g., normalized mutual infor-
mation) or the deformation field (e.g., small deformations are
preferable). One can also use a subset of the most successful
registrations or use all registrations. Typically, label propagated
segmentations are then averaged, but other combination rules
such as voting are also possible. This process is called decision
fusion.

In [3] these different atlas-segmentation strategies were com-
pared. It was shown that segmentation results based on mul-
tiple registrations were more accurate than those that used only
a single registration.

In this work, we also use multiple registrations of manually
labeled images to arrive at a segmentation. Instead of combining
all or a subset of the registrations with a single, global rule, we
estimate the success of the different registrations locally and
use this to determine spatially varying weights. Additionally,
the possibility of reducing the number of atlases is investigated,
because performing multiple registrations in order to arrive at
a single segmentation is a computationally time consuming ap-
proach. A procedure is proposed that takes the given set of at-
lases and selects a subset that gives the best segmentation re-
sult. The method is tested on the segmentation of the heart and
aorta in computed tomography (CT) images of the thorax. The
segmentation of those anatomical structures is important for the
detection and analysis of cardiac and vascular abnormalities,
respectively. For example, in order to be able to automatically
detect coronary calcifications as described in [21], automatic
segmentation of the heart and the aorta is crucial. Precise seg-
mentation of the aorta in CT scans is also needed for planning
biopsies of lymph nodes in the vicinity of the aorta to prevent
aortic puncture [22]. Because both the registration algorithm
and the atlas selection procedure have many parameters, it is dif-
ficult to directly compare our results with those of other studies.
Therefore, we implemented some of the previously proposed
methods and tested them on the given data.

II. METHODS

First, in Section II-A the used registration algorithm is de-
scribed. In Sections II-B and II-C the proposed segmentation
algorithm is presented, followed by a description of previously
proposed atlas-based segmentation methods in Section II-D.

A. Registration

In order to be able to propagate the labels from an atlas to
an unseen (target) image, a registration is needed between the

two. The atlas is always chosen to be the moving image, and
is transformed to the unseen fixed image . The registration
problem is formulated as an optimization problem, in which the
similarity between the fixed and moving image is maximized
with respect to the transformation

(1)

where is the optimal transformation making spatially
aligned to , denotes a voxel in the image, and

is an appropriate cost function.
As a cost function the negative mutual information was used,

following the implementation of Thévenaz and Unser [23]. For
the transformation initially an affine transformation was used to
get a global alignment of the two images. Subsequently, a non-
rigid registration was applied to account for local differences
between the atlas and the target image. This nonrigid transfor-
mation was modelled by B-splines. The employed registration
framework is largely based on the papers of Rueckert et al. [1]
and Mattes et al. [2].

For the optimization of in (1) an iterative stochastic gra-
dient descent optimizer is used. In each iteration a step is taken
towards the minimum. The direction of this step is based on the
derivative of to the transformation parameters. The derivative
is calculated based on a small subset of the image samples, ran-
domly chosen every iteration, in order to speed up the regis-
tration [24]. A multiresolution strategy is taken to avoid local
minima. To this end a Gaussian pyramid is employed, using a
subsampling factor of two. Also, a multigrid approach is used
for the nonrigid registration, meaning that the registration is
started with a coarse B-spline control point grid, which is re-
fined in subsequent resolutions.

The implementation of the applied registration algorithm can
be found online. This software package is based on the In-
sight Segmentation and Registration Toolkit (ITK), which can
be found online.

For all atlas-based segmentation methods described in the fol-
lowing sections, the same registration framework with equal pa-
rameter settings was used.

B. Label Propagation and Weighted Decision Fusion (WDF)

During the registration, a transformation is determined which
transforms the moving image to the fixed image. When both the
atlas and the target images are acquired by the same modality,
regions of interest have the same intensity ranges in both im-
ages. Additionally, if large pathologies are not present to affect
the intensity and texture of the regions of interest, we can as-
sume that in the ideal case the transformed moving image would
be equal to the target image and the difference between them
would be a zero image. In reality, registration does not perfectly
align the two images. The difference between the transformed
moving image and the target can be inspected to evaluate the
success of the registration. The closer the value at some point in
the difference image is to zero, the better the registration at that
point. The difference image usually consists of a wide range of

1http://www.elastix.isi.uu.nl
2http://www.itk.org
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gray values, which means that the registration was able to deter-
mine the transformation aligning some parts of the image better
than others. We propose that a registration which has been more
successful contributes more to the segmentation result than one
which was less successful. Using a difference image, this suc-
cess can be evaluated locally for each registration.

