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ABSTRACT

Pulmonary fissures are important landmarks for automated recognition of lung anatomy and need to be detected
as a pre-processing step. We propose a derivative of stick (DoS) filter for pulmonary fissures detection in
thoracic CT scans by considering their thin curvilinear shape across multiple transverse planes. Based on a stick
decomposition of a local rectangular neighborhood, a nonlinear derivative operator perpendicular to each stick
is defined. Then, combining with a standard deviation of the intensity along the stick, the composed likelihood
function will take a strong response to fissure-like bright lines, and tends to suppress undesired structures
including large vessels, step edges and blobs. Applying the 2D filter sequentially to the sagittal, coronal and
axial slices, an approximate 3D co-planar constraint is implicitly exerted through the cascaded pipeline, which
helps to further eliminate non-fissure tissues. To generate a clear fissure segmentation, we adopt a connected
component based post-processing scheme, combined with a branch-point finding algorithm to disconnect the
residual adjacent clutters from the fissures. The performance of our filter has been verified in experiments with
a 23 patients dataset, where pathologies to different extents are included. The DoS filter compared favorably
with prior algorithms.
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1. INTRODUCTION

Pulmonary fissures are double layers of invaginations of visceral pleura that locate inside and anatomically
separate the lungs.1 There are two types of pulmonary fissures: normal and accessory fissures. Normal or
lobar fissures are the physical boundaries of pulmonary lobes. Generally, they divide the human lungs into five
distinct lobes (i.e. left upper, left lower, right upper, right middle and right lower lobes). Accessory fissures
often occur between bronchopulmonary segments but may also enter subsegmental or interbronchial planes.
Pulmonary fissures are important landmarks for delineation of pulmonary anatomy, and have significant value in
localization of lesions and assessment of disease processes.2 However, automated or computer-aided segmentation
of pulmonary fissures in CT images is not an easy task. The main challenges come from their very thin, weak
and varying structures, along with high-level imaging noise and interferences from adjacent tissues like vessels.

Many methods have been presented to realize automatic or semi-automatic segmentation of pulmonary fis-
sures. To overcome the difficulty of insufficient information, various kinds of prior knowledge have been merged
into a framework of fissure detection. These include the sparse distribution of vessels and bronchi around the fis-
sures,3,4 single- or multi-atlas of pulmonary anatomy,5,6 and the curved surface shape of fissure appearance.7–10

Among them, the first two are indirect constraints, while the third one comes directly from the object and is
believed more reliable for accurate localization.11

Following the prior shape merging strategy, we will present a nonlinear filter for fissure detection with emphasis
on improving the estimation of fissure direction and suppression of adjacent interference. Motivated by a line
detection model in speckle images,12 our basic idea is to iteratively probe the presence of bright lines across
multiple transverse planes. Considering the locally linear shape of fissures inside each slice plane, a 2D prober is
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Table 1. Decomposition of a 9× 9 rectangle neighborhood with stick kernels.

0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

defined by decomposing the rectangle neighborhood into different line-segments or sticks with varying orientation.
Then, the nonlinear derivatives perpendicular to each stick along with its intensity variance are combined to
generate a new fissure likelihood measure. With a cascading pipeline implementation, our filter is able to enhance
fissure-like thin plane structures, while suppressing undesired pulmonary tissues like large vessels and bronchi.
In this paper, our main purpose is to extract pure fissure objects rather than generate a full lobe segmentation.
This means that neither extrapolation is adopted to extend the extracted fissure plane to lung boundaries, nor
interpolation is used to fill its inner holes.

2. METHODS

If we cut the volume lung CT image using multiple planes with different orientations, the fissures will typically
appear as bright thin curved lines through all the cross-sections. This observation is considered an important
feature to discriminate the fissures from other pulmonary structures. For example, the small vessel might happen
to be a thin line inside a transverse plane, but it does not simultaneously takes a similar shape in the orthogonal
cross-section.

Based on this, we will propose a method for fissure enhancement in volume CT images using an iteration
pipeline, where the 2D line filters across three orthogonal transverse planes are cascaded together. In this section,
our main work includes the 2D line filter design and a post-processing algorithm for clutters removal.

2.1 Stick decomposition of neighborhood

A problem with pulmonary fissures detection in CT images is that they often appear to be single-pixel wide
and even broken for several pixels. The traditional isotropic smoothing schemes are inappropriate here, because
they might sweep out the weak fissures together with the noise. This can also explain the weakness of some
Hessian or structure tensor based fissure filters,13 which depend on a low-level Gaussian smoothing to calculate
the derivatives. Instead, we adopt a realistic way to test the intensity distribution by probing it with straight
line segments called sticks in varying orientations. The stick model decomposes a rectangle neighborhood into
line segments with fixed length.12 Typically, a L×L neighborhood can be decomposed into 2(L− 1) sticks. See
Table 1 for examples with L = 9; The other sticks can be easily obtained by rotating the listed ones.

To some extent, the stick-based smoothing can be considered an extreme case of oriented anisotropic Gaussian
filters,14 where the long axis scale is much larger than the one along the short axis. Additionally, a simple
rectangular window average is used to replace the original Gaussian weighting. This minimizes the influence of
relative position in the kernel, and will help to preserve axial continuity even if the central point gets a lower
intensity.

