
Semi-Automatic Parallelisation for Iterative

Image Registration with B-splines

Tamas Farago1,2, Hristo Nikolov2, Stefan Klein3, Johan H.C. Reiber1, and
Marius Staring1⋆

1 Division of Image Processing (LKEB), Department of Radiology, Leiden University
Medical Center, Leiden, The Netherlands

2 Leiden Institute of Advanced Computer Science, Leiden, The Netherlands
3 Biomedical Imaging Group Rotterdam, Depts. of Radiology & Medical Informatics,

Erasmus MC, Rotterdam, The Netherlands.

Abstract. Nonrigid image registration is an important, but resource
demanding and time-consuming task in medical image analysis. This
limits its application in time-critical clinical routines. In this paper we
explore acceleration of a registration algorithm by means of parallel
processing. The serial algorithm is analysed and automatically rewrit-
ten (re-coded) by a recently introduced automatic parallelisation tool,
Daedalus. Daedalus identifies task parallelism (which is more difficult
than data parallelism) and converts the serial algorithm to a Polyhedral
Process Network (PPN). Each process node in the PPN corresponds to a
task that is mapped to a separate thread (of the CPU, but possibly also
GPU). The threads communicate via first-in-first-out (FIFO) buffers.
Difficulties such as deadlocks, race conditions and synchronisation issues
are automatically taken care of by Daedalus. Data-parallelism is not
automatically recognised by Daedalus, but can be achieved by manu-
ally prefactoring the serial code to make data parallelism explicit. We
evaluated the performance gain on a 4-core CPU and compared it to an
OpenMP implementation, exploiting only data parallelism. A speedup
factor of 3.4 was realised using Daedalus, versus 2.6 using OpenMP.
The automated Daedalus approach seems thus a promising means of
accelerating image registration based on task parallelisation.

Key words: image registration, parallel processing, Daedalus, CUDA

1 Introduction

Image registration is an important task in medical image processing. It refers
to the process of spatially aligning data sets, possibly from different modalities,
different time points, and/or different subjects [1, 2]. The application of nonrigid
image registration tools in the clinic is limited by the consumption of time these
algorithms typically exhibit. Applications such as image-guided surgery in the
brain [3], where low quality intra-operative ultrasound scans need to be registered

⋆ Corresponding author: m.staring@lumc.nl

2 Semi-automatic parallel image registration

to high quality pre-operative CT or MR scans, require the registration to be
performed within a minute or preferably even less. Also in external radiotherapy
there is a need for fast registration methods. Movements of organs may cause
discrepancies between the expected radiation dose distribution and the actually
received dose. Fast nonrigid registration would allow for on-line updating of the
treatment plan [4, 5]. Currently, however, typical run times are ranging from 5
minutes to one hour or more, as reported by Klein et al. [6], owing to the large
number of degrees of freedom that need to be estimated.

This paper aims at exploring techniques for accelerating image registration,
by means of (semi-)automatic parallelisation. In general, moving from sequential
computing to parallel computing is necessary because single-processor systems
can not cope anymore with applications’ complexity, throughput, and power
consumption constraints that are inherent to so many applications. Although
we are witnessing the emergence of parallel (multi-core and multi-processor)
systems everywhere, the transition from sequential to parallel computing is far
from trivial. Mapping sequential application specifications onto parallel systems
is a difficult and time consuming task: the different tasks must be identified, after
which they must be mapped onto different processing cores; proper synchroni-
sation and data communication must ensure correct program execution. These
complications pose a heavy burden on the developer and even upon success it is
not guaranteed to get an increased performance.

As an alternative to manually re-coding the sequential registration algo-
rithm, we investigated the automated parallelisation framework Daedalus [7,
8]. Daedalus identifies task parallelism (which is more difficult than data par-
allelism) and converts the serial algorithm to a Polyhedral Process Network
(PPN). Each process node in the PPN corresponds to a task that is mapped
to a separate thread of the CPU. The threads communicate via first-in-first-out
(FIFO) buffers. Difficulties such as deadlocks, race conditions and synchronisa-
tion issues are taken care of by Daedalus. Section 2.2 explains the framework in
detail. Data parallelism is not automatically recognised by Daedalus, but can
be achieved by manually prefactoring the serial code to make data parallelism
explicit, which is explained in Section 2.3. Experiments and results are presented
in Section 3. For reference, the performance of a dedicated GPU implementation
of the registration algorithm is also evaluated (Section 3.2).