Formally, the method works as follows. We have atlas im-
ages with corresponding manually segmented
binary images . Let be the target image, and

its unknown binary segmentation. Each atlas was registered
to the target image. This resulted in transformations , de-
scribing transformations from to . These transformations
were used to propagate labels to the target . Each label
propagation provides an opinion about the label of a particular
voxel. In order to determine the relative importance of each
opinion, the absolute difference between the transformed
moving atlas and the target image was computed

(2)

Subsequently, was convolved with a Gaussian kernel
at scale to obtain a smoothed local estimate of the registration
success [25]. To determine how much a propagated label in each
transformed image should contribute to a segmentation, weights

were assigned according to

(3)

, where is a small value to avoid division by zero, in this
paper set to 0.001. The weight image is inversely proportional
to a value in the absolute difference image, so large values in
the absolute difference image results in small weights, and vice
versa.

The probabilistic label was determined by a weighted average
of the transformed binary segmentations

(4)

In this way for each voxel a value between zero and one was de-
termined that corresponds to the probability that voxel is inside
the object to be segmented. To obtain a binary segmentation
of , was first blurred with a Gaussian kernel with width

(5)

and subsequently thresholded at 0.5. The generated binary
image may contain some isolated voxels or groups of voxels
at the border of the segmented object. To remove those, 3-D
component labelling was performed, and only the largest
component was retained.

Note that this algorithm has two free parameters: the
Gaussian kernel sizes and . Also note that the presented
method processes 3-D CT data. Both the registration and the
label propagation were performed based on volumetric data.

C. Atlas Selection (WDFS)

The WDF method uses all atlas scans. It is however not likely
that all these atlases are equally useful to perform a certain seg-

mentation task. Moreover, registration is a time consuming op-
eration, so reducing the number of atlases, thus reducing the
number of registrations that must be performed to segment a
single target image, is advantageous. We propose to select a
subset of atlases with a method similar to what is known as se-
quential forward selection (SFS) in statistical pattern recogni-
tion [26], [27].

In SFS, features are chosen in a stepwise fashion to give the
best classification result. This means that at each step, the fea-
ture giving the best classification performance in combination
with the already chosen features is selected. Likewise, atlases
were selected in a stepwise fashion to give the best segmenta-
tion performance with already chosen atlases. The segmentation
performance was measured as an overlap between the automat-
ically computed segmentation and the corresponding manual
segmentation expressed in terms of Tanimoto coefficient

(6)

where denotes cardinality, intersection, and union, is
the automated, and the manual segmentation of the target
image.

D. Previously Proposed Atlas-Based Segmentation Methods

Registration results may vary depending on the exact regis-
tration parameters and experiment setup. Therefore, to reliably
compare the performance of WDF and WDFS to several pre-
viously published atlas-based segmentation approaches, these
were implemented and the parameters were chosen equal.

1) Atlas-Based Segmentation With a Single Best Atlas (SBA):
In [3] two different atlas-based segmentation approaches with a
single atlas were used. In the first approach, from a set of man-
ually segmented images, a single one was chosen as an atlas by
visual inspection. In the second approach, for each target image
a single atlas most similar to the target was chosen based on sev-
eral predefined criteria. In our implementation, from the set of

manually segmented images, we chose the atlas which is on
average able to deform the best to all target images. To select
this single atlas, the difference images were observed. Only
the volume of interest and voxels nearby it were evaluated. To
precisely define this region in each image, distance transform
maps were calculated with the segmentations obtained by each
registration, and a threshold of 20 voxels was set on the dis-
tance. Subsequently, the average value in the difference image
was computed over all target images, and for each atlas scan.
The atlas giving the smallest sum of absolute values was se-
lected as the one giving the best performance. The selected atlas
was registered to all target images and its labels were propagated
to obtain segmentations in the target images.

