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Abstract. Nonrigid registration is a technique to recover spatial deformations
between images. It can be formulated as an optimization problem to minimize
the image dissimilarity. A regularization term is used to reduce undesirable de-
formations which are usually employed in a homogeneous or spatial-variant fash-
ion. When spatial-variant regularization is used in nonrigid registration of dy-
namic contrast-enhanced magnetic resonance imaging (DCE-MRI), the local co-
efficients have been determined by manual segmentation of tissues of interest.
We propose a framework to generate regularization coefficients for nonrigid reg-
istration in DCE-MRI, where tumor locations are to be transformed in a rigid
fashion. The coefficients are obtained by applying a sigmoid function on sub-
traction images from a pre-registration. All parameters in the function are auto-
matically determined using k-means clustering. The validation study compares
three regularization weighting schemes in nonrigid registrations: a constant coef-
ficient for a volume-preserving term, binary coefficients obtained by manual seg-
mentation and a real-value coefficients using the proposed method on a rigidity
term. Evaluation is performed using displacements, intensity changes and volume
changes of tumors on synthetic and clinical DCE-MR breast images. As a result,
the registration using spatial-variant rigidity terms performs better than using ho-
mogeneous volume-preserving terms. For the coefficient generation methods of
a rigidity term, the proposed method can replace the binary coefficients requiring
manual tumor segmentation.

1 Introduction

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used to differ-
entiate between malignant and benign lesions in cancer diagnosis. A sequence of 3D
MRI scans before and after the injection of a paramagnetic contrast agent is acquired to
form a 4D (3D+time) DCE-MR image. The 4D imaging technique allows an analysis
of the variation of the magnetic resonance (MR) signal intensity, before and after the
injection of contrast enhancement. The time-intensity curve patterns can be used in the
detection of tumors. However, the motion in between the image acquisitions can com-
plicate the analysis. Image registration is used in DCE-MR image analysis to achieve
alignment between images. Image registration is an optimization problem aiming to
minimize the image dissimilarity. In registration of DCE-MRI, free-form deformation



(FFD) based nonrigid registration is widely used to remove motions in between image
acquisition of the pre- and post-contrast images [1]. All post-contrast images at differ-
ent time steps are registered to the baseline pre-contrast image such that the same tissue
is located at the same position in all images.

There are two reasons that lead to an intensity difference. One is motion occurred
in between image acquisitions and the other is intensity enhancement caused by the
injection of contrast agent. Therefore, minimizing the image dissimilarity during the
image registration can reduce the occurred motion but also change the volume of the
enhanced region [2]. This can be countered through the use of regularization.

An incompressibility constraint was proposed to preserve tumor volumes [ 2], which
is applied on the whole breast region with the same weight for all types of tissues. The
assumption is that the tissue volume does not change over a short period of time. How-
ever, most DCE-MR images require several minutes’ acquisition time and the breath or
body gesture changes of a patient might change the volume of soft breast tissues.

Spatial-variant rigidity constraints [3,4,5] were proposed to preserve the rigidity
of tissues. When applying a rigidity term in the registration of DCE-MR images, it
requires a coefficient or stiffness map on each post-contrast image to determine the
penalty weight on various types of tissue. Tumors are usually assumed to be rigid while
other tissue (e.g. fat) is relatively soft. Therefore a segmentation of the enhanced tumors
on the post-contrast image can be used to build a binary stiffness map. Manual segmen-
tation is usually regarded as the most accurate method but can be time consuming; and
automatic enhanced tumor segmentation on subtraction images usually requires a pre-
liminary successful registration to remove motion artifacts. Therefore, it is important
to build a robust and reliable method to compute the regularization coefficients for the
registration in DCE-MR images.

We propose a framework to compute the rigidity registration coefficients in appli-
cation to 4D DCE-MR images. A pre-registration is performed that registers the pre-
contrast image to each post-contrast image. A subtraction image is obtained, identify-
ing corresponding tissue enhancement information. We subsequently apply a sigmoid
function to map the voxel intensity in the smoothed subtraction image to form the reg-
ularization coefficients. All parameters of the sigmoid function are determined by a
k-means clustering method.

In our validation study on synthetic and clinical DCE-MR breast images, we com-
pare registration schemes with various methods to compute the coefficients of the rigid-
ity regularization term: a constant term, a binary function that requires an explicit seg-
mentation, and the proposed mapping method.

