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Registration of Cervical MRI Using
Multifeature Mutual Information

Marius Staring*, Uulke A. van der Heide, Stefan Klein, Max A. Viergever, and Josien P. W. Pluim

Abstract—Radiation therapy for cervical cancer can benefit
from image registration in several ways, for example by studying
the motion of organs, or by (partially) automating the delineation
of the target volume and other structures of interest. In this
paper, the registration of cervical data is addressed using mutual
information (MI) of not only image intensity, but also features that
describe local image structure. Three aspects of the registration
are addressed to make this approach feasible. First, instead of
relying on a histogram-based estimation of mutual informa-
tion, which poses problems for a larger number of features, a
graph-based implementation of -mutual information ( -MI) is
employed. Second, the analytical derivative of -MI is derived.
This makes it possible to use a stochastic gradient descent method
to solve the registration problem, which is substantially faster than
nonderivative-based methods. Third, the feature space is reduced
by means of a principal component analysis, which also decreases
the registration time. The proposed technique is compared to a
standard approach, based on the mutual information of image
intensity only. Experiments are performed on 93 T2-weighted
MR clinical data sets acquired from 19 patients with cervical
cancer. Several characteristics of the proposed algorithm are
studied on a subset of 19 image pairs (one pair per patient). On
the remaining data (36 image pairs, one or two pairs per patient)
the median overlap is shown to improve significantly compared to
standard MI from 0.85 to 0.86 for the clinical target volume (CTV,
� � �� �), from 0.75 to 0.81 for the bladder � � � �� ��,

and from 0.76 to 0.77 for the rectum � � � �� ��. The regis-
tration error is improved at important tissue interfaces, such as
that of the bladder with the CTV, and the interface of the rectum
with the uterus and cervix.

Index Terms— -mutual information, �� graphs, cervical
cancer, local image structure, nonrigid registration, radiation
therapy, Shannon mutual information.

I. INTRODUCTION

C ERVICAL cancer is a common type of cancer in women,
with 493 000 incidences and 274 000 deaths worldwide

in 2002 [1]. If surgery is not possible, external-beam radia-
tion therapy is the treatment of choice [2], in combination with
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chemotherapy [3]. During therapy, a patient is irradiated sev-
eral times in succession. In our hospital, a patient is irradiated
five times a week for a duration of five weeks. Several factors
are important for the success of radiotherapy. The first factor
concerns the dose targeting. The region that should receive a
high dose is the clinical target volume (CTV), which includes
the gross tumor volume (GTV) and a region around the GTV
with suspicion of micro-metastases. Neighboring tissue such as
the bladder and rectum should receive a dose as low as possible,
to reduce complications during and after therapy. Therefore, ac-
curate localization of the cervix and surrounding structures is
needed to effectively aim the dose delivery. A second factor is
the ability to detect whether treatment plans need to be adapted
to changes in the anatomy, for example due to response of the
tumor to treatment. Adaptation of the treatment plans can im-
prove sparing of bowel and rectum [4]. Pötter et al. [3] expect
that it can have a minimizing effect on treatment related mor-
bidity. A third important factor in radiation therapy concerns
the treatment margins used to accommodate uncertainties in the
position of the target volumes [5]. The uncertainty can be high
due to the large movement of the bladder, rectum and intestines.
Quantification of these geometrical changes (i.e., identification
of the true movements) may help to reduce the treatment margin
of these structures [6]–[9].

Image registration can aid in all these cases. Segmentation of
the relevant structures can be achieved by an atlas-based reg-
istration approach, as has been done for the prostate [10]. An-
other approach is to automatically update the manually created
treatment plan of the first day, to that of the current day, instead
of creating new manual segmentations. Automatic updates can
be realized by performing a nonrigid intrasubject registration,
and propagating the segmentation of the first day to the cur-
rent day. Even if the quality of these automatic segmentations
is not sufficient for direct clinical use, it can be used as an ini-
tialization for annotators, which can save time and reduce ob-
server variability [11]. To detect the need for adapting the ra-
diotherapy treatment plans, one can register the current image
with the baseline image. The volume of the GTV in combina-
tion with its motion are indicators for the necessity to update the
treatment plans [12]. Geometrical changes can be quantified by
the transformation resulting from image registration.