2) Average-Shape Atlas-Based Segmentation (ASA): A
single atlas was randomly chosen from the set of atlases.
The remaining atlases were registered to , which
resulted in transformations . The average-shape atlas

was constructed by taking the average of the deformed
atlases
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Segmentation of the target image was computed by regis-
tering the single average-shape atlas to the target image,
and propagating its segmentation. This approach has been used
in [13].

3) Multi-Atlas-Based Segmentation With Averaging as Deci-
sion Fusion (ADF): Label propagation was performed the same
way as in WDF. To obtain the probabilistic segmentations, de-
cision fusion was performed by averaging results of each trans-
formation. To be precise, in (4) we set . Finally, to ob-
tain a binary segmentation, was blurred with Gaussian kernel
width and thresholded at 0.5. A similar implementation is de-
scribed in [3].

III. EXPERIMENTS AND RESULTS

Performance of the proposed method was tested on the seg-
mentation of the heart and the aorta in CT scans of the thorax.
The method was also compared to the atlas-based segmentation
approaches described in Section II-D.

A. Data

In the experiments 29 low-dose, noncontrast enhanced CT
scans of the thorax were used. The scans were obtained from
asymptomatic subjects as part of a lung cancer screening trial.
CTs were acquired on a Mx8000 IDT scanner from Philips Med-
ical Systems (Cleveland, OH) with 16 0.75 mm slice collima-
tion and 30 mAs at 120 kVp or 140 kVp depending on subject
size. All scans were realized in about 12 s. They were performed
in full inspiration after the appropriate instructions were given.
No spirometric control, nor respiratory belt were used. No con-
trast material was administered. All scans were reconstructed to
a 512 512 matrix and a moderately soft kernel (Philips B). CT
data was acquired at a bit depth of 12 bits/pixel and no further
downsampling of bits/pixel was performed. During the auto-
matic segmentation the original pixel values (Hounsfield units)
were used, and therefore window and level settings do not play
a role in the method. The smallest field of view was used that
included the outer rib margins at the widest dimension of the
thorax. This resulted in an in-plane resolution between 0.6 and
0.7 mm. Slice thickness was 1 mm with 0.7 mm increment. The
29 scans were randomly chosen from the set of about 500 base-
line screening images. They were further randomly divided into
a set of 15 atlases and a set of 14 target images.

In addition, the performance of the proposed method was
tested on data containing abnormalities. For this purpose ad-
ditional experiments were performed on scans from the lung
cancer screening trial which contained larger abnormalities and
on six scans of patients with interstitial lung disease (ILD). The
latter scans were acquired on multislice scanners (Brilliance-
16P, Brilliance-40, Brilliance-64, and Mx8000 IDT 16, Philips
Medical Systems, Cleveland, OH). Collimation varied between
0.625 mm on the 40- and 64-slice scanners and 0.75 mm on the
16-slice scanner. Images of 0.9 mm thickness or 1 mm thick-
ness on, respectively, the 40-/64-slice scanner and the 16-slice
scanner were reconstructed every 0.7 mm. Exposure settings
were 120 kVp and between 100 mAs and 170 mAs, depending
on a scanner and patient size. No contrast material was admin-
istered, no ECG synchronization was performed.

B. Manual Segmentation

The heart and the aorta were segmented by two medical stu-
dents who were trained and supervised by a radiologist, and
have worked independently. The 15 atlases were segmented by
one student, and the target images by both of them. The results
of the observer who segmented all images were used as the ref-
erence standard; the results from the other observer were used
to compute an estimate of the interobserver variability for com-
parison with the automatic results.

Manual segmentation was performed in transverse slices
using software specifically developed for this study. The ver-
tical range for the segmentation of the aorta was determined by
the top of the aortic arch at the top of the scan, and the apex of
the heart at the bottom. For the heart segmentation the vertical
range was defined by the bifurcation of the pulmonary artery at
the top, and the apex of the heart at the bottom. To determine the
top slice of the aortic arch and the apex of the heart, a sagittal
view was used. Manual segmentation was performed with
center level set to 50 HU and window width set to 400 HU.