2 Methods

2.1 Image registration framework

Image registration is defined as the problem of finding a spatial transforma-
tion T (x) relating two images of dimension d, one of which is fixed (IF) and
the other moving (IM). In this paper, we focus on intensity-based image regis-
tration, formulated as an optimisation problem in which the cost function C is
minimised with respect to the spatial transformation T . The cost function de-
fines the quality of the match. The framework is based on a parametric approach,

Parallel elastix 3

meaning that the number of possible transformations is limited by introducing
a parametrisation of the transformation. The optimisation problem reads:

µ̂ = argmin
µ

C(Tµ; IF , IM), (1)

where the subscript µ indicate the transformation parameters, a vector of size
P . In the remainder of this paper the Mean Square Difference (MSD) metric is
selected as a cost function:

C = MSD(Tµ; IF , IM) =
1

N

∑

x∈ΩF

(IF (x)− IM (Tµ(x)))
2
, (2)

where ΩF denotes the fixed image domain, and N the user-defined number of
voxels sampled from ΩF . An iterative optimisation routine is commonly used to
solve (1), where we opt for a stochastic gradient descent approach [9]: µk+1 =
µk − akg̃k, with k the iteration number, and with stop condition a maximum
number of iterations K. The scalar ak determines the step size, and is chosen as
ak = a/(k +A)α, with user-defined constants a > 0, A ≥ 1, and 0 ≤ α ≤ 1; g̃ is
an approximation of the cost function derivative ∂C/∂µ:

∂C

∂µ
=

−2

N

∑

x∈ΩF

(IF (x)− IM (Tµ(x)))

(
∂Tµ

∂µ
(x)

)t
∂IM
∂x

(Tµ(x)), (3)

with ∂Tµ/∂µ a matrix of size d×P , ∂IM/∂x a vector of size d, and superscript
t denoting the matrix transpose. The derivative is approximated by using a very
small (N ≈ 2000) subset of fixed image samples x ∈ ΩF , randomly selected in
every iteration k [9].

The transformation Tµ is in this paper the nonrigid 3rd order B-spline [10].
P is dependent on the chosen B-spline control point grid spacing and the image
size, and can be anything from 103 to 106. The compact support of the B-spline
basis function leads to a sparse Jacobian matrix ∂Tµ/∂µ, with only d4d nonzero
entries. At the end of the registration the resulting image IM (T (x)) needs to
be computed, where 3rd order B-spline interpolation is used. This step is called
resampling and can take several minutes on the CPU for large data sets. No
multi-resolution strategies for the image data or the transformation are used in
this paper. Algorithm 1 provides pseudo-code for the entire serial algorithm.

2.2 Automatic parallelisation

An important distinction when dealing with parallelism is that of data and
task. Data parallelism refers to different processors performing the same task
on different pieces of distributed data; task parallelism refers to each processor
executing a different process on possibly different data. Both present possibili-
ties for image registration. Data parallelism is commonly applied, with support
readily available through special instruction sets (MMX, SSE), and standards
extensions like OpenMP, MPI, and General Purpose GPU (GPGPU) program-
ming. Task parallelism is in general more difficult to implement. Developers are

4 Semi-automatic parallel image registration

Algorithm 1 Pseudo-code for skeleton application

Require: IF , IM , a, A, α, K
1: for k = 0 to K do

2: initialise C and ∂C/∂µ
3: ak ← a/(k +A)α

4: get (random) samples from IF
5: for i = 0 to N do

6: x, f ← get coordinate and value of sample i
7: y ← Tµ(x)
8: w ← compute linear interpolation weights at y
9: m← IM (y) and mx← ∂IM/∂x(y) by linear interpolation
10: j ← ∂Tµ/∂µ(x)
11: jmx← get inner product of j and mx

12: C, ∂C/∂µ← update value and derivative using (2) and (3)
13: end for

14: C, ∂C/∂µ← finalise metric value and derivative
15: µk+1 ← µk − ak · ∂C/∂µ
16: end for

17: IM (Tµ̂)← compute the registration result with optimal parameters

not comfortable with the programming paradigm, few tools exist to assist, and
the currently favoured implementation mechanism of using threads (alternatives
exist, see [11]) is dangerous. A not-well written concurrent program has potential
race conditions and deadlocks, and fixing them is extremely hard. Task paral-
lelism lends itself very well to heterogeneous computing environments, where for
example some threads run on the CPU and others on the GPU.