2 Image registration

Image registration is defined as a problem of finding a spatial transformation T relating
two images of dimension d, one of which is fixed (IF ) and the other moving (IM ). In
this paper, we employ intensity-based image registration, formulated as an optimization
problem in which the cost function C is minimized with respect to the spatial transfor-
mation T . The cost function defines the quality of the match, in combination with a



regularization of the transformation. The optimization problem can be formulated as:

µ̂ = argmin
µ

Csim(Tµ; IF , IM ) + wCreg(Tµ), (1)

where the subscript µ indicate the transformation parameters, C sim denotes the image
similarity, which is mutual information [6] in this paper, and Creg is used to penalize
nonrigid deformations as a soft constraint weighted by a scalar w. A rigidity regu-
larization term proposed by Staring et al. [5] is employed in the registration package
elastix[7]. We adopt a B-splines based transformation model [1] in this paper, called
free-form deformation (FFD).

3 Method

LetF be a regularization term that can be applied on transformationT with a coefficient
map function γ : R → R. A general form of this term can be represented as:

Creg(T ) =

∫
x∈Ω

γ(x)F (T ;x)2∫
x∈Ω

γ(x)
(2)

The coefficient mapping function γ maps each voxel in a moving image to a value
that suggest the weight of the regularization term applied on it. The simplest mapping
function is a constant number where all voxels x in an image are equally weighted,
γ(x) = α. For instance, Rohlfing [2] applied a uniformly weighed incompressibility
term on all breast regions.

Another commonly used function is a binary function that requires a preliminary
segmentation of various tissues. For instance by performing a tumor segmentation on
the DCE-MR images, the weight on tumor tissue is 1 and non-tumor tissue is 0.

Another kind of function is to map the intensity of an image to another range when
the intensity can imply the tissue types. Ruan et al. [4] maps a CT image into a new
range where most of voxels have either value 1 (bone tissues) or 0. The assumption is
the voxel intensity value that falls in a certain range in a CT image suggests the bone
tissues.

In DCE-MR images, the intensity does not always link to tissue types. However,
most tumors are more rigid than healthy tissue and are usually enhanced in post-contrast
images. Subtraction images of pre- from post-contrast image show enhancement of
tissues provided there is no motion in between. Based on the assumption that tumors
get enhanced in post-contrast images, we obtain regularization coefficients by applying
a sigmoid mapping function on subtraction images from a pre-registration.

Given a pre-contrast image f and post-contrast image g, f is registered to g using a
rigid and then nonrigid (FFD) registration algorithm, obtaining a registered pre-contrast
image f ′. A subtraction image denoted as h shown in Figure 1(a) is obtained by sub-
tracting f ′ from g and then smoothed by a Gaussian filter (σ = 2) shown in Figure1(b).
A non-linear mapping function, sigmoid function, is then applied on the subtraction
image h, resulting in the coefficient image (Figure1(c)).

In the pre-registration, the tumor volume in pre-contrast might have changed, but
the intensity of post-contrast image will dominate the intensity in subtraction image,
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(c) Coefficients

Fig. 1: Central slices of image volume of a subtraction image, after being smoothed and
after applying sigmoid function on the subtract image.

therefore, the tumor volume change in pre-contrast image will not effect the resulting
coefficient image.

Let I(x) be the intensity value at voxel x in subtraction image h, the mapping
function γ(x) transform I(x) to a new range with a center α and scale β:

γ(x) =
max−min(

1 + e
−
(

I(x)−β
α

)) +min, (3)

where max and min are maximum and minimum intensity of the image, α and β are
determined by performing a k-means clustering method on the smoothed subtraction
image h and partitioning it into k groups with various intensity means. The highest in-
tensity mean value is assigned to β and the standard deviation of that cluster is assigned
to α. Therefore, the only user-defined parameter is the number of clusters k. The per-
formance of the registration is demonstrated to be insensitive to the value of k in the
range of 2 to 5.

4 Validation

All DCE-MR breast images were acquired with a Siemens 1.5 MR system, where
TR = 5.11ms, TE = 2.7ms, field of view = 340mm. The voxel dimensions were
around 0.68×0.68×1mm. The slice orientations were axial and reformatted to identity
orientation for visualization convenience. The total acquisition time was 6.24 minutes,
including 6 time steps in a four-dimensional DCE-MR breast image (1 before and 5
after injection of contrast agent).

4.1 Synthetic datasets

We select 3 clinical DCE-MR breast images without obvious motions to generate 3×10
synthetic images with simulated deformations. The three images show various tumor
volumes (1.5cm3, 11.8cm3, 22.3cm3) or enhancement patterns (homogeneous, hetero-
geneous). The subtraction images of the pre- from post-contrast images are shown in
Figure 2. Two image volumes in each clinical DCE-MR breast image series are used in



Fig. 2: Selected slices of subtraction image of pre- from post-contrast images in the
three clinical image series, which are used to generate synthetic images.

building a synthetic image set: a pre- and a post-contrast image volumes at the second
time point after injection of contrast agent (f0, g0). We manually segment the enhanced
tumors s0 from the post-contrast images, which will be used in the validation study as
a ground truth of tumor volume, location and intensity.