The observer manually set a large number of points on the
border of the aorta and the heart. Straight lines were drawn be-
tween those points. The top, bottom and typically every fifth
to tenth slice in between them were manually segmented. The
boundary was linearly interpolated in the remaining slices. The
observer could subsequently move, add and delete points to cor-
rect the interpolated contours. Afterwards, binary images de-
noting the segmented volumes were computed.

Because the exact borders of both the heart and the aorta are
often barely visible, an observer needs to inspect neighboring
slices and surrounding anatomy to determine the precise posi-
tion of the border. This is especially the case in the basal por-
tions of the heart and in parts of the ascending aorta. In addi-
tion, the segmentation protocol instructed observers to perform
the delineation in transverse slices. For both reasons there are
some slight inconsistencies in sagittal and coronal views of the
manual segmentations.

Typically, manual segmentation of the heart took about
90 min, and of the aorta about 60 min.

In additional experiments, which show the effectiveness of
the method on data with abnormalities, manual segmentation
was performed by a single observer. Contiguous slices with
pathology were chosen by visual inspection. From the lung
cancer screening trial on average 12 slices per scan were seg-
mented, and an average of 11 slices per scan from the ILD data
set.

C. Registration

All 29 images were down-sampled with a factor two in each
direction using block averaging (the mean of eight voxels be-
comes the new voxel value) in order to reduce the required com-
puter memory and computational load. The 15 atlases were reg-
istered to each of the 14 target images. The registration param-
eters were determined in a set of pilot experiments by visual
inspection of the registration results.

For the affine registration four resolutions were used, in each
of which 512 iterations of the stochastic gradient descent opti-
mizer were performed. The derivative of the mutual information
was calculated based on 2048 image samples, randomly chosen
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TABLE I
AORTIC SEGMENTATION: AVERAGE � AND ITS STANDARD DEVIATION

BETWEEN THE REFERENCE STANDARD AND THE AUTOMATED METHODS

every iteration. For the nonrigid B-spline registration five res-
olutions were used. The B-spline grid spacing used in these
resolutions was 64, 64, 32, 16, and 8 voxels, respectively. The
optimizer performed 256 iterations in each resolution. To esti-
mate the derivative of the mutual information 4096 image sam-
ples were used, again randomly chosen every iteration. For both
affine and nonrigid registration 32 histogram bins were used.

With these settings, a single registration typically required
approximately 15 min on a standard high-end PC.

D. Segmentation

Each binary image containing the segmentation of the
heart or the aorta was transformed to each target image using the
transformation obtained by the corresponding registration.
Before determining the weights for a decision fusion, difference
images were convolved with a Gaussian kernel . After
experimenting with different kernel sizes, the best results were
obtained with voxels for the aorta, and voxels
for the heart. The probabilistic segmentation of each target
image was computed by fusing the decision of the 15 transfor-
mations. The binary segmentation was obtained by blurring
the probabilistic segmentation with a Gaussian kernel width

, and subsequently thresholding at the probability
0.5. These parameters were chosen equal for all segmentation
methods.

To obtain segmentation of the images in their original size,
the segmentation results were super-sampled to the original
resolution.

E. Evaluation

For each target image, the Tanimoto coefficient between
the reference standard and the automated segmentation was
computed for all implemented methods. Subsequently, the
average and standard deviation of Tanimoto coefficients were
determined for all methods.

Average Tanimoto coefficients and corresponding standard
deviation are listed in Table I and in Table III, for the aortic and
the cardiac segmentation, respectively.