To facilitate the exploitation of task parallelism, theDaedalus framework [7,
8] (http://daedalus.liacs.nl) was proposed. Originally, it was aimed at em-
bedded Multi-Processor Systems on Chip (MPSoC). Recently, Daedalus has
been extended with a back-end towards heterogeneous desktop parallel comput-
ing (HDPC) [12], which generates code for a desktop computer. Starting from
a sequential application specification in C, the open-source pn compiler [13] au-
tomatically converts it into a parallel Polyhedral Process Network (PPN) [14].
To enable the automation, the input source code is restricted to so-called Static

Affine Nested Loop Programs (SANLPs), discussed in [13] (e.g. a conditional
while-loop is not allowed, use a static for-loop instead). The PPN Model of Com-
putation consists of autonomously running processes with distributed memory
and control and communicate over FIFO channels using blocking FIFO read-
/write primitives. The processes can execute on various computing devices such
as the cores of the CPU, the FPGA, and/or GPU to take advantage of their
respective strengths. For each process of a PPN, a thread on the host CPU is
created. A core of a multi-core system is used for the actual computation when
a process is assigned to it. For external devices, e.g., the GPU, the host CPU
thread is only responsible for control flow, transfer of data to and from the device
and controlling execution of the computation on the device. In summary, given
a sequential program fulfilling the SANLP condition, the Daedalus framework

Parallel elastix 5

for(int t=1; t<=P; t++){
 for(int i=1; i<=M; i++){
 for(int j=4; j<=N; j++){
 r1[i+1][j-3] = F1(...); //stm1
 }
 }
 for(int l=3; l<=M; l++){
 for(int m=3; m<=N-1; m++){
 if (l+m<= 7){
 r2[l][m] = F2(r1[l-1][m-2]); //stm2
 }
 if (l+m>=8){
 r2[l][m] = F3(r1[l][N-3]); //stm3
 }
 ... = F4(r2[l][m]); // stm4
 }
 }
}

pn
F3F2

F1

Get() Get()

Put() Put()

FIFO1 FIFO2

F4

FIFO3 FIFO4

Put() Put()

Get() Get()

SANLP Process Network MoC

Fig. 1. Compiling a Static Affine Nested-Loop Program (SANLP) to a Polyhedral
Process Network.

automatically identifies independent tasks and delivers a parallelised version,
mapping each task to a processing node. Difficulties such as dead-locks, race-
conditions, and synchronisation issues are automatically managed by Daedalus

and can be safely ignored.
The derivation of a PPN from a SANLP is illustrated with an example in

Figure 1. This example is taken from [15] that for the first time presented an
analytical solution on how to extract PPNs from SANLPs. In Figure 1, a se-
quential program with 4 program statements is shown at the left-hand side. The
functions read/write data only through affine array accesses. The derived and
functionally equivalent PPN for this input code is shown at the right-hand side.
Each program statement (stmi) is translated to one process (Fi), and the array
accesses have been replaced such that the processes only communicate data over
FIFO channels.

If a process node attempts to read data from an empty channel, the process is
suspended until data is written into the channel. Similarly, if a process attempts
to write data to a full channel, it is suspended until the FIFO channel has room
for accepting the data. In HDPC, there are several mechanisms for realising the
communication between the processes. For example, ’lock-free’ channels are used
for physically moving data in the computer memory. In contrast, ’acquire-release’
mechanism exploits pointer arithmetic to avoid unnecessary data movement. De-
pending on the type of data, one approach is better than the other in terms of
performance and communication overhead [12]. The buffer size of the channels
can either be a minimal deadlock-free buffer, unbounded, or determined heuristi-
cally (smart). In the experiments, see Section 3.1, it is determined which setting
is optimal for the particular problem of image registration.

A current limitation of Daedalus is that it does not automatically recognise
opportunities for data parallelism. See for example the following code:

6 Semi-automatic parallel image registration

for (int i = 0; i < N; i++){

b(i) = F1(a(i)); //stm1

}

This code would result in a single process node F1, since there is only one state-
ment, although there is an obvious opportunity for data parallelism. By slightly
refactoring the code, the data parallelism can be exposed to Daedalus:

for (int i = 0; i < N/2; i++){

b(i) = F1(a(i)); //stm1

}

for (int i = N/2; i < N; i++){

b(i) = F1(a(i)); //stm2

}

This will result in two process nodes, each performing the same task. In order
for Daedalus to support data parallelism, modifications to the pn compiler are
needed.