While traditionally CT images are used for radiotherapy, MRI
is increasingly added, since it is superior to CT for staging, de-
lineation of the relevant organs, and for measuring cervical car-
cinoma size and uterine extension, see [13]–[15]. Factors that
hinder the success of image registration are MR imaging arti-
facts, the highly anisotropic voxels, and the large changes be-
tween successive treatment days (interfraction variability) of the

0278-0062/$26.00 © 2009 IEEE



STARING et al.: REGISTRATION OF CERVICAL MRI USING MULTIFEATURE MUTUAL INFORMATION 1413

Fig. 1. Examples of limiting factors for image registration. Figures (a) and (b)
show two scans of the same patient, intensity windowed for optimal display
of the bladder. Figure (b) demonstrates an intensity inhomogeneity over the
bladder. (c) Slice in the coronal plane to illustrate data anisotropy. In (d)–(f)
three scans of another patient are shown, exhibiting large variations in bladder
filling [compare (d) with (e)] and rectum filling [compare (d), (e) with (f)].

position, shape and size of the bladder, rectum, and intestines in
particular. In Fig. 1, examples of these limiting factors are given.

In this paper, we present an intensity-based nonrigid registra-
tion method to automatically align intrapatient MR images of
the cervix, for the purposes mentioned above. A standard ap-
proach, based on the mutual information of the intensity of the
MR images only, may not be sufficient to overcome all of the
limiting factors. Therefore, we propose to use an algorithm that
additionally incorporates features, in our case features that de-
scribe local image structure. The feature information is utilized
by a multidimensional -mutual information measure ( -MI),
and is shown to improve the registration quality.

In order to make -MI feasible for a large number of features,
we address several aspects of the method.

• Multidimensional -mutual information is implemented
by computing the length of entropic graphs [16]–[19].
Commonly, mutual information is implemented by the

estimation of a joint histogram. The joint histogram is of
dimension , with the number of features. Therefore, it
suffers from the so-called curse of dimensionality: more
and more samples are needed to fill the joint histogram up
to a sufficient level, so that MI can be reliably estimated.
The need to estimate the joint histogram can be elimi-
nated, by directly relating entropy to the data, without
estimating the probability density function. The choice
for the entropic graphs implementation makes it possible
to use multidimensional mutual information for a larger
number of features.

• The analytical derivative of -MI with respect to the
transformation parameters is derived. With the analytical
derivative the registration problem can be solved using a
stochastic gradient descent method. This is much faster,
compared to a finite difference optimization routine or a
nonderivative-based optimizer.

• The feature space is reduced by employing a principal
component analysis (PCA) on the total set of features. This
also decreases the registration time substantially.

-Mutual information for image registration was introduced
by Hero et al. [16], [17]. It has been used on 2-D data [18], [20],
sometimes using a nonderivative-based optimizer [21]. In [22],
a descent direction for a Euclidean minimal spanning tree is
derived, and some results for rigid registration are given. Oubel
et al. [23] apply -joint entropy to 3-D tagged MR sequences of
the heart, for which they also introduce an analytical derivative.
The method was evaluated on five sequences, using only two
features: the intensity from two different viewing directions.

In Section II details about the registration framework are
given, -MI is explained, and the analytical derivative is de-
duced. The features used for the registration of the cervical data
are discussed in Section III. For tuning and evaluation, mul-
tiple T2-weighted MR data sets are available for 19 patients.
Registration parameters are tuned on a subset of 19 image
pairs. Evaluation is performed on the remaining 36 image
pairs by comparing automatic segmentations with a manually
established ground truth, see Sections IV and V.

II. METHOD

A. Registration Framework

Registration of a -dimensional moving image
to a fixed image can be formulated

as an optimization problem

(1)

with the transformation modelled by the
vector of parameters , and a suitable cost func-
tion (dissimilarity measure) that is minimal when and

are aligned. It is possible to additionally include
a regularization term in the cost function, but this is omitted in
this work.

