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Quantitative evaluation of image registration algorithms is a difficult and under-addressed issue due to
the lack of a reference standard in most registration problems. In this work a method is presented
whereby detailed reference standard data may be constructed in an efficient semi-automatic fashion.
A well-distributed set of n landmarks is detected fully automatically in one scan of a pair to be registered.
Using a custom-designed interface, observers define corresponding anatomic locations in the second scan
for a specified subset of s of these landmarks. The remaining n � s landmarks are matched fully automat-
ically by a thin-plate-spline based system using the s manual landmark correspondences to model the
relationship between the scans. The method is applied to 47 pairs of temporal thoracic CT scans, three
pairs of brain MR scans and five thoracic CT datasets with synthetic deformations. Interobserver differ-
ences are used to demonstrate the accuracy of the matched points. The utility of the reference standard
data as a tool in evaluating registration is shown by the comparison of six sets of registration results on
the 47 pairs of thoracic CT data.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Medical image registration is a well-established field of re-
search upon which a substantial body of literature has been built
over the past three decades (Brown, 1992; Maintz and Viergever,
1998; Lester and Arridge, 1999; Hill et al., 2001; Zitová and Flusser,
2003; Pluim et al., 2003). Although there have been significant
advancements in registration techniques themselves, relatively lit-
tle consideration has been given to methods of registration evalu-
ation. Visual assessment may be sufficient to distinguish a very
poor registration from an excellent one, particularly for 2D images.
However, as more sophisticated algorithms are developed the dis-
tinction between the resulting registrations becomes more subtle
and difficult to assess by eye. In the case of 3D and 4D image reg-
istrations visual assessment becomes unfeasible and alternative
quantitative measures of registration accuracy are required.

Registration techniques may be divided into rigid and non-rigid
classes. Rigid registrations involve rotation and translation at the
most basic level, or in the case of affine transformations, may also
include scaling and shearing. Non-rigid registrations handle elastic
or fluid deformations, which must model far more complex
motion, typically with many local changes in direction and magni-
tude of deformation. Since rigid registrations have far fewer
ll rights reserved.
degrees of freedom they represent a class of problem which is sim-
pler to solve, and for which results are easier to evaluate. For exam-
ple, by the manual specification of just a few corresponding
locations, the desired transformation may be defined. For non-rigid
registration however, both the solution and the evaluation of pro-
posed solutions are highly complex problems.

The major obstacle in quantitative evaluation of non-rigid reg-
istration algorithms is the lack of any reference standard. The de-
sired image transformation is rarely, if ever, known and manual
specification of the full transform is simply not possible. The liter-
ature on registration evaluation methods may, in general, be di-
vided into methods which attempt to evaluate in the absence of
a reference standard (Glatard et al., 2006; Schnabel et al., 2003;
Urschler et al., 2007; Wang et al., 2005), and methods which rely
on a defined reference standard, which is unobtainable for most
researchers (Škerl et al., 2008; Crum et al., 2004; Grachev et al.,
1999; Heath et al., 2007; Blaffert and Wiemker, 2004; Betke
et al., 2003; Vik et al., 2008; Castillo et al., 2009; Wu et al., 2008;
Boldea et al., 2008; Pevsner et al., 2006).

A number of authors propose investigating registration perfor-
mance by synthetically warping data such that the original image
and the transformed image are known in advance as well as the
ideal transform between them (Schnabel et al., 2003; Urschler
et al., 2007; Wang et al., 2005). No reference standard needs to
be defined for this type of evaluation, since it is already implied
by the synthetic transformation used. Although attempts are made
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to use physically plausible transformations, this approach provides
only a generic evaluation and an algorithm’s performance on real
clinical data cannot be measured in this way. Glatard et al.
(2006) have described a method of estimating the ground-truth
with a ‘bronze standard’ obtained through the application of many
registration algorithms to a large database of images. However, the
method has not been extended to non-rigid registration problems
and is very dependent on having a large number of good registra-
tion algorithms as well as an extensive database, both of which are
difficult for many researchers to obtain.

Another common method of non-rigid registration evaluation is
to measure the overlap of structures of interest in the target and
registered images (Crum et al., 2004; Hellier et al., 2003). This
method requires the availability of segmentations of the struc-
ture(s) to be considered. Although overlap-based evaluation is
intuitively reasonable it should be observed that it is limited by
the quality of segmentations available and the type of structures
that they represent. Large coarse structures (such as lung volumes)
are typically well-captured by segmentations but rich details (such
as vessel-trees within the lungs) are difficult to segment accurately
and are therefore usually overlooked in evaluations which use
overlap measures.

Other authors have measured registration accuracy based on
point sets such as nodule positions (Blaffert and Wiemker, 2004;
Betke et al., 2003), or manually annotated contours or landmarks
(Vik et al., 2008; Castillo et al., 2009; Grachev et al., 1999; Crum
et al., 2004; Wu et al., 2008; Boldea et al., 2008; Heath et al.,
2007; Pevsner et al., 2006). Manual annotations are frequently
small sparse point sets with poor distribution throughout the im-
age. Larger sets of landmarks have been used by some authors,
most notably Castillo et al. (2009) but these are typically required
to be carried out by an expert observer which is expensive and
impractical for a large set of images.

In (Jannin et al., 2002), Jannin et al. recommend the develop-
ment of standardised validation procedures for medical image
processing techniques including registration. In particular, valida-
tion using a common, publicly available set of validation data
with corresponding ground-truth is advised. Unfortunately few
such datasets are currently available due to the logistical difficul-
ties of creating a comprehensive reference standard for registra-
tion. The ‘Vanderbilt Dataset’ (West et al., 1997) is a set of
volumetric brain images available online as part of the Retrospec-
tive Image Registration Evaluation (RIRE) project. The reference
standard for registration of these images is based on skull-im-
planted markers. A further set of 16 brain MR images is available
from the Non-Rigid Image Registration Evaluation Project (NIREP)
(Christensen et al., 2006) along with segmentation information. A
single 4D lung CT dataset consisting of 10 3D images is supplied
by the POPI-model (Vandemeulebroucke et al., 2007) including 41
landmarks identified in each 3D image. The University of Texas
M. D. Anderson Cancer Center supplies 2 phases from each of
10 4D datasets, with 300 landmarks per phase (Castillo et al.,
2009). For 2D–3D registration, data has been published by van
de Kraats et al. (2005) and Tomazevic et al. (2004). We are not
aware of any other freely available reference standards for
registration.