For the deformation simulation, we randomly generate two rigid transformations
(Tr1 ,Tr2), and two B-spline transformations with a grid point space of 10mm and
20mm. We later update these B-spline transformations to Tb1 ,Tb2 such that the tu-
mors are rigidly deformed by enforcing the related control points to be zero. We subse-
quently compose all transformations to Tgt(x) = Tb1 ◦Tr1 ◦Tb2 ◦Tr2 , which are used
to construct synthetic pre- and post-contrast images f1,m1 and tumor mask s1, where
f1 = f0, g1 = Tgt(g0), and s1 = Tgt(s0).

4.2 Evaluation method

The Target Registration Error (TRE) [8] is used to evaluate the degree of alignment
between two corresponding voxels in terms of deformations:

TRE =
∑
x∈Ω

||Test ◦ Tgt(x)− x||, (4)

where Tgt is the simulated deformation, Test is the estimated transformation obtained
from various registration schemes. A smaller TRE value suggests a registration can
better recover the simulated motion.

We also measure the recovery of the motion in synthetic post-contrast images by
measuring the intensity similarity with the corresponding original post-contrast images,
using root mean squared error (RMS) and normalized correlation (NC):

RMS(A,B) =

√√√√ 1

N

N∑
i=1

(Ai −Bi)2, NC(A,B) =

∑N
i=1(Ai ·Bi)√∑N

i=1 A
2
i ·

∑N
i=1 B

2
i

where Ai, Bi is the intensity of i-th voxel of images A and B, andN is the total number
of voxels considered. Smaller RMS values and higher NC values suggest higher image
similarity and hence better registration performance.

We also compute the tumor volume changes by applying the estimated transforma-
tion Test on the tumor mask s1.
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Fig. 3: TRE over the breast region is shown on left y-axis and volume change over
the tumor region is on the right y-axis. (a) shows VPC registration scheme results for
α ∈ [0.1, 7]. The tumor volume change decreases as the weight α increase. TRE for
breast region increases fast for α > 5. (b) shows ARC(k=5) results for α ∈ [0.1, 1.5].
The running time for α > 1.5 are more than 15 minutes. Note the axes scales of (a) and
(b) are different

4.3 Experiment and results

We perform registrations using three methods to compute regularization coefficients:
constant number γ(x) = 0 for unconstrained FFD (denoted as UC) and γ(x) = 1 for
volume-preserving constraint (VPC) [2], binary function based on manual segmenta-
tion of tumors (MRC) and our proposed automatic method (ARC(k)) for rigidity con-
straint [5]. We evaluate the robustness of the proposed method to the number of clusters
k of range 2 to 5, used in determining the parameters of sigmoid function. Each regis-
tration scheme is tested on 30 synthetic and 5 clinical images and the performance is
evaluated on the whole breast and tumor regions. Initial rigid registrations are employed
in all tests. A multi-resolution scheme using 4 resolutions is employed for all nonrigid
registrations, from 8, 16, 32 to 64mm. This is designed to be different from the resolu-
tion and grid space in the deformation simulation in order to reduce the evaluation bias.
The breast regions are selected by performing a thresholding segmentation on cropped
one-side breast images and followed by a morphology closing to remove holes. The pa-
rameter α in equation (1) is determined by finding the value that can best preserve the
tumor volume while maintaining comparable or better result than unconstrained FFD
scheme and the computation time is less than 15 minutes. Figure 3 shows an example
of registration results on a synthetic image set using a range of α value.

Table 1 shows the registration results on synthetic images with ground-truth. Volume-
preserving constrained scheme (VPC), with higher RMS and lower NC value on breast
region, shows worse result than UC. However, VPC has smaller TRE than UC and
the difference could come from distortion of tumors. Rigidity constrained schemes
(ARC(k) for k = 3, 4, 5 and MRC) perform better than volume-preserving constrained
(VPC) schemes in terms of smaller mean TRE and RMS, higher NC over the whole
breast and tumor regions and less tumor volume loss. It demonstrates that using spatial



Breast regions Tumor regions

TRE RMS NC TRE RMS NC Vol change

UC 3.42±3.11 36.20±4.56 0.90±0.01 1.09±0.79 53.11±2.15 0.79±0.03 0.20±0.11
VPC 2.40±1.36 37.30±4.50 0.89±0.02 0.33±0.19 49.32±3.36 0.82±0.03 0.04±0.02
ARC(2) 1.32±1.04 35.61±4.67 0.90±0.01 0.16±0.15 45.35±6.22 0.85±0.04 0.04±0.04
ARC(3) 1.55±0.95 34.91±3.56 0.90±0.01 0.13±0.11 45.22±5.97 0.85±0.03 0.03±0.02
ARC(4) 1.60±0.97 34.62±3.87 0.91±0.01 0.10±0.07 44.59±5.41 0.85±0.03 0.01±0.01
ARC(5) 1.60±0.71 34.75±3.94 0.91±0.01 0.10±0.07 44.72±5.07 0.85±0.02 0.01±0.01
MRC 1.50±0.86 34.40±3.87 0.91±0.01 0.10±0.06 44.76±4.88 0.85±0.02 0.01±0.01