2.3 Implementation

Algorithm 1 was implemented in C, fitting the SANLP requirements. This se-
rial code serves as the baseline code, which is an input for Daedalus. Since
Daedalus only determines task parallelism automatically, two manual modi-
fications of the baseline code were made to exploit data parallelism. The loop
over the samples x in the derivative (3) is independent from the sample num-
ber, and is therefore suitable for data parallelisation. Modification A divides
this loop, see also steps 5 - 13 from Algorithm 1, in several (Z) independent
chunks, see Section 2.2. This modification produces Z derivatives, one for each
chunk, which have to be added together to form the final derivative of iteration
k: ∂C/∂µk =

∑
Z ∂C/∂µz. Modification B additionally parallelises this addition.

2.4 GPU and OpenMP implementations

Much of the computation time for image registration is in the loop over the
samples, steps 5 - 13 from Algorithm 1. This loop is a perfect candidate for data
parallelisation: something a GPU is very capable of. Therefore, we investigate
the suitability of the GPU for image registration by implementing Algorithm 1
in CUDA. For comparison, we also implemented data parallelism using the well-
known OpenMP approach utilising the “#pragma omp parallel” statement.

For the GPU, computation of the transformation for each sample T (x) (used
in step 7 and 17 of Algorithm 1) is implemented using the work of Ruijters et al.
[16]. They decompose a 3rd order B-spline computation into a series of weighted
linear interpolations, an operation which is hard-wired on the GPU using 3D
textures. An issue with this approach is that the accuracy of the texture coor-
dinates is limited. Therefore, a straightforward implementation circumventing
this issue was also made available. Where Ruijters et al. use the decomposition

Parallel elastix 7

Table 1. Experimental details.

fixed image size moving image size P
lung 124 164 187 = 6× 105 124 164 187 = 6× 105 2.4× 104

small 52 75 165 = 6× 105 52 82 152 = 6× 105 3.4× 105

middle 105 150 330 = 5× 106 105 165 305 = 5× 106 3.5× 105

large 420 300 660 = 8× 107 420 330 610 = 8× 107 6.6× 105

System 1 Intel Core2 Quad, 2.66GHz; Nvidia Quadro FX1700; WindowsXP 64bit
System 2 Intel Xeon W3520, 2.66GHz; Nvidia Geforce GTX285; Windows7 64bit
System 3 Intel Core i7, 2.6GHz; Nvidia Geforce GTX295; Windows Vista 64bit

for scalar interpolation, we extend it to the computation of transformations T .
This simply comes down to performing the operation for each dimension. Where
at step 7 the transformation is computed only for N ≈ 2000 samples, at step 17
it is computed for all voxels of the fixed image, a number typically in the range
106 − 108.

3 Experiments and Results

Four 3D thoracic CT follow-up scans, varying in size (small, middle, large) have
been used in the experiments, together with three different computer systems.
Details are given in Table 1.

3.1 Daedalus registration results

Two important parameters of the Daedalus framework have been tested: the
channel type (LF = lock-free, and AR = acquire-release channels), and the buffer
size (MIN = minimal, and SMA = smart). Also the impact of modifications A
and B (see Section 2.3) was evaluated. Next to the Daedalus implementation,
the OpenMP implementation exploiting only data parallelism was tested. Non-
rigid registration experiments were performed with the scan ‘lung’ on System 3,
discarding resampling (steps 1-16 of Algorithm 1 only). See Table 2 for results.

In order to determine the maximum theoretical speedup, we ran several (in-
dependent) instances of the baseline code on System 3. The obtained perfor-
mance results were 4.5x on the 4 core system using hyper-threading. This is
an upper bound on the performance since there is no communication between
the CPU cores. Daedalus with lock-free channels and minimal (PPN1a) and
smart (PPN1b) buffers using the unadapted baseline code, results in a dete-
rioration of performance, due to communication dominating the computation.
Making data parallelism visible and using smart buffers (PPN2x) improves per-
formance. PPN2a and PPN2c only use modification A (see Section 2.3); PPN2b
and PPN2d additionally use modification B. PPN2a and PPN2b use lock-free
channels; PPN2c and PPN2d use acquire-release channels, avoiding excessive
data copying of µ at the cost of some additional book-keeping.