One of the major obstacles to any group creating a large set of
reference standard data, much less making it publicly available, is
the amount of manual work involved in annotating the data. In this
article a method is presented to formulate a registration reference
standard in an efficient semi-automatic manner resulting in a
well-distributed set of corresponding landmarks. The technique
has been developed and demonstrated on pairs of temporal tho-
racic CT scans, however, in principle, it has the potential to be uti-
lized in many other applications, particularly intra-subject, single
modality registration problems. For inter-subject or multi-modality
problems the same principle may be applied but modifications to
certain parts of the algorithm would be required.

This method is designed specifically to overcome the problems
of evaluating non-rigid registration techniques, although it may be
equally well be applied to rigid or affine registration problems. The
manual component of the reference standard construction could
be completed by non-expert observers for our experiments,
making it feasible to annotate large datasets without excessive
consumption of expert resources. The ability to define correspon-
dence in this way overcomes many of the difficulties usually in-
volved in producing large sets of registration reference standard
data. The software described in this article will be made publicly
available on the website http://isiMatch.isi.uu.nl.

Reference standards have been constructed on 47 pairs of tem-
poral thoracic CT scans, three pairs of brain MR scans and five pairs
of CT scans with synthetic deformations. The opinions of the
non-expert observers employed have been compared to those of
a radiology expert in 5 cases. For the purposes of demonstrating
the utility of the constructed reference standard data, it has been
used in the evaluation of various registration procedures with dif-
ferent settings. Those settings where the registration performance
is expected to be weak show decidedly worse results based on our
evaluation. For other more successful registration algorithms, the
ability to quantitatively analyse their results allows for the detec-
tion of subtle differences between them which might otherwise
have been overlooked.
2. Materials and study setup

The principal set of data used in this work consists of a set of
low-dose thoracic CT scans which form part of a lung cancer
screening trial (Xu et al., 2006). Forty-seven subjects (44 male, 3 fe-
male, ages 51–74 years), each with a baseline and a follow-up scan
(3–15 months apart) were chosen randomly from the screening
trial database. All scans were obtained at full inspiration and with-
out contrast injection on a 16 detector-row scanner (Mx8000 IDT
or Brilliance 16P, Philips Medical Systems). Exposure settings were
30 mAs at 120 kVp for subjects weighing below 80 kg or 30 mAs at
140 kVp for those weighing over 80 kg. A soft reconstruction filter
(Philips ‘‘B”) was used. The scans have a per-slice resolution of
512 � 512, with the number of slices per scan varying from 374
to 579 (on average 462). Slice thickness is 1 mm with slice-spacing
of 0.7 mm. Pixel spacing in the X and Y directions varies from
0.61 mm to 0.89 mm with an average spacing of 0.73 mm.

An additional set of MRI brain data from three subjects is also
included. This data is taken from the SMART-MR study (Simons
et al., 1999). The MR scans were made using a 1.5-T whole-body
scanner (Gyroscan ACS-NT, Philips Medical Systems, Best, The
Netherlands). The protocol consisted of a transversal T1-weighted
gradient-echo sequence (repetition time (TR)/echo time (TE): 235/
2 ms, flip angle 80). The image matrix size is 256 � 256 with 38
slices per scan. Slice thickness is 4.0 mm with an in-plane voxel
size of 0.89 mm � 0.89 mm.

In order to establish a reference standard for the data described
above, two medical students were employed to carry out the man-
ual component of the ground-truth construction. Each student pro-
cessed all scan pairs independently in order that the interobserver
differences could be analysed.
3. Methods

In this section the methods to identify and match landmark
locations in a pair of scans are described. Our main application is
thoracic CT data and therefore the descriptions refer to the method
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as it applies to this task. However the method is also later tested on
brain MRI data as described in Section 4.4.

First a set of n well-distributed distinctive landmark locations
are detected automatically in the baseline scan. The first s points
(which are themselves also well distributed) are matched manu-
ally in the follow-up scan by an observer using a custom-made
graphical user interface. The point pairs matched by the observer
are used by the system to model the relationship between the
baseline and follow-up scans. When s pairs have been completed
the remaining n � s matches are made fully automatically using
the relationship model and a local block-matching refinement
scheme.

Variable parameters mentioned in the text are listed in Table 1
along with the values assigned to them in the thoracic CT experi-
ments and in the brain MR experiments described in Section 4.4.
All parameter values were chosen empirically based on
experimentation.
3.1. Automatic landmark detection

The initial step in setting the reference standard is to automat-
ically determine a number of landmark locations in the baseline
scan for each subject. It should be noted here that the landmark
detection step will perform well only on data with sufficient
structural detail such that corresponding points can be visually
identified. Wörz and Rohr (2006) and Frantz et al. (2005) have pub-
lished methods for determining significant anatomical landmarks
based on an initial region of interest and on local image features.
However, for our experiments, one of our main requirements was
that the landmarks would be well-distributed throughout the re-
gion of interest (the lung volume in CT, and the brain tissue in
MR). The nature of pulmonary anatomy, for example, is that most
significant anatomical features are located around the mediastinal
area, with very few if any points of interest in the outer regions of
the lung close to the pleura. For this reason we developed a method
of landmark detection to identify points which may not be struc-
turally significant, but are sufficiently contrasted with their
surroundings to allow an observer to visually identify the corre-
sponding location on the follow-up scan.

The algorithm to detect landmarks described here is partially
based on the work of Likar and Pernuš (1999). A lung mask is used
to ensure that the points are located within the lungs since our
application is concerned with registration of the lung volume only.
(A mask is not required if the registration being evaluated is in-
tended to register all visible structures in the image.) This mask
Table 1
System parameters and the values used for the CT and MRI experiments described in this a
the MRI experiments as explained in Section 4.4.

Name Description

i Only every ith point in each direction is considered when calculating landm
dp Points within dp of the mask boundary are not considered when calculating
TG Gradient threshold below which points are not considered when calculating
r1 Radius of sphere constructed around each point under consideration when c
m The number of uniformly distributed points examined on the spherical surfa
r2 The radius of the ROI around each of the m uniformly distributed points wh
n The number of landmark points to be selected from the candidate list
dm The initial minimum distance requirement used when ordering the landmar
c1 The length of the cube side for the cubic region defining candidate points to
c2 The length of the cube side for the cubic region compared during block-mat
TSSD The threshold used in block matching for the root mean squared difference
s The number of points required to be manually matched
x Threshold used in establishing the accuracy of the trained system. x of the y m

and observer chosen match
y Threshold used in establishing the accuracy of the trained system. x of the y m

and observer chosen match
da The threshold distance for deciding accuracy in comparing system guess loc
was created by means of an automatic lung segmentation proce-
dure described by Sluimer et al. (2005) and originally based on
the work of Hu et al. (2001).