B. Mutual Information

The mutual information [24], [25] of image intensities
is defined as: , with

the entropy of the intensities of image ,
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the joint entropy, and the intensity probabilities.
It is usually implemented by constructing a joint histogram,
which estimates the joint intensity probabilities. Details about
the specific implementation used in our article can be found in
[26], in which the analytical derivative of MI can also be found.

C. Entropy, Entropic Graphs, and -mutual Information

Mutual information is commonly calculated on the intensities
only, i.e., on 1-D signals, by estimation of a joint histogram. For
higher-dimensional signals, however, this computation method
poses problems, as outlined in Section I. Therefore, we opt for
an implementation of -mutual information introduced by Hero
et al. [16], [17] based on entropic graphs.

Define to be a vector of dimen-
sion containing all feature values at point . For example, the
first index is the intensity of the image, and , , and
contain the values of the spatial derivatives of that image. It was
shown by Beardwood et al. [27] (see also [28]) that the length of
the graph that connects the feature points , is related to the
Rényi -entropy [29]. It can be shown, using l’Hopital’s rule,
that the limit of -entropy equals the Shannon entropy.
Not all graphs are suited to compute -entropy, but for example
the minimal spanning tree (MST) and the -nearest neighbor
( ) graph are [17]. We choose to use the graph, since
it is computationally attractive relative to the MST [17], [30].

Let be the feature vector of the fixed image at a
point , and that of the moving image at the
transformed point . Let
be the collection of feature vectors drawn from the fixed
image, and that of the moving feature vectors. Let

be the concatenation of the two feature
vectors: , with corresponding collection

. Three NN graphs can be constructed on the three col-
lections, where the total distance of a feature vector to its
nearest neighbors is given by

(2)

(3)

(4)

with , , and the th
nearest neighbor of , , and ,
respectively. Note that we used the Euclidean distance in
(2)–(4). Also note that the neighbors of the three graphs in
general do not correspond. A graph-based estimator for -MI
is defined as [17]:

-

(5)

with , and a user-defined constant. In
this paper, we used for all experiments.

D. Optimization

To solve the minimization problem (1), an iterative stochastic
gradient descent optimization strategy is employed [31]

(6)

with an approximation of the exact derivative of the simi-
larity measure evaluated at iteration : . The deriva-
tive is approximated by computing it over a subset of all points

. The subset contains points, which were chosen
randomly in every iteration. This was shown to substantially
accelerate the registration, while retaining convergence prop-
erties [31]. Samples that are not in the overlap of the fixed
and deformed moving image domain are excluded. For the step
size a decaying function of the iteration number is used:

, with , and user-de-
fined constants [31].

E. Derivative of -mutual Information

For the multidimensional case, registration is written as:
- . In order to apply

the stochastic gradient descent method (6), the derivative
- is required. Since computing

the derivative using finite differences is extremely slow for a
large number of transformation parameters , we derive an
analytical expression for it. The expression we derive is valid as
long as graph topology does not change for small changes of .

For compact notation, define

(7)

and

(8)

and similarly for . Then the derivative of - equals

-

(9)

The derivative of is written as

(10)
From (10) we expand the derivative of

(11)

(12)

(13)
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TABLE I
IRREDUCIBLE SET OF SECOND ORDER CARTESIAN

IMAGE STRUCTURE INVARIANTS FOR 3-D

where (11) follows from (4) and the definition of the Euclidean
distance metric. Only the derivative to the moving image fea-
tures matter, since . So

(14)

The derivative can be derived similarly. Sum-
marizing, the derivative of - can be expressed in terms of
the spatial derivative of the moving (feature) images ,
the Jacobian of the transformation , the differences

and , and the graph distances , and .
Derivation of the analytical derivative is similar to that of Oubel
et al. [23], who did the analysis for -joint entropy. Note that,
in contrast with Oubel, we also take the derivative to the nearest
neighbors into account in (14).