To compare the performance of the WDF(S) with the other
methods, a two tailed paired -test was performed. In the
Table II and Table IV -values are listed for the aortic and
cardiac segmentation, respectively. The proposed method both
without (WDF) and with atlas selection procedure (WDFS)
performed significantly better than any other automatic method
in both segmentation tasks. In the case of cardiac segmentation
the difference between the second observer versus WDF(S) and
ADF was not significant. Additionally, ADF was also signifi-
cantly better than the automated atlas-segmentation approaches

TABLE II
AORTIC SEGMENTATION: SIGNIFICANCE OF DIFFERENCE BETWEEN � FOR THE

VARIOUS TESTED METHODS; �-VALUES FROM A TWO TAILED PAIRED �-TESTS

TABLE III
CARDIAC SEGMENTATION: AVERAGE � AND ITS STANDARD DEVIATION

BETWEEN THE REFERENCE STANDARD AND THE AUTOMATED METHODS

TABLE IV
CARDIAC SEGMENTATION: SIGNIFICANCE OF DIFFERENCE BETWEEN � FOR THE

VARIOUS TESTED METHODS; �-VALUES FROM A TWO TAILED PAIRED �-TESTS

using a single atlas (ASA and SBA). Finally, no significant dif-
ference was found between the ASA and SBA approach. These
conclusions are valid for both segmentation tasks.

To analyze the distribution of the results, box-and-whisker
plots were made [28]. They are shown in Fig. 1 and Fig. 2
for the aortic and the cardiac segmentation, respectively. For
aortic segmentation, there is a clear difference between me-
dians and distributions between the second observer and com-
puterized methods. WDF and WDFS have a similar distribu-
tion which is narrower and has higher medians than those of the
other automated approaches. In the case of cardiac segmenta-
tion, the second observer and the atlas-based segmentations with
decision fusion (WDFS, WDF, ADF) have comparable perfor-
mance, with higher medians and narrower distributions than the
average-shape or the best single atlas segmentation approaches.

Figs. 3 and 4 each show two slices of the aortic segmentation
result in two different subjects. Fig. 5 shows one slice of the car-
diac segmentation in two different subjects. In both segmenta-
tion tasks first example shows image where WDF resulted in the
highest , and the second example image where was lowest.
In case of aortic segmentation, those images correspond to out-
liers in the box-and-whisker plot for WDF in Fig. 1.

To evaluate if selecting a subset of atlases could reduce com-
putation time, but keep the performance comparable, atlas selec-
tion was performed (WDFS). Selection was tested on the com-
plete set of target images. The results for the aortic segmentation
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Fig. 1. Box-and-whisker plots for the aortic segmentation methods. Boxes are
interquartile range. The line within the box is the median, the lines projecting
out of the box contain the adjacent values which are not more than 1.5 times the
height of the box. All remaining points are outliers.

Fig. 2. Box-and-whisker plots for the cardiac segmentation methods. Boxes are
interquartile range. The line within the box is the median, the lines projecting
out of the box contain the adjacent values which are not more than 1.5 times the
height of the box.

are shown in Fig. 6, and for the heart in Fig. 7. The top plots in
both figures show box-and-whisker plots of the average Tani-
moto values over all target images for each atlas that could be
selected. This means that when the first atlas was selected, per-
formance of all 15 atlases was tested. The one with on average
the highest Tanimoto coefficient was selected. In the next stage,
the performance of the remaining 14 atlases each in combina-
tion with already selected atlas was computed, and the best one
was selected and added, and so on. As expected, performance
increased with an increasing number of atlases. The maximum

Fig. 3. Aortic segmentation in two coronal slices in the image where the au-
tomated method resulted in the highest � . The first row shows the gray value
images, the second shows the reference standard, and the third row presents the
segmentation of the second observer. Results of the automated segmentation by
WDF are given in the last row.

was reached when eight atlases were selected, and by adding
more atlases performance slightly dropped. The bottom plots in
Figs. 6 and 7 show the distribution of Tanimoto coefficient for
all target images in each atlas selection step.

The selected atlases were not the same in the two segmenta-
tion tasks. On average the Tanimoto coefficient obtained with
eight selected atlases was slightly higher in case of the cardiac
segmentation compared to the performance of the second
observer, but that difference was not significant. However, the
difference between WDF and WDFS was significant. This is
caused by the fact that improvements of WDFS versus WDF
were small, but consistent. In the case of aortic segmenta-
tion, the second observer was still significantly better than
WDFS, and the difference between WDFS and WDF was not
significant.
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Fig. 4. Aortic segmentation in two coronal slices in the image where the auto-
mated method resulted in the lowest � . The first row shows gray value images,
the second row shows the reference standard, the third row presents second ob-
server segmentation and the last one shows results of the WDF. Note substantial
variability between the observers.