The algorithm to find landmarks automatically proceeds as fol-
lows: Points outside the lung volume are excluded from consider-
ation. Within the lung volume, only every ith point in each
direction is considered in order to improve computational
efficiency. Points within dp voxels of the pleural surface are also
excluded since it is difficult to match these reliably in the follow-
up scan due to the lack of local structure.

For all remaining points p at voxel location (x,y,z), with inten-
sity I(x,y,z), a distinctiveness value D(p) estimating the dissimilar-
ity of p with its surrounding region is calculated as follows:

1. An estimate of the gradient magnitude G(p) at p is calculated by
GðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GxðpÞ2 þ GyðpÞ2 þ GzðpÞ2

q
;

where Gx(p), Gy(p) and Gz(p) are local directional gradients based
on finite differences. Gx(p) is defined by

GxðpÞ ¼
Iðx� 1; y; zÞ � Iðxþ 1; y; zÞ

2
;

and analogously for Gy(p) and Gz(p).
2. Points where G(p) is below a threshold TG are excluded from

further processing as they are likely to be difficult to match reli-
ably in the follow-up image.

3. Around each point p a hypothetical spherical surface with a
radius of r1 voxels is constructed (see Fig. 1) and m points,
q1, . . . ,qm, uniformly distributed on the surface are selected
using the technique of Saff and Kuijlaars (1997). A region of
interest ROI(qi) around each point qi is compared with the cor-
responding region of interest ROI(p) around the original point p.
The region of interest ROI(a) of any point a is defined as a spher-
ical kernel centred at a with a radius of r2 voxels. The difference
Diff(ROI(p),ROI(qi)) is defined as the average absolute difference
of the corresponding voxel intensities in the two regions:
rticl
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where ROI(p)k is the kth voxel in ROI(p) and N is the number of
voxels in ROI(p) and in ROI(qi). Note that the values r1 and r2

should be selected based on an approximation of the sizes of
structures and the distances between them in the particular im-
age being processed.
e. Distances are measured in voxels for the CT experiments and in millimetres for

CT MRI
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Fig. 1. Comparing point p with its surroundings as part of the process to measure
distinctiveness. A spherical surface around p is constructed and m points qi are
identified on it. ROI(p) is compared with each ROI(qi).
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4. The distinctiveness value D(p) is calculated for each point p as
follows:
DðpÞ ¼ GðpÞ
maxjðGðpjÞÞ

1
m

Xm

i¼1

DiffðROIðpÞ;ROIðqiÞÞ;

where j is the total number of points for which we calculate D(p)
in this scan.

A large number of points in each baseline scan are labelled with
a distinctiveness value in this way. A final selection of n landmarks
will be chosen from these, based not only on their distinctiveness
values but also on their locations. An even distribution of the land-
marks throughout the lungs is required and furthermore, since the
points will later be used in the creation of a thin-plate-spline (see
Section 3.2) the ordering of the chosen points should be such that
each one is as far away as possible from preceding selected points.
Fig. 2. A projection view of all landmarks identified in a scan. Marker sizes have
been increased for visualisation.

Fig. 3. Six sample landmark locations viewed close-up in axial d
The list of processed points p is initially ordered with the most
distinctive points first and n landmarks are chosen, with a well-dis-
tributed ordering, as follows:

1. The most distinctive point available is selected as a landmark as
long as it is at least dm voxels in distance from every other point
selected so far.

2. If the end of the list is reached then no more points meet this
requirement. Set dm = dm � 10 (voxels) and repeat step 1.

3. Continue until n landmarks have been selected.

A projection view of all the landmarks selected for a scan is
shown in Fig. 2 while Fig. 3 shows some examples of landmark
locations.

3.2. Establishing landmark correspondence

A semi-automatic system was developed to accurately match
the voxels identified as landmarks in the baseline scan with voxels
at the corresponding anatomic locations in the follow-up scan. The
observers were firstly required to match a subset of the landmarks
manually using a custom-made graphical interface. Point pairs se-
lected manually were used to create a thin-plate-spline (TPS) mod-
el of the deformation between the two scans in question. Other
models such as the elastic body spline (Davis et al., 1997; Kohlr-
ausch et al., 2005; Wörz and Rohr, 2006) might also have been
substituted at this point. We chose to use the TPS model in order
that only the user-selected points would influence the model,
and no other parameters such as tissue properties could alter the
outcome. This decision was based on the assumption that the
TPS model would be sufficient to describe the deformation be-
tween the images, particularly when combined with the subse-
quent block-matching refinement step.

After s points had been manually matched and provided that
the TPS model was deemed sufficiently accurate, the system
matched the remaining points automatically. These steps are de-
scribed in more detail in the remainder of this section. The entire
annotation procedure took 20–30 min per scan pair for the thoracic
CT data.

3.2.1. Graphical user interface
The graphical user interface was designed to allow the observer

to view the landmark a in question on the baseline scan in all three
orthogonal directions simultaneously. The location of the land-
mark a is identified by a red crosshair symbol in each of the three
images. These three images are located on the upper half of the
screen while on the lower half the follow-up scan is presented in
a similar fashion with three orthogonal views visible. No identify-
ing crosshair is initially shown in these images although the
irection. Marker sizes have been increased for visualisation.



Fig. 4. The graphical user interface used to match points in a baseline scan (top row images) and a follow-up scan (bottom row images). The images are zoomed out as when
the observer first begins with point-matching. Marker sizes have been increased for visualisation.
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system attempts to present the most likely slices for the matching
location. Further information on the determination of the most
likely matching location is given in the next section. Screen-shots
of the system are shown in Figs. 4 and 5. The user is allowed to
manually select the matching landmark location bman in the fol-
low-up scan in two ways:

1. By clicking on any point in one of the three orthogonal views of
the follow-up scan the 3D location of the point bman is selected.