III. FEATURES

Now that the registration framework for multidimensional
mutual information has been defined, features need to be
chosen. From the vast amount of choices, features that describe
the local structure of images supply supplementary knowl-
edge, which may improve the registration. We choose the set
of Cartesian image structure features up to the second order
derivatives [32], listed in Table I. Here, denotes luminance or
intensity, the spatial derivative, is the Hessian
of , and denotes the matrix trace. Note that is the
gradient magnitude, and the Laplacian. All features are
invariant to rotation and translation. Additionally, this set is
irreducible: other structure invariants of order up to two can be
expressed in terms of features in this set, and the set is minimal.
The invariants are computed using Gaussian derivatives at scale

. Features at scale and 2 were included. The additional
use of did not improve results, see Section V-A. In total
we have 15 features: 14 features that describe local structure
(the seven features from Table I at two scales), and the original
intensity data. In Fig. 2(a)–(f) , some examples are given. Note
that all features are derived from the original image data, and
can be computed before registration.

Since the computational complexity of (5) and (9) increases
with the number of features , and since not all features may
have an equal contribution to the registration quality, it could be
beneficial to select a subset of the total feature set for inclusion
in the registration. We opt to perform a PCA on the complete

feature set, and select only the first principal components
for inclusion in the registration.

The features are normalized to have zero mean and unit vari-
ance. The PCA is performed on the concatenation of the fixed
and moving images, resulting in the matrix

, with
and . By performing the PCA on the con-

catenation, rather than on the separate images and , an
identical linear combination is used for the feature images of
the fixed and the moving set. The PCA algorithm returns the
principal components (a linear combination of the input), to-
gether with the explained variance , of each
component. The percentage of total explained variance is given
by . In Fig. 2(g)–(l), the first six principal
components, derived from the total feature set of the image in
Fig. 2(a), are shown.

IV. EXPERIMENTS

The graph-based -mutual information measure was imple-
mented in the registration package , developed by the
authors. It is publicly available from http://elastix.isi.uu.nl. This
package is largely based on the Insight Toolkit (ITK) [33]. The
implementation of the graph is based on the approximate
nearest neighbor (ANN) library, freely available from http://
www.cs.umd.edu/~mount/ANN/.

A. Data

The MR data were acquired with a Philips 1.5 T scanner (Gy-
roscan NT Intera; Philips Medical Systems, Best, The Nether-
lands), using a T2-weighted sequence taken in the transversal
direction. Nineteen patients were scanned. Each patient was
scanned five times, one scan each week, except for two patients
who were scanned four times.

The image dimensions were 512 512 30 voxels of size
0.625 0.625 4.5 mm. The data were cropped before regis-
tration to a size of 210 250 30 voxels such that the data
included the relevant structures. Manual segmentations of the
GTV, CTV, bladder, and rectum were available for each image.
They were created by a radiation oncologist and approved by
a radiologist. The segmentations were made with the clinical
purpose in mind, and not for evaluation of registration quality
specifically.

The data were divided into two sets. The first set contains the
images at week 1 and 2 (19 image pairs), and is used for selec-
tion of the parameters. The second set consists of the remaining
55 images: 19 pairs of weeks 3 and 4, and 17 pairs of weeks 4
and 5; a total of 36 image pairs. The second set is used for com-
paring MI and -MI with parameters tuned on the first set. With
this division, evaluation of the method could be performed on
all available patients.

B. Registration Settings

The registration parameters were chosen by trial-and-error on
the first data set. Images at one week were registered to that of
the next week. A rigid registration based on the mutual infor-
mation of intensities only, was performed prior to nonrigid reg-
istration, to get a rough alignment. For the nonrigid registration,
the transformation was parameterized with B-splines [34]. We
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Fig. 2. Examples of the image structure features. (a) original image, (b)–(f) are the features that describe local structure (� � �), with (b) � � , (c) � � � ,
(d) � , (e) � � , (f) � � � . The first six principal components of the PCA are shown in (g)–(l). For this particular example the total explained variance
for increasing � from 1 to 6 was 57%, 79%, 88%, 93%, 96%, and 98%. The images were intensity windowed for optimal display.