To check if the proposed segmentation method would be ro-
bust to larger abnormalities in the chest scan, additional ex-
periments were performed. First, from the screening trial four
additional scans were chosen containing 1) calcified ascending
aorta with substantial movement artifacts, 2) metal clips in the
heart and around the sternum, 3) metal clips in the left lung
from an operation, and 4) calcifications in the ascending aorta
and left anterior descending coronary artery with movement ar-
tifacts. Second, the method was tested on six scans showing
ILD. The results are listed in Tables V and VI. Fig. 8 illustrates
the results.

Fig. 5. Cardiac segmentation in transverse slice of two different images. In the
first column is image which segmentation had the highest � , and in the second
column is example of the lowest � . First row shows gray value images, second
row shows the reference standard, and the third row presents second observer
segmentation. Results of the WDF are shown in the last row.

IV. DISCUSSION

The presented multi-atlas-based segmentation method yields
results very close to those of an independent human observer.
It is shown to be robust, in the sense that gross failures of the
segmentation never occurred, although it must be noted that our
tests were performed on a relatively small set of target images.
In both segmentation tasks, even for the case with the lowest
Tanimoto coefficient, results were good, and comparable to the
reference standard when judged by visual inspection.
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Fig. 6. Box-and-whisker plots of the atlas selection for the aortic segmentation.
On the x-axis the number of selected atlases is shown. Top: The y-axis plots the
distribution of the average � between WDFS and the reference standard seg-
mentation over all target images. Bottom: On the y-axis, the distribution of the
� for all target images for the selected atlases are shown. Boxes are interquartile
range. The line within the box is the median, the lines projecting out of the box
contain the adjacent values which are not more than 1.5 times the height of the
box. All remaining points are outliers.

The method has two novelties compared to already published
approaches.

First, decision fusion of the propagated labels is based on
the local evaluation of registration success. The local success of
the registration has been evaluated using the absolute difference
between the transformed atlas and the target image. Note that
a different metric, namely mutual information was computed
during the registration. It would have been also possible to use
the same metric for both purposes. Furthermore, other ways of
computing local weights are possible [see (3)].

The second novelty is an atlas selection procedure equivalent
to sequential forward selection of features. It has been shown

Fig. 7. Box-and-whisker plots of the atlas selection for the cardiac segmenta-
tion. On the x-axis the number of selected atlases is shown. Top: The y-axis plots
the distribution of the average � between WDFS and the reference standard seg-
mentation over all target images. Bottom: On the y-axis, the distribution of the
� for all target images for the selected atlases are shown. Boxes are interquartile
range. The line within the box is the median, the lines projecting out of the box
contain the adjacent values which are not more than 1.5 times the height of the
box.

TABLE V
AORTIC SEGMENTATION IN IMAGES WITH ABNORMALITIES:
AVERAGE � AND CORRESPONDING STANDARD DEVIATIONS

BETWEEN THE REFERENCE STANDARD AND WDF

that not all atlas images were equally useful, and that the se-
lected subset of atlases gave better performance than the com-
plete set. Note here that in our investigation of the possibility
of atlas selection, the atlases were selected on the set of target

Authorized licensed use limited to: Johan Reiber. Downloaded on July 14, 2009 at 03:39 from IEEE Xplore.  Restrictions apply.



1008 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 28, NO. 7, JULY 2009

TABLE VI
CARDIAC SEGMENTATION IN IMAGES WITH ABNORMALITIES:
AVERAGE � AND CORRESPONDING STANDARD DEVIATIONS

BETWEEN THE REFERENCE STANDARD AND WDF

Fig. 8. Aortic and cardiac segmentation. Top, left: CT slice from the
screening trial scan with calcification in the ascending aorta. Bottom, left:
Segmentation results. Top, right: Slice from a CT scan showing ILD.
Bottom, right: Corresponding segmentation results.

images and only that result is presented. Evaluation on an inde-
pendent validation set is an important subject for future work.
To perform that, a larger number of manually delineated data
sets might be needed.

