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Abstract. Accurate registration of thoracic CT is useful in clinical
terms and also challenging due to the elastic nature of lung tissue defor-
mations. The goal of the EMPIRE10 challenge (Evaluation of Methods
for Pulmonary Image Registration 2010), a workshop of the MICCAI
2010 conference, is to provide a platform for in-depth evaluation and fair
comparison of available registration algorithms for this application.
To this end we registered to the challenge with team RubberBand. The
goal of our submission is to determine what a standard, but fully au-
tomatic, intensity-based image registration algorithm can achieve com-
pared to the competition.
The algorithm, implemented in elastix, optimises the normalised corre-
lation criterion, using a fast, parameter-free and robust stochastic opti-
misation procedure. A combination of an affine and two nonrigid B-spline
transformations models the spatial relationship. The approach is embed-
ded in a multi-resolution framework for both the image data and the
transformation. No explicit regularisation is used.
Of the 34 submitted algorithms, our contribution achieved the 7-th place
with an average rank of 13.13 (best 8.03, worst 31.46). The incorporation
of a regularisation term may improve the ranking of the algorithm, since
our final score was most negatively influenced by the score for folding.
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1 Introduction

The registration of pulmonary CT data has drawn considerable interest from
many research groups. In addition, many registration algorithms already exist,
of which it is currently unclear which perform best on pulmonary data, or which
parts of algorithms are beneficial for robustness, precision and accuracy.

In order to compare the performance of the several algorithms, the EM-
PIRE10 team organised a challenge. The EMPIRE10 website (http://empire10.
isi.uu.nl) states: There are a number of benefits to comparing algorithms in
this way:
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– All algorithms will be applied to exactly the same set of data.
– Any algorithm parameters or settings will be chosen by those familiar with

the algorithm and expert in its configuration.
– The resulting registrations will be independently evaluated using the same

criteria for all participants.

The authors registered to the challenge under the team name “RubberBand”,
referring to the registration package elastix, developed previously by the au-
thors [1]. Executables and source code of elastix are publicly available from
the website http://elastix.isi.uu.nl, under the BSD license, which allows
free academic and commercial use and permits modification of the source code.
A manual for elastix and an example of usage can also be downloaded. In
addition, we created a “parameter file database”, which is a collection of param-
eter files that proved successful, together with a short description of the clinical
application for which they were used. The parameter file database can be found
through the website3 and elastix-users are encouraged to upload their own
settings. A default parameter file can also be found here.

The goal of our contribution is to determine what a standard and generic,
but fully automatic, intensity-based image registration algorithm can achieve
compared to the competition. How will this relatively simple, general purpose
algorithm compare to more advanced registration algorithms that are tailored
to the specific application?

2 Methods

In this paper we adopt the formulation of image registration as an optimisation
problem:

µ̂ = argmin
µ

C(Tµ; IF , IM ), (1)

where IF and IM denote the fixed and moving image, respectively, Tµ is the
spatial transformation relating the two and parameterised by the vector of pa-
rameters µ, and C is the cost function or similarity measure that defines the
quality of alignment.

Image registration is performed in three stages:

1. Affine registration using the original data, without the use of lung masks.
This is done to get a coarse global alignment of the entire anatomy. Lung
masks are not used, to exploit all anatomy.

2. Nonrigid registration using the processed data (see “Masking” below for
an explanation), without the use of lung masks. Our experiments revealed
that the use of lung masks at an early stage had a negative impact on lung
boundary alignment in case of large offsets (i.e. large differences in inspiration
level).

3 http://elastix.isi.uu.nl/wiki.php



3. Nonrigid registration using the processed data, and with the use of the lung
mask of the fixed image. From our experiments we learned that the match
of smaller structures within the lung is improved by using a lung mask.

Several choices for the different registration components are made:

Cost function C: Normalised Correlation Coefficient (NCC), which is suitable
for mono-modal image registration, but can compensate for global intensity
differences due to differences in inspiration level. It is defined as:

NCC(µ; IF , IM ) =

∑
xi

(
IF (xi)− IF

) (
IM (Tµ(xi))− IM

)

√∑
xi

(
IF (xi)− IF

)2 ∑
xi

(
IM (Tµ(xi))− IM

)2 , (2)

where xi are samples drawn from the fixed image, with IF = 1

|ΩF |

∑
xi

IF (xi)

the average grey-value, and similarly for IM .
It is possible to include regularisation in the cost function: C = NCC+ αR,
with a suitable choice for R, for example the bending energy, penalising the
second order derivatives [2]. For the specific application at hand, regularisa-
tion would have been beneficial for some data sets (appearance of smearing
effects). However, it requires manual setting of an additional data-dependent
parameter α, which is not a trivial choice, and additionally it increases the
computation time. Therefore, for the sake of simplicity regularisation was
omitted, at the cost of a deduction of points in the evaluation (singularities
in the deformation field).