8 Semi-automatic parallel image registration

Table 2. Daedalus results, all kernels executed on the CPU. Runtime in seconds.
Registrations have been run using N = 2048 and K = 1000.

Z or #threads max.
method chan. buffer modif. 1 2 4 8 16 speedup

Baseline 25.6 13.6 7.8 5.6 5.7 4.5

PPN1a LF MIN - 120.1 0.2
PPN1b LF SMA - 69.2 0.4
PPN2a LF SMA A 19.0 20.2 20.5 20.8 22.6 1.4
PPN2b LF SMA A&B 19.0 20.9 10.2 11.1 11.1 2.5
PPN2c AR SMA A 15.7 17.0 16.6 18.0 19.8 1.6
PPN2d AR SMA A&B 15.7 18.4 7.5 8.2 7.8 3.4

OpenMP 26.2 10.1 9.8 9.9 15.7 2.6

Making Daedalus aware of as much data parallelism as possible in combi-
nation with acquire-release channels (PPN2d) gives the best performance with
a speed-up a factor of 3.4 on a 4 core machine. The Daedalus framework au-
tomatically exploits task parallelism, which is the most difficult to do manually,
giving a gain of about 25%, compared to only exploiting data parallelism using
OpenMP. The generated registration results are identical for all algorithms.

3.2 GPU registration and resampling results

The CUDA implementations of registration (steps 1 - 16) and of resampling
(step 17) are tested on three datasets and compared with the CPU baseline
implementation. Table 3 shows the timing results. For the registration, results
are shown in the upper table. The results for registration were not exactly equal
in terms of the final output µ̂ due to differences in the random number generator,
but they were very similar. In Table 3 the gain in performance is reported.
Speedup factors in the range 3.7 - 6.4 were measured.

As mentioned in Section 2.4, two implementations for the GPU were created:
a straightforward implementation (GPU1), and one based on the decomposition
into linear textures (GPU2). We generated a B-spline transform T ′ and ap-
plied it to the moving image. To validate the implementation, the Mean Square
Difference (MSD) of the deformed moving image IM (T ′(x)) compared to the
CPU-based result was measured. Resampling on the CPU was implemented in
a multi-threaded fashion using data parallelisation. The bottom part of Table
3 shows the results. For resampling with the fast implementation GPU2 factors
of 10 - 65 were measured. Implementation GPU1 is very accurate, the differ-
ences are all found at the boundary of the support region of the transformation,
due to the use of a different boundary condition. Implementation GPU2 has
inaccuracies at sharp edges, for example at the interface of bone and soft tissue.

Parallel elastix 9

Table 3. GPU results for registration (top) and resampling (bottom). Timings are
shown in seconds. top: K = 1000. Failure on System 1 was due to insufficient memory
for the large data sets. Bottom: the last two columns show the mean square difference
in result between CPU and GPU implementation.

System 1 System 2
image N CPU GPU ratio CPU GPU ratio

small 2×103 21.4 10.9 2.0 16.1 4.3 3.7
2×104 211.2 90.3 2.3 153.3 24.6 6.2

middle 2×103 23.1 11.0 2.1 17.2 3.9 4.5
2×104 213.5 89.0 2.4 157.5 24.7 6.4

large 2×103 53.2 fail - 32.8 7.1 4.6
2×104 245.5 fail - 175.7 28.8 6.1

System 1 System 2 MSD (HU)
image CPU GPU1 GPU2 ratio CPU GPU1 GPU2 ratio MSD1 MSD2

small 2.2 0.3 0.1 15.5 0.8 0.1 0.1 8.8 1.3 2.7
middle 17.2 2.3 1.0 18.0 6.7 0.3 0.2 30.5 0.3 1.0
large 267.2 28.9 7.5 35.8 106.1 3.2 1.6 64.8 0.0 0.3

4 Discussion and conclusion

We have investigated the framework Daedalus for its use in image registra-
tion. This generic architecture (of potential interest to other areas of medical
image processing) successfully extracted independent processes in the registra-
tion algorithm in an automated fashion. Daedalus relieves the developer from
identifying independent tasks, setting up different threads and distributing tasks
to them, and additionally from concerns about dead-locks, race-conditions, etc,
that hinder correct program execution.