Simpler segmentation strategies such as flood fill algorithms
or level sets would neither be able to segment the heart nor aorta
in noncontrast enhanced CT scans because a strong boundary is
not present.

In the presented method the best atlases were selected based
on the global result. To further improve segmentation results,
best atlases could be selected locally. It is possible that a better
segmentation result in some parts of the target image could be
achieved with a particular set of atlases. For example, some
scans might be effective to register to the aortic arch, while
others are most effective to find the lower part of the descending
aorta. This hypothesis is supported by the fact that different at-
lases were selected for the heart and aorta tasks.

To additionally reduce segmentation time, the number of reg-
istrations performed, i.e. the number of atlases could be varied
locally. Some parts of the target image (e.g.,, inside of the heart)
can be segmented easier than others (e.g., border of the heart).
Thus, for those areas where the segmentation task is easier, a
smaller number of atlases may be needed. Additional registra-
tions could be omitted locally after a few registrations have pro-

duced consistent results, and continued where the need for more
opinions seems useful.

For aortic segmentation, the second observer performs better
than any automated method. For cardiac segmentation on the
other hand, there was no significant difference between the
WDF, WDFS, and ADF versus the second observer. We believe
this difference is caused by the fact that the heart has strong
edges on the borders with lung tissue, which are probably
effective in guiding the registration process, while for the aorta
such strong edges are often not present. Therefore, the registra-
tion result was not so good in the latter case. When registration
can not deform a moving image to the target image well, it
is important to weigh the propagated labels locally according
to the registration performance; When registration results are
generally good, averaging the transformed manual segmenta-
tions is sufficient. This can also be seen when comparing the
results of the WDF or WDFS and ADF methods. Although
in both segmentation tasks WDF and WDFS outperformed
ADF, the difference and spread of the results are greater for
segmentation of the aorta than for segmentation of the heart.
Box-and-whisker plots in case of the heart segmentation show
comparable performance of WDF, WDFS, and ADF. However,
a -test shows that the small difference is significant. Inspecting
the results for each target image showed that the difference in
Tanimoto coefficient between WDF and ADF is less than 1%,
but WDF always slightly outperformed ADF.

We have observed the segmentation when the best single atlas
was selected from our set of atlases. There is a number of pos-
sible criteria for selecting the best atlas. Our choice was to se-
lect this image based on the registration success in the volume
of interest (SBA), analogous to when registration was evaluated
for WDF and WDFS. The method with the in this way chosen
single atlas has given the lowest performance in terms of average
Tanimoto coefficient, but comparable to the average-shape atlas
method (ASA). However, box-and-whisker plots show that the

values are distributed broader in the case of ASA.
Success of the segmentation depends on registration accu-

racy. Therefore, the particular settings of the registration pa-
rameters (number of iterations, number of samples, number of
histogram bins, step size, number of resolutions) influence the
segmentation result. It is important to note that the same regis-
tration parameters were used in all experiments, because this en-
abled comparison between different methods. The results sug-
gest that cases where high registration quality with a single atlas
could not always be obtained profited more from the WDF ap-
proach compared to ADF.

Also, the registration results may have been influenced by the
resolution of images used for registration. Even though the refer-
ence standard has been set in the full-resolution images and eval-
uation of the method has been performed in the original resolu-
tion, due to computer limitations, all images have been down-
sampled before the automatic segmentation. If more memory
and faster hardware were available, the algorithm could operate
on the full-resolution data and better segmentation results may
be achieved.

Although the Tanimoto coefficient between the two observers
is high, Figs. 3–5 show that locally substantial interobserver dis-
agreement may occur. This is especially true at the basal por-
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tion of heart and ascending part of the aorta. This is caused
by the poor tissue contrast between the heart border and sur-
rounding fat, or between the ascending aorta and surrounding
tissue. An accurate registration in such areas is difficult. Further-
more, when the aorta was manually segmented, the observers
were instructed not to segment the aorta below the base of the
heart. However, this point is not an anatomical landmark in the
aorta, and hard to find for the registration algorithm. Addition-
ally, because manual segmentation was performed in transverse
slices, sagittal views occasionally show shifts in border between
neighboring transverse slices. To prevent the latter, a manual
segmentation protocol could be used that instructs observers
to use multiple views during manual delineation. That would
however increase segmentation time substantially, and this was
therefore omitted.