Transformation: An affine registration is performed prior to nonrigid regis-
tration to accommodate for global offset and differences in inspiration level.
Subsequent nonrigid transformations are modelled by B-splines [2], embed-
ded in a multi-grid setting. The latter require the setting of the grid spacing
and the definition of a multi-grid strategy. For stage 2 the grid spacing was
set to 80, 80, 40, 20, and 10 mm in each direction for each resolution, re-
spectively. For stage 3 we used 80, 40, 20, 10, and 5 mm. See Table 1 for an
overview.

Optimisation: To optimise (1) we opt for an iterative procedure, called adap-
tive stochastic gradient descent (ASGD) [3]:

µk+1 = µk − γ(tk)g̃k, (3)

Table 1. Parameter settings for stages 1-3, resolution levels R1-R5.

Stage Iterations R1 R2 R3 R4 R5

1. Affine 1000

2. Nonrigid without mask 1000 Grid spacing (mm) 80 80 40 20 10
Downsample factor 16 8 4 2 1

3. Nonrigid with mask 2000 Grid spacing (mm) 80 40 20 10 5
Downsample factor 4 3 2 1 1



with k the iteration number, and g̃k an approximation of the cost function
derivative ∂C/∂µk. The derivative is approximated by random sampling of
the fixed image with a relatively small number of samples [4]. The scalar γ(tk)
determines the step size, where γ(·) is a decaying function and tk is defined

by tk+1 =
[
tk + f(−g̃T

k
g̃k−1)

]+
, with [·]+ = max(·, 0), and f(·) a sigmoid

function. The use of the inner product g̃T

k
g̃k−1 for determining the step size

makes the optimisation procedure adaptive (dependent on the estimated
progress), and the registration more robust. Details can be found in [3]. The
stop condition is a user-defined maximum number of iterations K. We used
K = 1000, 1000, 2000 iterations for each of the three stages, respectively (see
Table 1). Other settings of ASGD were left to their defaults.

Sampling strategy: A relatively small number of samples (2000) are drawn
randomly each iteration from the fixed image (off the voxel grid), to compute
g̃k.

Interpolation: During registration a linear interpolator is used to compute the
spatial derivative of the moving image ∂IM/∂x, required for computing g̃k.

Hierarchical strategy: For the image data Gaussian pyramids are used with
sub-sampling, to increase robustness. For the B-spline transform a multi-
grid approach is used, starting with a coarse control point grid in the first
resolution, only capable of modelling coarse deformations. In subsequent res-
olutions the B-spline grid is gradually refined, thereby introducing the capa-
bility to match smaller structures. For all stages 5 resolutions were used, with
isotropic down-sampling of the data, since the data was mostly isotropic. For
stage 1 and 2 the images were down-sampled with a factor of 16, 8, 4, 2, and
1, for each resolution, respectively. For stage 3 the factors were 4, 3, 2, 1,
and 1. See Table 1 for an overview.

Masking: In the last step of the registration procedure we have used lung
masks, which were created automatically by the EMPIRE10 organisers. The
fixed and moving image data were processed in the following way: all vox-
els that are more than 2 voxels outside the lung segmentation (provided by
EMPIRE10) are given the intensity value 0. This was done to mitigate the
effect the ribs have on the transformation within the lungs, observed in ear-
lier experiments. The ribs move discontinuously from the lung field during
inspiration and can therefore not be used as guidance. The image gradient
∂IM/∂x is relatively high at the ribs, influencing the deformation field, and
propagating its effect into the lungs causing misalignment of fissures and
vessels. This preprocessing step eliminates that problem.

The above image registration algorithm is fully automatic. Exact elastix

settings that were used in the experiments have been made available via the pa-
rameter file database, see http://elastix.isi.uu.nl/wiki.php, see par0011.
The registration settings for each experiment can be inspected in detail, and the
parameter files can be downloaded for reproducing our results or for use in other
applications.



3 Experiments and Results

Data sets and the scoring methodology are described in [5].

3.1 Runtime

All registration were performed on an Intel Xeon W3520 @ 2.66 GHz, 4GB
RAM, Windows 7 64 bit. The mean run time of elastix for each stage is given
in Table 2. On average the registration took 16 minutes, 20 seconds, of which
5 minutes, 18 seconds were spent to automatically compute the optimisation
parameters by the ASGD optimiser. The computation time in stage 3 is longer
than that of stage 2 due to a doubling in the number of iterations and a more
involved computation of Tµ(x), since at stage 3 Tµ(x) is a composition of three
transforms.

3.2 Results

Visual inspection of the affine registration showed that all scans were success-
fully matched globally. Automatic scoring was performed on the final result after
stage 3, by the EMPIRE10 organisers. The results are given in Table 3. They are
divided in four categories: lung boundary match, fissure match, landmark preci-
sion, and the presence of singularities in the deformation field. A comparison to
other participants can be found at http://empire10.isi.uu.nl/mainResults.
php. Overall, of the 34 submitted algorithms, our contribution achieved the 7-th
place with an average rank of 13.13 (best 8.03, worst 31.46).