2. By scrolling through the three orthogonal views of the follow-
up scan individually, the most appropriate slice in each direc-
tion is identified. When satisfied the observer clicks a button
to select the point identified by the three visible slices.
Fig. 5. The graphical user interface used to match points in a baseline scan (top row image
particular point. Marker sizes have been increased for visualisation.
After selection of the matching location bman a red crosshair
icon is placed in the appropriate position in the follow-up image
to indicate the observer’s choice. The observers were encouraged
to view the locations a and bman at various zoom-levels and to
confirm their final choice at the highest possible zoom-level
where individual voxels were clearly visible. They were permit-
ted to repeatedly re-locate their matched landmark until they
were satisfied with their choice. In cases where the observer
was unable to find a satisfactory match they were instructed
to place the match in the best location they could identify and
to check a box to indicate their uncertainty. Those points where
the observer was uncertain of the match location were not in-
cluded in the TPS model in order to retain its integrity. The
s) and a follow-up scan (bottom row images). The images are shown zoomed in on a
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uncertain point pairs are otherwise treated as standard through-
out the procedure.
Fig. 6. The block-matching concept (with squares used to represent the cubes). The
voxels indicated with patterned texture are those which will be considered as
candidate voxels ðbestk

Þ. For each of these locations the region ROIðbestk
Þ will be

compared to the region ROI(a) and the location where the SSD of intensities is
minimum will be selected.

Fig. 7. Statistics for each observer. The number of matches marked ‘unsure’ and the
number of automatic match failures (TSSD exceeded) per scan pair for Observer 1
(top) and Observer 2 (bottom).
3.2.2. Automatic landmark matching
The matching pairs of landmark correspondences manually

annotated by the observer are used in the formation of a thin-
plate-spline (Bookstein, 1989) (TPS) warping of the follow-up im-
age. This warping process begins as soon as the observer has
matched the first four point pairs. It must be stressed that a
warped image is not displayed to the user at any time. The TPS is
used only internally to represent the relationship between the
baseline and follow-up images, and to help with predicting future
match locations. Each point pair (a,bman) manually annotated by
the observer is added to the TPS unless the observer indicates
uncertainty. The accuracy of the TPS is thereby progressively im-
proved. When a new landmark point is presented to the observer
for manual matching the system makes an estimate best of where
the anatomic match will be located in the follow-up scan as
follows:

1. The TPS warping is interpolated to get an initial estimate bestinit

of the location in the follow-up scan corresponding to the land-
mark a.

2. A local block-matching search to improve upon this initial esti-
mate is performed in the region around bestinit

. This scheme is
similar to that described in Wiemker et al. (2008) and proceeds
as follows (see Fig. 6):
(a) All voxels bestk

in a cube of side c1 voxels around bestinit
are

considered as candidates.
(b) Cubic regions of interest ROI(a) and ROIðbestk

Þ with sides of
length c2 voxels are defined around the landmark point a
and the point bestk

under investigation.
(c) The bestk

where the sum of squared differences (SSD)
between intensities in the regions of interest, SSDðROIðaÞ;
ROIðbestk

ÞÞ is minimal is selected as the final system estimate
best.

The location best of the estimated match is used to determine
which slices from the follow-up scan should be displayed initially
to the observer. Therefore, as the TPS warping becomes more accu-
rate, the task of the observer becomes easier, with the initially dis-
played slices providing increasingly accurate starting points.

After some time the TPS warping and block-matching scheme is
sufficiently accurate to enable the system to proceed with match-
ing the remaining landmarks without user interaction. Automatic
matching is permitted when

1. The observer has manually matched at least s landmarks a
(including those where the match was uncertain) with corre-
sponding locations bman, and

2. The system has estimated x of the previous y matches such that
the distance between the estimate best and the location bman

indicated by the observer was less than or equal to da voxels.1

When these conditions are satisfied a button appears on the
screen which the observer clicks to match all remaining points
automatically. The automatic matching searches for a match bauto

using the TPS warp and block-matching scheme exactly as de-
scribed above in the search for best. Note that points found auto-
matically in this way are not added to the TPS and hence do not
1 Note that da may reasonably be set at a value greater than 0 for most tasks. In
practice the choice between a particular voxel and its close neighbours is frequently
difficult for an observer and the final decision may be somewhat arbitrary. The system
may therefore be deemed to be correct if it chooses a location very close to the
observer annotation.
influence the locations of further automatically matched points.
In cases where the block-matching finds that the root mean
squared difference per voxel over the block being matched exceeds
a threshold (TSSD) then the match bauto is considered uncertain and
the landmark a is returned unmatched to the observer. Such points
must be matched manually by the observer, however this occurred
rarely in our experiments (see Fig. 7) and the system estimate in
those cases was often correct allowing the manual match to be
made without difficulty.

The system required a match to be made for every landmark
point, although it may sometimes be the case that a true match
does not exist (for example in the case where the landmark is on
an artifact or a growth which is only present in only one image).
This is a relatively rare occurrence in most datasets and there is
no perfect way to deal with the issue. In this case we chose to force
the user to match the point, since a registration algorithm will be
similarly forced to specify a correspondence at every location. It
is, however, equally acceptable to instruct the user not to select
any corresponding point if there are genuine anatomical
differences.

3.3. Registration methods

In order to demonstrate the use of the reference standard data a
number of registrations were carried out and then analysed as de-
scribed in Section 4.5. All registrations in this study were carried
out using elastix version 3.92 which is a registration toolkit
based on the National Library of Medicine Insight Segmentation
and Registration Toolkit (ITK). Although a single registration
2 http://elastix.isi.uu.nl.
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Table 2
Registration experiments.

Registration ID Explanation

Basic BS Settings as described in Section 3.3
Affine-only AF No non-rigid registration is carried out
No-masks NM No image masks are used to specify the regions of

the image to be registered
Mean-squares MS Mean sum of squared differences is used as a

similarity measure in place of mutual information
Cross-

correlation
CC Normalised cross-correlation is used as a similarity

measure in place of mutual information
Full resolution FR Original images are not down-sampled prior to

registration
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package is used, the elastix toolkit provides numerous options
for the registration procedure including several similarity mea-
sures, image mask support and both affine and non-rigid registra-
tion components. This allows us to specify six different registration
configurations with varying results and demonstrate their evalua-
tion. The non-rigid transformations are modelled by a B-Spline grid
(Unser, 1999; Rueckert et al., 1999).

In the experiments for this study we exploit our ability to dis-
tinguish quantitatively between registration methods using the
reference standard data. This is achieved by registering the data
several times with various elastix configurations and comparing
the outcomes with the reference standard. The basic registration
settings from which all subsequent variations arose are described
below.