Table 1: Evaluation result for 30 synthetic images.

variant rigidity constraint can achieve better overall and local registration performance.
Within rigidity constrained registration schemes, ARC(4,5) shows similar performance
on both breast and tumor regions. As k increases from 2 to 4, the registration perfor-
mance improves, except for the TRE getting larger over the breast regions. The reason
could be ARC(2) apply penalty on larger enhanced regions, and preserve the deforma-
tion of these enhanced regions as well in addition to enhanced tumors.

Table 2 shows registration results on 5 clinical images. Only NC is used to com-
pute the image similarity between the registered post- to the pre-contrast images due
to their different intensity levels. Note this is different from the tests on synthetic data
where ground-truth is available. All registrations schemes show similar performance
over breast regions in terms of NC value. ARC(2,3,4,5) and MRC preserved the vol-
ume of the tumors to an accuracy of 100%, compared to 2% ± 2% volume change in
VPC schemes. All registration schemes with constraints show significantly better than
the unconstrained method (UC) of 32% ± 33% tumor volume change. The global and
local registration results obtained from clinical data are roughtly consistent with the
synthetic data.

5 Discussion and conclusions

We proposed a framework to compute regularization coefficients in nonrigid registra-
tion using a sigmoid mapping method on a subtraction image obtained from a pre-
registration. The evaluation results show that using a homogeneous volume-preserving
constraint in nonrigid registration of DCE-MR beast images can reduce the tumor vol-
ume changes. Spatial variant rigidity constraint can further improve the volume preser-
vation performance while showing better overall performance on the whole breast re-
gions. The proposed method can replace the manual segmentation method to compute
the rigidity term coefficients by showing comparable local and global registration per-
formance. Note that our focus is not to create a better tumor segmentation method, but
a framework that can replace the manual segmentation in computing the rigidity term
coefficients.

In this framework, unconstrained FFD is used in pre-registration to remove enhance-
ment artifact caused by motion in subtraction image, where the tumor volume in pre-



Breast regions tumor regions

NC Vol change

UC 0.81±0.04 0.32±0.33
VPC 0.81±0.04 0.02±0.02
ARC(2) 0.81±0.04 0.00±0.00
ARC(3) 0.81±0.05 0.00±0.00
ARC(4) 0.81±0.04 0.00±0.00
ARC(5) 0.81±0.04 0.00±0.00
MRC 0.81±0.04 0.00±0.00

Table 2: Evaluation results for the 5 clinical data.

contrast image may change. Since the intensity of tumor region in subtraction image is
dominated by post-contrast image, in our study we observed that the effect of volume
change in pre-contrast image on the sigmoid mapping on the subtraction image is shown
to be very limited. A possible future work is to evaluate the effect of pre-registration on
the rigidity coefficients generation.

Acknowledgments NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital Economy and the
Australian Research Council.

References

1. Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration
using free-form deformations: application tobreast MR images. IEEE Transactions on Medical
Imaging 18(8) (1999) 712–721 2, 3

2. Rohlfing, T., Maurer Jr, C., Bluemke, D., Jacobs, M.: Volume-preserving nonrigid registration
of MR breast images using free-form deformation with an incompressibility constraint. IEEE
Transactions on Medical Imaging 22(6) (2003) 730–741 2, 3, 6

3. Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P.: Nonrigid image registration using free-
form deformations with a local rigidity constraint. MICCAI (2004) 639–646 2

4. Ruan, D., Fessler, J., Roberson, M., Balter, J., Kessler, M.: Nonrigid registration using reg-
ularization that accommodates local tissue rigidity. Proc. of SPIE 6144 (2006) 346–354 2,
3

5. Staring, M., Klein, S., Pluim, J.: A rigidity penalty term for nonrigid registration. Medical
Physics 34(11) (2007) 4098–4108 2, 3, 6

6. Mattes, D., Haynor, D., Vesselle, H., Lewellyn, T., ubank, W.: Nonrigid multimodality image
registration. Proc. of SPIE 4322 (2001) 1609–1619 3

7. Klein, S., Staring, M., Murphy, K., Viergever, M., Pluim, J.: Elastix: a toolbox for intensity-
based medical image registration. IEEE Transactions on Medical Imaging 29(1) (2010) 196–
205 3

8. Schnabel, J., Tanner, C., Castellano-Smith, A., Degenhard, A., Leach, M., Hose, D., Hill, D.,
Hawkes, D.: Validation of nonrigid image registration using finite-element methods: appli-
cation to breast MR images. IEEE Transactions on Medical Imaging 22(2) (2003) 238–247
5