In the experiments the Tanimoto coefficient was used to eval-
uate segmentation accuracy. It is well known that this measure
is dependent on the surface-to-volume ratio of the object of in-
terest. Therefore, cardiac segmentation accuracy cannot be di-
rectly compared with the accuracy of the aortic segmentation.
However, the Tanimoto coefficient is a valid measure for com-
paring different segmentation methods of the same structure.

Scans included in our experiments are part of a screening trial
with asymptomatic participants and therefore the images typi-
cally do not contain severe abnormalities. However, frequently
observed abnormalities such as aortic and coronary calcifica-
tions, aortic valve calcification, mitral valve calcium, calcifica-
tions in the tracheal wall were present in either the atlas set, the
test set or in both. Moreover, two scans contained metal clips
around the sternum and in the heart.

Additional experiments were performed on scans containing
more severe abnormalities than the original test set from the
lung cancer screening trial. As expected, performance was on
average somewhat lower than in the initial set of test scans (Ta-
bles I and III versus Tables V and VI, respectively), which was
mainly caused by less accurate registration result between atlas
and test images. The results were still adequate though. Sub-
sequently, the method was tested on scans showing interstitial
lung disease. Results of the cardiac segmentation were slightly
better than those obtained from the lung cancer screening sub-
jects. This might be due to the fact that only slices affected
by pathology were evaluated which excluded areas around the
basal portions of the heart. Note here that the original set of at-
lases was used, that did not originate from clinical ILD data.
Although the segmentation results were satisfactory given the
difficulty of the image data, we do expect that better registra-
tion results and therefore higher segmentation accuracy would
be achieved if atlas images obtained with the same scanning pro-
tocol as the target images were used.

To make the method robust for large anatomical abnormal-
ities such as aneurysms, it would probably be necessary to in-
clude them in the set of atlas images. However, this would likely
be possible only when the abnormalities do not severely com-
promise the quality of the registration. An aortic dissection is
rarely visible on noncontrast enhanced CT scans, and therefore
could not cause problems for the algorithm.

Scan acquisition was performed without ECG-synchro-
nization and some subjects might not have been able to hold

their breath. Thus, cardiac (Figs. 3 and 4) and possibly some
breathing motion artifacts were present in the scans. Because
registration applied in the algorithm is elastic, it was able to
correct for size, shape and displacement of the segmentation
target. However, blurring of the organ borders resulted in a
lower gradient at the cardiac and the aortic border and prob-
ably did influence the registration results. Therefore, we do
expect that better segmentation results would be achieved if
ECG-synchronization was applied and all subjects held their
breath during the entire scan acquisition.

We expect the method to be applicable to contrast enhanced
CT scans. Contrast material would intensify the boundaries, es-
pecially of the aorta, and therefore the registration should be
able to better align the atlas and the target image. This might
lead to a better segmentation result. If the data to be segmented
is a mixture of contrast and noncontrast enhanced data, it may
be advantageous to include this mixture also in the training data.
We have, however, obtained good results registering noncon-
trast to noncontrast enhanced data. Moreover, the method was
applied to segmentation tasks in low-dose scans obtained in the
screening program. This means that application of the same al-
gorithm for segmentation tasks in scans obtained with higher
radiation doses such as usually applied in clinical practice will
likely be feasible.

We believe that the proposed method could be applied to seg-
mentation of other anatomical structures in CT and MRI images
(of the same sequence) for which other (multi-) atlas-based seg-
mentations have already been used, such as for brain or cardiac
structures.

V. CONCLUSION

An atlas-based segmentation method employing label propa-
gation and spatially varying decision fusion has been presented.
The method evaluates the success of the registration between the
atlas and the target image locally, and on that basis a weighted
decision fusion is performed. The method was tested for seg-
mentation of the heart and aorta in CT images. The proposed
method outperformed other implemented atlas-based segmenta-
tion approaches. Additionally, it has been shown that selection
of a subset of atlases from the original set leads to faster and
comparable segmentation results.
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