Manual work was still required, first to specify the serial algorithm in terms
of a SANLP, and then to assist in identifying data parallelism possibilities. These
steps present room for improvement in the Daedalus framework, but are al-
ready now of a much simpler nature than taking everything in own hands.

The Daedalus approach resulted in a speed-up a factor of 3.4 on a 4-core
CPU, compared to 2.6 when only exploiting data parallelism using OpenMP.
A complete rewrite of the algorithm in CUDA gave a speed-up of about 4.5
on a Geforce GTX 285, but presented much more labour and an additional
requirement for the programmer to understand the workings of the GPU. For
resampling the GPU proves to be an efficient computing device delivering a
speed-up of 10 - 65.4

Future work includes the study of new bottlenecks, improving Daedalus,
minimising random memory accesses on the GPU needed for computing ∂T /∂µ,

4 The GPU resampler has been integrated in elastix, an open source software package
for image registration [17], and will be available in the upcoming 4.4 release.

10 Semi-automatic parallel image registration

and the extension of the registration algorithm to more advanced techniques
including multi-resolution and a mutual information cost function.

In conclusion, Daedalus is a very useful assistant for improving the perfor-
mance of image registration algorithms, so needed for real-time application of
imagery in the operating room.

References

1. Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Medical
Image Analysis 2(1) (1998) 1 – 36

2. Hill, D., Batchelor, P.G., Holden, M., Hawkes, D.J.: Medical image registration.
Physics in Medicine and Biology 46(3) (2001) R1 – R45

3. Pennec, X., Cachier, P., Ayache, N.: Tracking brain deformations in time sequences
of 3D US images. Pattern Recognit. Lett. 24(4-5) (2003) 801–813

4. Fei, B., Duerk, J.L., Sodee, D.B., Wilson, D.L.: Semiautomatic nonrigid registra-
tion for the prostate and pelvic MR volumes. Academic Radiology 12(7) (2005)
815 – 824

5. Kerkhof, E., van der Put, R., Raaymakers, B., et al.: Intrafraction motion in
patients with cervical cancer: The benefit of soft tissue registration using MRI.
Radiotherapy and Oncology 93(1) (2009) 115 – 121

6. Klein, A., Andersson, J., Ardekani, B.A., et al.: Evaluation of 14 nonlinear defor-
mation algorithms applied to human brain MRI registration. NeuroImage 46(3)
(2009) 786 – 802

7. Nikolov, H., Stefanov, T., Deprettere, E.: Systematic and automated multipro-
cessor system design, programming, and implementation. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 27(3) (2008) 542 – 555

8. Nikolov, H., Thompson, M., Stefanov, T., et al.: Daedalus: Toward composable
multimedia MP-SoC design. In: 45th ACM/IEEE Int. Design Automation Confer-
ence (DAC’08), Anaheim, USA (2008) 754 – 579

9. Klein, S., Staring, M., Pluim, J.P.W.: Evaluation of optimization methods for
nonrigid medical image registration using mutual information and B-splines. IEEE
Trans. Image Process. 16(12) (2007) 2879 – 2890

10. Rueckert, D., Sonoda, L.I., Hayes, C., et al.: Nonrigid registration using free-form
deformations: Application to breast MR images. IEEE Trans. Med. Imaging 18(8)
(1999) 712 – 721

11. Lee, E.A.: The problem with threads. Computer 39 (2006) 33 – 42
12. Farago, T., Nikolov, H., Deprettere, E.: A framework for heterogeneous desktop

parallel computing. Master’s thesis, Leiden University, LIACS (2008) Internal
Technical Report 08-17.

13. Verdoolaege, S., Nikolov, H., Stefanov, T.: pn: a tool for improved derivation of
process networks. EURASIP J. Embedded Syst. 2007(1) (2007) 19 – 19

14. Bhattacharrya, S., Leupers, R., Takala, J., Deprettere, E., eds.: Polyhedral process
networks. In: Handbook on signal processing systems. Springer (2010)

15. Turjan, A.: Compiling Nested Loop Programs to Process Networks. PhD thesis,
Leiden University (2007)

16. Ruijters, D., ter Haar Romeny, B.M., Suetens, P.: Efficient GPU-based texture
interpolation using uniform B-splines. J. Graphics Tools 13(4) (2008) 61 – 69

17. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W.: elastix: a
toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging
29(1) (2010) 196 – 205