Prior to registration the baseline and follow-up scans were
down-sampled in order to improve speed and reduce memory con-
sumption. The down-sampling was by means of block-averaging
such that the matrix size of 512 � 512 in the original images was
reduced to 256 � 256, with the number of slices reduced to form
isotropically sampled data. The down-sampled follow-up scan
(source image) was registered to the down-sampled baseline scan
(target image) and the resulting transformation was subsequently
applied to the full resolution follow-up scan. Each registration con-
sisted of an initial affine registration step followed by a non-rigid
registration to model the elastic behaviour of the lung tissue. Both
steps involved a multi-resolution strategy with four resolution lev-
els for the affine procedure and five for the non-rigid procedure. A
mutual information cost function (Thévenaz and Unser, 2000) was
used in both cases along with a stochastic gradient descent opti-
mizer (Klein et al., 2007). Termination of the optimization proce-
dure occurred in each resolution after a fixed number of
iterations, set at 512. The grid-size varied per resolution level with
the finest grid at the last level having a spacing of 5 mm in each
dimension. Lung mask images were used to ensure that only anat-
omy within the lungs was registered, thus excluding the ribs, heart
and other confounding structures. These masks were created by
the same automatic technique mentioned in Section 3.1 (Sluimer
et al., 2005).

All registration experiments carried out are listed in Table 2
with an explanation of any changes to the basic settings described
above. The basic setting (BS) had been experimentally determined
to be relatively fast and accurate on this type of data in the past.
The choice of inclusion of other configurations is discussed in Sec-
tion 5.
4. Experiments and results

In this section a variety of experiments are described. In Section
4.1 the process of constructing the reference standard on thoracic
CT data is analysed, describing the accuracy of the system and the
interobserver differences. Section 4.2 outlines an experiment
whereby a radiology expert was asked to annotate five scan pairs
and the results are compared with those of medical student
observers. In Section 4.3 a process for synthetically warping a scan
is described and observer results based on the synthetically
warped data (where the real ground truth is known) are shown.
Section 4.4 describes experiments on brain MR data, and Section
4.5 analyses the results of various registration procedures using
the reference standard defined on the 47 thoracic CT pairs.
4.1. Reference standard construction results

4.1.1. System and observer behaviour
As described in Section 3.2 there are two criteria which must be

met before the system can begin automatic matching: firstly the
observer must have made at least s matches fully manually, and
secondly the system guess must have been demonstrated to be
accurate in x of the previous y points matched. In this study s
was set at 30 and 47 scan pairs were included. When the required
30 manual matches had been made the second criterion of system
accuracy was usually also satisfied. An exception to this occurred
just once for each observer, forcing the observer to make additional
manual matches in order to improve the system accuracy. (Obser-
ver 1: scan pair 5, 38 manual matches, Observer 2: scan pair 43, 31
manual matches). This gives an initial indication that the system is
usually well trained after 30 points have been manually matched.

Fig. 7 illustrates the number of matches marked ‘unsure’ and
the number of times the automatic system failed to find a reliable
matching point (TSSD exceeded) for each of the 47 scan pairs pro-
cessed. It can be seen that in general the observers found similar
levels of difficulty in each scan pair, and that in the small number
of more difficult scan pairs (where the observer is often unsure) the
automatic system also has an increased failure rate.

It is important to assess the accuracy of the system guess best

and the rate at which the system improves in its ability to predict
match locations. The system guesses were stored for this purpose
and later compared to the manual annotations bman made by the
observers. The average Euclidean distance dj between the manually
annotated location bmanj

and the system guess bestj
after j points

have been manually matched was calculated over all 47 scan pairs.
The values

dj ¼
1

47

X47

i¼1

½bestj
� bmanj

�scanPairi

were calculated for j from 1 to 30. The results of this analysis are de-
picted in Fig. 8, where dj is plotted against j for each observer to
illustrate the system ‘learning curve’ as increasing numbers of point
pairs are annotated. Fig. 9 breaks down the average value dj to show
all distances bestj

� bmanj
in box-whisker plot form.
4.1.2. Interobserver differences
The interobserver differences were analysed to verify the ability

of observers and of the system to find reproducible corresponding
anatomic locations for the landmarks. The landmarks were pre-
sented to the observers in the same order, therefore in general
the same points are matched manually by both observers. How-
ever, a small number of points (only 11 points in all 47 scans in this
case) have two different ‘match-types’ i.e. they are marked manu-
ally by one observer but not by the other. There were two possible
ways for this to occur: (1) if one observer was required to match
more points manually (before automatic matching could proceed)
than the other observer, or (2) if automatic point matching ex-
ceeded the threshold TSSD on a particular point for one observer
only, thus requiring him to make that match manually. In Fig. 10



Fig. 8. The system ‘learning curve’-values of dj plotted against j (left). The same graph focusing more closely on the end region (right).

Fig. 9. Box-whisker plots showing the distances bestj
� bmanj

for all scan pairs
plotted against number of manual annotations. Top: Observer 1, bottom: Observer
2. The lightest grey colour indicates the boundaries of the central 50% of the data,
mid-grey the central 75% and the darkest grey the central 90%. The horizontal line
within the central 50% marks the median value. Outliers are included in the whisker
length.
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the interobserver differences in mm for all 4700 landmarks are
illustrated, categorised by match-type. As expected, points which
were marked automatically in both cases are considerably more
likely to have differences of 0 mm than those which were marked
manually, since in the automatic case a local search for the lowest
SSD is performed. For the registration analysis described in Section
4.5 the (339) points where the interobserver difference was greater
than 1 mm are disregarded because of the uncertainty of the refer-
ence standard in these cases.
4.2. Expert observer annotations

Since observers 1 and 2 were medical students with no specific
training in reading thoracic CT data an expert observer was asked
to annotate the first five scan pairs in order to compare his results
with those of the untrained observers. The expert in this case is a
radiologist in training (a physician with 3 years of experience in
radiology, particularly in lung CT evaluation). The expert observer
annotated the five scan pairs independently in exactly the same
way that observers 1 and 2 had done. The interobserver differences
for points manually annotated by all three observers (1, 2 and ex-
pert) are shown in Fig. 11.
Fig. 10. Interobserver differences categorised by match-types. The number at the
end of each bar signifies the total number of points in the category.
4.3. Synthetic warping

In this experiment the performance of the observers is assessed
in a situation where the deformation between the images in ques-
tion is synthetic and the real ground-truth is therefore available for
comparison. At the time of this experiment observers 1 and 2 were
no longer available and were replaced by two other medical stu-
dents who had also had some experience with annotating lung
data using the system described in this work. They will hereafter
be referred to as observers 3 and 4.

A synthetic warp was performed on the baseline scan ScanB of
each of scan pairs 1–5. In each case the warp was modelled by a
thin-plate-spline (TPS). The point pairs used to create the TPS mod-
el were those pairs which were manually annotated by the expert
observer as described in Section 4.2. Points which were marked un-
sure or were automatically matched were excluded. Using this TPS
model, a synthetically warped version ScanBW of ScanB was pro-
duced. (ScanBW bore some resemblance to the follow-up scan ScanF

from the original scan pair as a result of the warping which was
used to create it, however they were not identical.) The outer re-
gions of ScanBW were cropped to exclude locations which the warp-
ing process had been unable to fill with data values and the scan
was inspected to ensure that it appeared realistic. A coronal slice
from the baseline scan ScanB of scan pair 1, and the associated
warped scan ScanBW are shown in Fig. 12.