employ a multiresolution scheme with three resolution levels
on all feature images. Gaussian smoothing was applied, but no
downsampling to more accurately interpolate the moving image

. Scales , 2.0, and 1.0 voxels were used in
the and directions. For the direction, , and 0.5
voxel was used, because of the voxel anisotropy. A multigrid
approach was used with a spacing of 80, 40, and 20 mm be-
tween the B-spline control points for the first, second, and final
resolution, respectively. This yielded parameters
in the final resolution. For the optimisation procedure, ,

, and were set. During the parameter selection
stage, 300 iterations were used. MI and -MI were compared
on the second data set with 600 iterations. The number of sam-
ples, randomly selected in every iteration was set to ;

this yields good results for standard MI [31]. To be comparable
to MI, was set to 0.99. For the kNN graph implementation
the ANN package was used. We selected D trees, a standard
splitting rule, and a bucket size of 50. The parameter that de-
fines the amount of error that is acceptable when computing the
nearest neighbors, see [30], was set to 10. The nearest
neighbors were used to compute (the derivative of) - for
data set 1, and for data set 2.

C. Evaluation Measure

To evaluate the registration quality, manual segmentations of
the CTV, bladder and rectum were used. Automatic segmenta-
tions were generated by transforming the manual segmentation
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Fig. 3. The effect of feature selection and the number of principal components � . For each anatomical structure, the leftmost column shows the result for MI,
the right-most for �- MI without PCA �� � ���, and the columns in between for �-MI with PCA. The number below the graph refers to � . A star indicates a
statistical significant difference of the median overlap compared to the previous column, starting from � � �.

of the moving image to the fixed image domain, using the trans-
formation found by the registration. This transformed seg-
mentation was compared to the manual segmentation of
the fixed image, using the Dice similarity coefficient (DSC) as
a measure of overlap [35]

(15)

where denotes the number of voxels within the segmentation.
A value of 0 indicates that and are disjoint, 1 indicates
perfect agreement. The DSCs are presented by box-and-whisker
plots.

To compare two experiments paired, two-sided Wilcoxon
tests [36] were performed on the corresponding overlap values.
A value of was considered to indicate a statistically
significant difference.

The DSC does not provide insight into the spatial distribu-
tion of the registration errors. To visualize the registration ac-
curacy the shortest Euclidean distance between the manual and
automatic segmentation boundaries is computed for every point
on the boundary of the manual segmentation [7], [37]. A carto-
graphic “Mollweide equal area” spherical coordinate projection
is used to display the result, as proposed in [7].

V. RESULTS

A. Results: Data Set 1 (Parameter Selection)

Several aspects of the proposed algorithm were investigated.
All experiments described in this section were performed on the
first data set.

The selection of the scales of the features was addressed in
a first experiment. Compared to using only , including
features at scale and 2 gave slightly better results. The
effect was most noticeable for the bladder, where the median
overlap increased from 0.76 to 0.79. The additional use of
did not improve the results (no significant differences in median
overlap). Therefore, for -MI, scales and 2 were chosen.

TABLE II
RUNTIME FOR THE VARIOUS REGISTRATION EXPERIMENTS. EXPERIMENTS

WERE PERFORMED ON A SINGLE CORE OF A STANDARD PC (INTEL Q6600
RUNNING AT 2.4 GHZ.), USING 300 ITERATIONS. � � �� REFERS TO THE

METHOD THAT DOES NOT USE PCA

In a second experiment, the effect of the number of principal
components that is used during the registration, was investi-
gated. The results are shown in Fig. 3. If only one principal com-
ponent was taken into account, most of the registrations failed;
the result was worse than MI. Results similar to were
obtained when using the original intensity images as the single
feature in -MI. For each of the 19 image pairs the total ex-
plained variance resulting from the PCA analysis can be com-
puted with . The median over the 19 image
pairs was 0.57, 0.80, 0.93, 0.98, and 0.99 for , 2, 4, 6, and
8, respectively. Increasing improved the results up to approx-
imately or .