The results for the lung boundary match are very good. Never an overall error
of more than 0.006% was obtained, with an average of 0.001%. This resulted in
a final rank of 11.15/34, at the same level of competing algorithms, except for
the two with final rank 1 and 2. Two poor scores for lung boundary overlap are
suspected to be due to breathing artifacts in the CT scan (scans 13, 16).

With respect to the fissures our errors are slightly higher than those of other
submissions with final rank 1 - 10. Scans 07 (noise), 14 (diffuse areas), 18 and
20 were especially difficult. An average error of 0.50% was obtained, with corre-
sponding rank 13.62 (min 9.52, max 16.52 in 1-10).

Table 2. Average runtime in seconds for each stage of the registration.

registration ASGD
stage mean min max mean min max

1. Affine 56 30 70 5 3 8
2. Nonrigid without mask 216 150 286 84 45 138
3. Nonrigid with mask 708 511 1279 229 70 720

total 980 318



Lung Boundaries Fissures Landmarks Singularities

Scan

Pair
Score Rank Score Rank Score Rank Score Rank

01 0.00 9.00 0.00 3.00 1.72 7.00 0.00 11.50

02 0.00 11.00 0.00 15.00 0.33 1.00 0.01 29.00

03 0.00 13.00 0.00 12.50 0.34 7.00 0.00 12.00

04 0.00 11.00 0.00 16.50 0.79 2.00 0.00 14.00

05 0.00 13.00 0.00 16.00 0.02 15.00 0.00 29.00

06 0.00 16.00 0.00 7.00 0.32 9.00 0.00 14.00

07 0.00 3.00 1.01 15.00 3.15 17.00 0.02 27.00

08 0.00 4.00 0.36 21.00 0.59 4.00 0.00 12.50

09 0.00 11.00 0.00 21.00 0.54 6.00 0.00 27.00

10 0.00 15.00 0.00 15.00 0.96 4.00 0.00 27.00

11 0.00 3.00 0.14 18.00 0.60 1.00 0.01 27.00

12 0.00 23.00 0.00 13.50 0.00 1.50 0.00 14.50

13 0.00 23.00 0.07 10.00 1.03 17.00 0.21 32.00

14 0.00 5.00 3.60 17.00 3.32 16.00 0.11 28.00

15 0.00 16.00 0.00 7.00 0.63 8.00 0.00 12.50

16 0.00 21.00 0.00 6.50 0.76 4.00 0.02 28.00

17 0.00 6.50 0.05 19.50 0.71 8.00 0.01 29.00

18 0.00 2.00 2.74 16.00 2.28 11.00 0.00 10.50

19 0.00 14.00 0.00 12.00 0.40 1.00 0.00 14.50

20 0.00 3.50 2.13 11.00 1.36 6.00 0.00 10.50

Avg 0.00 11.15 0.50 13.62 0.99 7.27 0.02 20.47

Average Ranking Overall 13.13

Final Placement 7
Table 3. Results for each scan pair, per category and overall. Rankings and final
placement are from a total of 34 competing algorithms.

Regarding the landmark distance error our submission performs very well:
there are 6 algorithms that perform better in terms of average score, and only 3
in terms of average rank. This resulted in a final rank of 7.27.

The weakest point of our submission is the presence of singularities in the
deformation field as measured by a negative determinant of the Jacobian ∂T /∂x.
Our submission reaches an average rank of 20.47 out of 34, which is about 7 worse
than submissions with a final rank around ours (1 - 10). A more detailed analysis
revealed that 10/20 scans score poor, and the remaining 10 obtained a perfect
score of 0% folding. Of the 10 poor results 1/10 was due to a streaking artifact
in the CT scan (scan 13), 5/10 were due to higher noise levels and especially
diffuse scan areas (scans 07, 10, 11, 14, 16), and the remaining 4/10 (scans 02,
05, 09, 17) showed no visual appearance of a smearing effect.



4 Discussion and Conclusion

The goal of our contribution was to determine what a standard and generic,
but fully automatic, intensity-based image registration algorithm can achieve
compared to the competition. The results are good in terms of lung boundary
alignment, landmark alignment, and fissure alignment. The worst scores were
obtained in the category ‘Singularities’. This is due to the omission of a regular-
ising term in the cost function. We expect that the use of a regularisation term
will bring the folding score up to par with competing algorithms, which would
improve the final placement from 7 to around 5. This will however increase the
complexity of the algorithm somewhat, and introduce an extra parameter. An-
other possibility would be to include hard constraints on the determinant of the
Jacobian of the transformation, as in [6].

There seems little a-priori performance bias to certain scan protocols. We
observed not much difference between the registration quality of low dose (LD)
scan pairs, or LD-ULD scan pairs. Additionally, the two sheep datasets and the
artificially warped data were registered with similar quality as the other scans.
The algorithm however performed less well on data containing diffuse areas, or
areas with little structure, which is not a surprising observation.

In conclusion, a standard, fully automatic, intensity-based image registration
algorithm achieved a ranking of 7 out of 34, with room for improvement in the
category ‘Singularities’. The implementation is publicly available from http:

//elastix.isi.uu.nl.
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