The pair ScanB and ScanBW were presented to observers 3 and 4
without informing them that one of the scans was synthetic. They
were asked to match the landmark points as normal. Their match-
ing locations were compared with the known ground-truth given
by the expert observer matching points which were used to create
the synthetic warp. The distances between the observer matching
points and the ground-truth are shown in Fig. 13.

4.4. Brain MRI data

The system described in this article was developed specifically
for a thoracic CT application. In order to test its performance on
an alternative type of data, three sets of brain MRI data as de-
scribed in Section 2 were obtained with a baseline and follow-up
scan for each patient.

Some modifications to the system were required due to the
anisotropic nature of the MRI data used (voxel sizes
0.89 � 0.89 � 4.0 mm). Firstly all distances which had previously
been measured in voxels on the almost isotropic lung data were
now required to be measured in millimetres. Secondly the finite
difference method for estimating gradient magnitude was altered
to include weights according to the voxel sizes in each dimension.
The new gradient magnitude estimate is calculated by

GðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GxðpÞ2 þ GyðpÞ2 þ GzðpÞ2

q
;

as previously, but in this case Gx(p) is defined by



Fig. 12. Left: a coronal slice from the baseline scan in scan pair 1. Right: a coronal slice from the warped version of the same scan created using the expert observer
annotations.

Fig. 13. Observer-truth distances for manually matched points on the synthetically warped datasets. Distance box plots are shown in full (above) and in closer view (below).
Within each scan-pair grouping the left column represents distances for observer 3 and the right column for observer 4. The lightest grey colour indicates the boundaries of
the central 50% of the data, mid-grey the central 75% and the darkest grey the central 90%. The horizontal line within the central 50% marks the median value. Outliers are
included in the whisker length.

Fig. 11. Interobserver distances for manually matched points for the first five scan pairs shown in full (above) and in closer view (below). Within each scan-pair grouping the
three columns from left to right represent Observer 1/Observer 2 distances, Expert/Observer 1 distances and Expert/Observer 2 distances respectively. The lightest grey colour
indicates the boundaries of the central 50% of the data, mid-grey the central 75% and the darkest grey the central 90%. The horizontal line within the central 50% marks the
median value. Outliers are included in the whisker length.
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GxðpÞ ¼Wx
Iðx� 1; y; zÞ � Iðxþ 1; y; zÞ

2

� �
;

where Wx is a weighting defined by the inverse of the distance be-
tween the voxels at (x � 1,y,z) and (x + 1,y,z).

Wx ¼
1

2vx
;

where vx is the voxel size in the x direction. Gy(p) and Gz(p) are cal-
culated analogously.

No automatic segmentation software was available for these
images so masks were drawn by hand to denote in which regions
distinctive points should be located. The masks were designed to
include brain tissue but exclude the skull and cerebrospinal fluid.
These are excluded for the same reason we excluded points close
to the lung boundary, as point matching in those regions is unreli-
able. Note that an automatically generated mask of the entire pa-
tient anatomy would also have been suitable for use provided
that the distance dp from the mask boundary within which points
should not be marked was set appropriately.

Landmark detection was carried out as described in Section 3.1
with the parameters set as shown in Table 1. Detected landmark
points for one of the MRI scans are shown in Fig. 14.

MR images, unlike CT, do not have a fixed relationship between
tissue-type and grey-value, as illustrated in Fig. 15. Block-matching
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with SSD as a similarity measure would therefore be unreliable in
MR data and the system was used with TPS warping only in these
experiments.

Observers 3 and 4 annotated points in the three scan pairs ex-
actly as before with parameters set as shown in Table 1. The min-
imum requirement to count a system guess as ‘accurate’ (da) was
increased to allow for the fact that no block matching was used
and guesses were therefore expected to be slightly less accurate.

The system learning curve based on the experiments using TPS
only is shown in Fig. 19a and interobserver differences for the two
observers are shown in Fig. 19b.

4.5. Registration performance analysis

In this section the reference standard data which was con-
structed for the main dataset of 47 thoracic CT scan pairs is used
Fig. 14. Left: an axial slice from a brain MRI image showing the landmark points
located in that slice (left) and all landmark points for the whole scan projected onto
that slice (right).

Fig. 15. The baseline (left) and follow-up (right) scans for pair 2 of the brain MR
data. Contrast is set identically in both scans with a narrow window width to
illustrate that the same tissues are represented by different grey-values in each
scan.

Fig. 16. Interobserver (IO) and registration-Observer 1 distances (�) shown in full (abov
explained in Table 2. The lightest grey colour indicates the boundaries of the central 50
horizontal line within the central 50% marks the median value. Outliers are included in
in the evaluation of the various registration procedures listed in
Table 2. The aim of the evaluation in this case is not to determine
which registration is superior (a question which is largely applica-
tion dependent), but rather to illustrate the utility of the reference
standard data in obtaining a quantitative assessment. The perfor-
mances of the various registration procedures are discussed in Sec-
tion 5.

The registration of an image-pair results in a transform T which
maps from locations in the domain of the baseline scan (the target
image) to locations in the domain of the follow-up scan (the source
image). In order to judge the accuracy of a registration method, T is
applied to each of the landmark points a defined in the baseline
scan. For an accurate registration we expect T(a) � b, where b is
the matching point marked during reference standard formulation.
For all points bobs1 marked (manually or automatically) by Obser-
ver 1 the registration error �(T(a),bobs1) is defined as the Euclidean
distance between T(a) and bobs1.

In Fig. 16 box plots are presented illustrating the registration-
Observer 1 distances � over all scan pairs for each registration pro-
cedure. The leftmost plot shows the interobserver differences for
reference. Only those points where the interobserver difference
was less than 1 mm are used as part of the reference standard.

The same registration error measurements are subdivided in
Fig. 17 to depict the manual and automatic components of the ref-
erence standard separately. It appears that for the purposes of reg-
istration evaluation there is virtually no difference in the quality of
reference standard points which were manually chosen and those
which were selected by the system during the automatic phase.

The performance of the registration methods investigated was
also considered on a per-scan basis. Registration error data from
the first 25 scan pairs is shown in Fig. 18 for all registration
e) and in closer view (below). The acronyms referring to registration methods are
% of the data, mid-grey the central 75% and the darkest grey the central 90%. The
the whisker length.