In a third experiment the influence of the use of PCA was ex-
amined. -MI was performed without the feature space reduc-
tion, i.e., with all local image structure features at scale 1 and 2
and the original intensity data (in total 15 features). For each
anatomical structure, the right-most column of Fig. 3 shows
the result for this experiment. Inclusion of all features did not
improve registration performance considerably, except for the
rectum where the difference with PCA is significant.
However, the registration time was substantially increased and
no gain was obtained for the CTV and the bladder. Therefore,
the best trade-off of computation time and registration accuracy
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Fig. 4. The effect of �. The number below the graph refers to �. A star indicates a statistical significant difference of the median overlap compared to the previous
column.

Fig. 5. MI versus �- MI. For each anatomical structure, the leftmost column
shows the result for MI. The second column shows the result for�- MI �� � ��.
A star indicates a statistical significant difference of the median overlaps of the
two methods.

was with the use of PCA with . With this setting the reg-
istration time was 84 min, a reduction with a factor of 2.4 com-
pared to using the full feature set, see the left part of Table II.
Results similar to standard histogram-based MI were obtained
when using the first principal component of the features instead
of the intensity; The median overlap decreased by 0.01 for all
structures compared to standard histogram-based MI.

A fourth experiment was performed to analyze the influence
of the number of nearest neighbors . For , we varied

. The results are depicted in Fig. 4 and
are not very sensitive to , as long as . The registration
time depends heavily on , see the right part of Table II. We
choose for the remainder of this paper. With this setting
the registration time is 28 min, using 300 iterations.

B. Results: Data Set 2 (Evaluation)

MI is compared to -MI (PCA, , ) on data set 2.
For each of the two similarity measures, 36 registrations were
performed. The DSC results are shown in Fig. 5. Not much dif-
ference between the two methods is seen at the CTV, although
the difference is significant (from 0.85 to 0.86, ).
At the bladder and the rectum, however, the median overlap in-
creases significantly from 0.75 to 0.81 and from
0.76 to 0.77 , respectively. Also note the increase

of the first quartile, meaning that if the technique were to be
used in the clinic, less manual correction of the treatment plans
is needed when using -MI.

In Fig. 6, a typical example of the result of registration is
given, for MI (c) and -MI (d). Much less deformation is ex-
pected at fatty tissue and near bony anatomy, see for example
the bottom and right side of Fig. 6(c) and (d). The examples
show accurate registrations at those positions, both for MI and

-MI. A large difference in bladder filling is hard to recover for
MI. Although the bladders are not perfectly aligned by -MI,
the result is better. Registration problems sometimes also occur
at the GTV, where the tissue changes due to irradiation. Fig. 6(e)
and (f) show an example of such a tissue change, which is diffi-
cult to handle for the registration.

For all 36 registrations the registration error was computed
at every point of the surface of the CTV, bladder and rectum,
for both registration methods. The median and third quartile of
the spatial distribution of these errors are given in Fig. 7; for
the third quartile 75% of the registrations have an error smaller
than the distance depicted in the Fig. 8 shows a surface map
to aid the interpretation of Fig. 8. For all structures it can be
seen that the registration error of -MI is at most that of MI at
all locations of the boundary. For the CTV, -MI reduces the
registration error at the posterior side, i.e., at the interface with
the bladder: for MI the third quartile errors are up to 5 mm.,
for -MI the error is at most 3.5 mm. At the bladder a large
reduction is visible at the cranial side. -MI shows a reduction
of the third quartile registration error at the anterior side of the
rectum, i.e., at the interface with the uterus and cervix, from
2–3 mm. to 1–2 mm. The registration has also improved at the
cranial side of the rectum.