Fig. 17. Interobserver (IO) and registration-Observer 1 distances (�) shown in full
(above) and in closer view (below). Each box plot is limited to either manually
matched points (M) or automatically matched points (A). The acronyms referring to
registration methods are explained in Table 2. The lightest grey colour indicates the
boundaries of the central 50% of the data, mid-grey the central 75% and the darkest
grey the central 90%. The horizontal line within the central 50% marks the median
value. Outliers are included in the whisker length.



Fig. 18. Registration-Observer 1 distances (�) shown individually for the first 25 scan pairs. Registration settings from top to bottom: basic, affine-only, no-masks, mean-
squares, cross-correlation and full-resolution. The lightest grey colour indicates the boundaries of the central 50% of the data, mid-grey the central 75% and the darkest grey
the central 90%. The horizontal line within the central 50% marks the median value. Outliers are included in the whisker length.

Table 3
Means and standard deviations of the times taken for registration.

Registration Mean time (min) Standard deviation

BS 4.20 0.26
AF 1.37 0.09
NM 4.11 0.91
MS 2.87 0.08
CC 3.04 0.09
FR 12.13 0.82

K. Murphy et al. / Medical Image Analysis 15 (2011) 71–84 81
methods. Similar results are observed for the remaining 22 scan
pairs although the data has been omitted for brevity.

Finally, when comparing registration algorithms, the time taken
to perform the registration is often important in deciding the
whether using the algorithm would be practicable, for example
in a clinical situation. To give a guideline as to the computational
cost of the various registration algorithms, Table 3 lists the mean
and standard deviation of the time taken to complete registration
for each of the methods listed in Table 2. All experiments were car-
ried out on a desktop PC running Microsoft Windows Server 2003
with an Intel Core2 Quad processor (2.4 GHz) and 6640 MB of RAM.
5. Discussion

A semi-automatic system for reference standard formulation
in registration has been presented. In the thoracic CT experiments
described the system defines a well-distributed set of correspond-
ing landmark points with limited interaction from non-expert
observers. The accuracy of the defined correspondences is implied
by the independent observations of two observers with 98.5% of
interobserver differences below 2 mm and 92.8% within 1 mm
(see Fig. 10, ‘Overall’). For manually matched points the differ-
ences are slightly higher (78% within 1 mm) as would be ex-
pected. The finite resolution (�0.7 mm) of the image data
makes it difficult for an observer to select a particular voxel
(above all its neighbours) to be the correct matching point.

The ability of the system to model deformation and predict ana-
tomic matches is demonstrated in Fig. 8 where the increasing accu-
racy of the system guesses is illustrated. It is clear that the ability of
the system to predict corresponding point locations improves rap-
idly after the first five to six points have been annotated. The aver-
age error in the system guess after this stage remains below 2 mm
for both observers. Similarly, after 15 points have been manually
matched the system guess is on average always within 1 mm of
the observer decision. The increasing accuracy of the system accel-
erates the manual phase of the matching procedure by providing
the observer with ever more precise starting points and ultimately
enables the introduction of fully automatic matching. The box plots
shown in Fig. 9 demonstrate that in general the actual distance
values deviate less from the median values as more points are
manually annotated. In Fig. 17 the registration evaluations based
on fully manual and fully automatic point pairs are shown to be al-
most identical, indicating that the automatically matched points
are equally useful in the evaluation of registration.

In Section 4.2 the opinions of medical students are compared
with the opinions of a radiology expert in order to ascertain
whether the medical students possibly lacked the expertise to de-
fine point correspondences. Fig. 11 shows the results of this exper-
iment. It can be seen that there is no case where the medical
students (observers 1 and 2) were both at odds with the expert
opinion while in agreement with each other. This implies that their
agreement on points was not coincidental or due to their lack of
expertise. In scan pair 2, Observer 2 is seen to disagree frequently
with both Observer 1 and the expert, while there is excellent Ob-
server 1/expert agreement. This implies that Observer 2 made a
higher than normal number of errors in this scan pair. Scan pair
5 shows a relatively high level of interobserver differences be-
tween all three opinions, indicating that this scan pair was more
difficult than the others. This is backed up by other results dis-
cussed later in this section. It is clear that interobserver differences
may be high due to difficulties with a particular dataset or due to
the lapse in concentration or attention to detail of an observer. Set-
ting a study up initially with two observers is a reasonable choice
in order to determine how much disagreement occurs. If discarding
points with high interobserver differences is not desirable then the
addition of extra observers to the study (possibly even for a limited
number of datasets) is a good option. Except in the case of extre-
mely difficult datasets which may never be reliably annotated this
should be sufficient to establish a reliable reference standard.

Synthetic warpings were generated for five scans as described
in Section 4.3 and used to compare the observer opinions with a
known ground-truth. In Fig. 13 the distances between manual ob-
server marks and the known ground-truth are shown. It can be
seen that the median distance is below 1 mm for both observers
in all five cases. 90% of the distances are within 2 mm for scan pairs
2, 3 and 4. Scan pairs 1 and 5 proved to be more difficult, with ob-
server 3 in particular making more errors. However it is worth not-
ing that we have included all manual points here, including those
where the observers disagreed. If we restrict the analysis to points
where the observers agree within 1 mm then the agreement with
ground-truth is also significantly better. For scan pairs 2 and 5
the median distance drops to below 1mm while the maximum dis-
tance from the ground-truth is just 2 mm. This demonstrates the
benefits of having two independent observer opinions available.

The system was also tested on brain MR data as described in
Section 4.4. One issue encountered here was that block-matching
using SSD was not useful since tissues were represented by differ-
ent grey-values in different images. Therefore, for MR data, and
other data where tissue value ranges may vary, it would be advis-
able to alter the block-matching scheme as appropriate for the
data. For example, if it is known that there is a linear relationship
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between the intensities in the images then a similarity measure
such as normalized cross-correlation might be used in place of
the SSD measure. The system behaviour was evaluated on the brain
MR data without using any block-matching, and the results are
shown in Fig. 19. The system ‘learning curve’ demonstrates that
the TPS system became reasonably accurate after about six point
pairs had been manually matched. Subsequently, the system guess
was usually within 4 mm of the final selection made by the obser-
ver. If a block-matching refinement scheme was added to this sys-
tem we would expect the guesses to become more accurate still.
The interobserver distances shown on the right of Fig. 19 show that
the median interobserver difference was about 1 mm in all cases,
while 90% of the distances were within about 5 mm. Interobserver
distances would be expected to be somewhat higher than those in
the thoracic CT data since the slice thickness of 4 mm in the MR
data caused a stronger partial volume effect. This made precise
selection difficult for the observers in some cases. Overall, the
performance on the brain MR data is good, with the observers
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Fig. 19. Left: the system ‘learning curve’ (see Section 4.1.1 for full explanation) for the bra
sets of brain MR data, shown in full (above) and in closer view (below). For each of the thr
automatically matched points (right). The lightest grey colour indicates the boundaries
central 90%. The horizontal line within the central 50% marks the median value. Outlier
reporting that the system guesses were very useful. Using a revised
block-matching refinement scheme there is the potential for excel-
lent results on this data.