VI. DISCUSSION AND CONCLUSION

In this paper, we have introduced a registration method for
cervical MR images capable of taking into account multiple
image features. Three aspects were addressed to be able to
use the method in practice, also for nonrigid registration.
First, a graph-based implementation of -mutual information
was chosen, instead of a histogram-based implementation.
Histogram-based approaches are currently not able to cope
with a larger number of features, although efforts to do so have
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Fig. 6. Example results. The bladder filling of the fixed (a) and moving (b) image
is very different; a large deformation is required at that position. The fixed image
is combined with the deformed moving image, using a checkerboard pattern.
(c) The result of MI clearly is not well aligned at the bladder. (d)�-�� performs
much better for this large deformation. (e) and (f) show the GTV (delineated)
at two subsequent weeks. Note the change of the tissue around the GTV.

been undertaken [38]–[40]. The graph-based implementation
makes it possible to take into account an enlarged feature space.
Second, an analytical derivative was constructed, which en-
ables the use of a fast stochastic gradient descent optimisation
routine. A finite difference gradient descent approach would
require evaluations of the cost function per iteration, which
results in a runtime of h, compared to 62 min when the
analytical derivative is employed ( , ). Finally, the
feature space was reduced by means of a PCA algorithm. This
reduces the number of features from 15 to 6, which leads to
another reduction in registration time by a factor of . This
work is the first to report feasible registration times for multidi-
mensional mutual information with the number of parameters
of the transformation in the thousands .

Fig. 7. Mollweide projection of the boundary of structures.

In Fig. 3 it can be seen that the use of a single feature gives bad
results for -MI. A possible explanation for this behavior can be
found by closer inspection of the definition of -MI in (5). The
expression contains the division by . In the case this
can be a very small number when out of the samples have
similar intensity. Division by a small number can make the esti-
mation of -MI unstable. For the probability that samples
have a small distance to their nearest neighbors is in general re-
duced, except in the unlikely event that the second feature is
constant. This observation coincides with our experience that
the problem is reduced for . The instability of -MI due
to small distances in the graph-based estimators is addressed in
several papers. Kybic [41] proposes to only take neighbors into
account with distance greater than some constant . Other pos-
sible solutions are to add a small amount of noise to the features
[42] or to switch to a histogram-like estimator for small dis-
tances [43].

It was shown on clinical data of patients with cervical cancer
that the proposed method outperforms a standard approach
based on the mutual information of intensity only. For use in the
clinic, further improvements are still required. One option is the
use of a localized version of mutual information [10]. On MR
images acquired for the radiation therapy of the prostate this
was shown to improve the registration, at no additional compu-
tational cost. Another possibility with -MI is the inclusion of
other imaging data, acquired at the same time point, such as an
MR image acquired in another scanning direction, or acquired
with a different protocol. For the purpose of updating treatment
plans, it is possible to use a multiatlas matching approach [44],
once two or more previous scans are available. Rohlfing et al.
[44] reported improved results for this technique, compared to
using a single atlas image.

Propagation of the GTV segmentation is probably not pos-
sible with a registration approach only. Even if anatomical cor-
respondence is found, tumorous tissue may disappear in time,
due to successful treatment. In this case it might be necessary to
employ a tissue classification technique, after the registration.

Although registration using multiple image features is fea-
sible with the proposed method, in our implementation it still re-
quires much more time than the histogram-based approach. For
clinical use the computational burden of -MI probably needs
to be decreased, depending on the specific application. From (5)
it is clear that the major part of the computation can be paral-
lelized by distributing the summation over multiple processors.
Another interesting approach is to use a minimal spanning tree
(MST) instead of a graph. With the MST, -MI is com-
puted as a sum over edges; with the graph it is a sum
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Fig. 8. The spatial distribution of the registration errors. The graphs at the top two rows show the median distances between the manual and automatic segmenta-
tion. The bottom two rows show the third quartile of the distances. Note that the graphs have different color scales.

over edges, see (15). During the experiments we noticed that
most of the computation time is spent in calculating (14). The
construction of the graph and searching for the nearest neigh-
bors appeared to be of minor influence. Therefore, although it
takes more time to construct the MST, it is probably faster to
compute the analytical derivative with it. The influence of this
change on the rate of convergence of the registration remains to
be investigated.

In conclusion, compared to a standard approach, the proposed
method accomplishes improved nonrigid registration for a chal-
lenging registration problem, by inclusion of multiple features
in the registration cost function.
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