In general the system has the potential to be used on many
types of data, possibly with minor modifications. At a minimum
the system parameters listed in Table 1 will need to be adjusted
experimentally according to the type of data being used. As already
demonstrated using brain MR the block-matching similarity mea-
sure of SSD will not be suitable for all data types. Scan pairs exhib-
iting more severe deformations (for example between full
inspiration and full expiration in thoracic CT) are likely to be more
difficult than those scans examined in this work, however we do
not anticipate severe problems with increased deformations apart
from a longer system training time. At present it seems that the
TPS model is sufficient to describe the types of deformations that
may be encountered in medical scans, however this assumption
needs to be verified for each new type of data being processed.
More challenging tasks such as inter-modality or inter-subject
3 14 15 16 17 18 19 20 21 22 23 24 25

in MR data. Right: interobserver distances (between observers 3 and 4) for the three
ee scan pairs the point distances are divided into manually matched points (left) and
of the central 50% of the data, mid-grey the central 75% and the darkest grey the

s are included in the whisker length.



Fig. 20. Point pairs from scan pair 5 (left images) and scan pair 20 (right images). In each case the landmark location is shown on the left and the matching point from an
observer on the right. In scan pair 5 neither observer nor the expert could find a good match for the landmark shown (note the point was not used in the evaluation due to
interobserver differences >1 mm). In scan pair 20 a good match has been found for this point, although the scan is generally difficult due to severe emphysema. Marker sizes
have been increased for visualisation in these images.
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matching have not yet been studied and more significant system
modifications may be required to achieve the same level of success
with such data. In addition, it must be noted that there are registra-
tion tasks where it is extremely difficult for even an expert obser-
ver to make reliable point correspondences because of the nature
of the image data or the anatomy being imaged. This is particularly
true for images where very little structural detail can be seen. Our
system for reference standard construction is clearly unsuited to
such registration tasks.

The efficacy of the system in quantitative analysis of registra-
tion schemes is demonstrated by application to several sets of reg-
istration results, showing the distinctions between various
methods. The affine-only (AF) and no-masks (NM) configurations
are included largely as proof of concept since we clearly expect
the results from these registrations to be inferior. The assessment
based on the constructed reference standard (see Fig. 16) confirms
that these registrations do give particularly poor results compared
to the other methods. The basic registration (BS) was included as it
had previously been experimentally determined to be relatively
accurate and efficient at registering this type of data. Alternative
methods varying the cost function (CC and MS) and the initial im-
age resolution (FR) were added in order to determine their possible
effects on the speed and accuracy of the registration procedure.

Fig. 16 illustrates minor distinctions between the registration
results averaged over all scan pairs. Such subtle differences be-
tween registration algorithms may easily be overlooked by evalu-
ation techniques based on segmentation overlap measures, small
numbers of landmark locations or synthetically produced registra-
tion problems. It should be noted however that one limitation of
this system of evaluation is that the reference standard may show
a bias in favour of registration algorithms which themselves are
based around a TPS scheme.

The selection of a suitable registration method, while not the fo-
cus of this work, is a topic which inevitably arises on studying the
presented results. The optimal choice depends largely on the ulti-
mate purpose of the registration and there are many complicating
factors such as the degree of accuracy required and the restrictions
on processing time. We therefore present only a brief and general
discussion based on the data included in this work. Fig. 16 shows
that on average the full-resolution registration (FR) appears to give
the best results, although it is only a marginal improvement com-
pared to the basic registration on down-sampled data (BS) or the
registration using normalized cross-correlation (CC). The BS and
CC methods are, however, approximately three to four times faster
than the FR registration (see Table 3) and may therefore be more
suitable in cases where computation time is of importance. The
mean-squares (MS) registration is overall slightly less accurate
but also slightly faster than the other non-rigid registrations using
lung masks.

From the box plots depicted in Fig. 18 however, it is clear that a
particular method may produce satisfactory results in one case and
yet demonstrate serious inaccuracies in another, even when all
datasets have the same general properties. A much greater range
of differences between the algorithms is illustrated in this figure.
The MS registration procedure gives generally inferior results to
the FR method but for scan pairs 10 and 11, for example, the per-
formance of both methods is very similar. Conversely, scan pair 8 is
seen to be reasonably well registered by the BS, CC and FR meth-
ods, but is relatively poorly aligned by the MS technique. This
information illustrates the fact that comparisons of registration
algorithms based on results from different datasets are flawed
and unreliable. In order to compare registration techniques in a
meaningful way a large and diverse set of publicly available data
is required.

Some scan pairs appear to have consistently poorer registration
results than others across all the tested methods. Scan pairs 5 and
20, for example, both exhibit relatively large errors in all methods
shown in Fig. 18. Upon further investigation, it was found that both
of these scans exhibit pathology which is not seen in many subjects
in this dataset since they are drawn from a screening trial. Subjects
with pathology are much more likely to have tissue changes over
time which are extremely difficult to handle with registration be-
cause of the appearance or disappearance of structures. Fig. 20
shows examples of points in each of these scan pairs.

Overall, for consistent and reliable registration results FR is
clearly the best option among those tested with a median error
of approximately 0.5 mm in the majority of scans. It should be
noted that since the accuracy of the reference standard data is lim-
ited by the voxel size (�0.7 mm) it is not possible to evaluate a
sub-voxel accuracy registration algorithm without detecting some
degree of apparent error.
6. Conclusion

A semi-automatic scheme has been presented which enables
the provision of extensive and accurate reference standard data
for registration. The method has been demonstrated to work well
on temporal chest CT data with both real and synthetic warping.
It also performs well on brain MR data and has potential to achieve
excellent results with some system modifications. It has been
shown that the annotations of non-expert observers made with
this system do not differ significantly from those of a radiology ex-
pert. An approach such as this, which is efficient and accurate is
essential in order to comprehensively evaluate and detect subtle
differences between the ever increasing number of registration
algorithms under development.
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