2.2 Definition of a nonlinear derivative

On basis of the stick decomposition, a new filter can be developed by introducing a triple of parallel sticks. As
shown in Fig. 1, using µM , µL and µR to indicate the mean intensity respectively along the middle and the two
side sticks, a nonlinear operator perpendicular to the sticks is defined as

λs
⊥ = min(µM − µL, µM − µR). (1)
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Figure 1. Analyzing the property of the stick derivative λs
⊥ on different pulmonary structures. Here, the gray-levels are

inversely displayed.

With a spacing parameter S involved in the template, the operator is less sensitive to partial volume effects, and
allow the fissures with varying width or blurring boundaries to be equally well detected. Additionally, due to
the sparseness or lack of vessels and bronchi, the adjacent background on both sides of the fissures also takes a
low-intensity narrow ribbon shape. Therefore, the usage of triple sticks to simultaneously probe the linear fissure
object and its close neighborhood is more like the inference of human observers. Here, the min(·) in Eq. (1) is
adopted particularly for suppression of step edges, which often correspond to the large vessel and lung boundaries.
Note a similar scheme was presented by Hunter et al.15 as the tram-line filter in retinal vessel segmentation. Our
method differs from the tram-line filter in that the triple stick derivative only contributes to a single directional
contrast in our line likelihood definition, and an order statistic filtering for the minimax combination was used
in their work.15 To analyze the property of our nonlinear derivative measure, some idealized shapes representing
different pulmonary structures are illustrated in Fig. 1. Here, the thin, broken and moderate lines corresponding
to various fissure appearances will give a high value of λs

⊥. The broad line, which indicates the large vessels or
step-edges, will be neglected with a null response. However, for the blob-shaped interference, the λs

⊥ will not
give the full response, but also not a zero response.

As a remedy for this false response to blobs, we introduce a second measure λs
q equal to the standard

deviation of the pixel intensity along the middle stick. The utilization of intensity variance to detect linear edges
was inspired by our previous work.16 Like the popular lineness or vesselness filters,17,18 λs

⊥ and λs
q are similar

to the Hessian eigenvalues: they also reflect the local contrast in the two principal directions. Accordingly, a 2D
fissure likelihood function can then be defined as

ℓs = λs
⊥ − κ · λs

q . (2)

Here, κ is a positive coefficient to punish axial intensity inhomogeneity. Obviously, the blob structure shown in
Fig. 1 will get a low response under Eq. (2) due to its large intensity variation along the middle stick.

2.3 Multi-direction integration and implementation

As depicted in Table 1, a rectangular neighborhood is decomposed into sticks with varying orientations. We
choose the stick template with the maximum response of Eq. (2) as the optimal kernel. Thus, the multi-
directional information can be integrated with

ℓsm(x1, x2) = max{ℓsi , 1 < i < 2(L− 1)}. (3)

Here, ℓsi indicates the linear likelihood estimation of the ith stick. To reduce the heavy burden in computation
of λs

⊥, we adopt a simplified spatial shifting scheme to replace the original triple stick template. That means
only the µM (x1, x2) need calculating in Eq. (1), while µL(x1, x2) and µR(x1, x2) are respectively assigned to
µM (x1 ± S, x2) or µM (x1, x2 ± S) depending on the approximately east-west or north-south direction of the
template.

To realize 3D fissure enhancement in the volume data, we apply the 2D filter of Eq. (3) iteratively to the
three transverse imaging planes. Although there exist many solutions to combine the 2D filtering responses
from different planes, a cascading pipeline is verified to be a good choice in our experiments. Note some fissure
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Figure 2. Disconnect clutters with a branch-point finding algorithm. Here, the black curves indicate the real fissures and
the red ones being the clutters.

segments especially those belonging to the horizontal fissures often run along the axial plane, they are subject
to being missed in thick-slice scans or frequently take a vague band appearance. In those cases, the fissure
object tends to be misinterrupted by the line prober. Comparatively, across the sagittal plane, both oblique and
horizontal lobar fissures are more likely to take a clear thin curvilinear shape. Therefore, our filtering adopts a
fixed cascading order from the sagittal slices to the coronal and finally the axial slices. The specific sequence helps
to minimize the influence of imaging orientation, since the axially ambiguous objects can be gradually sharpened
and thinned with processing in sagittal and coronal directions. Although we use no strict 3D planar template
for local fissure matching like previous authors19 , the 2D linear shape constraints through multiple transverse
planes can be considered a realistic simplification, and its obvious merit is a large decrease of computational
burden.

2.4 Post-processing algorithms

To remove clutters especially those linking to the fissures, we introduce a post-processing scheme based on
connected component analysis. The critical part is a 2D branch-point finding algorithm, which also works
through the transverse planes. As shown in Fig. 2, our algorithm begins with a binarization of the previous
filtered result using a global threshold. The threshold value should be chosen low enough to retain the majority of
weak fissures. Generally, the width of the binarized objects will not exceed 2S due to the distinct combination of
stick responses. Then, a morphological thinning algorithm20 is adopted to extract the centerlines, and the branch-
points can be marked with a simple neighborhood search according to an early definition.21 After removing the
branch-points and their circular neighborhoods with radius equal to S in the binarized slice, both fissures and
clutters are broken into small segments through the specific cross-section. However, because the fissures are
typically 3D surfaces, the removal of small 2D regions will seldom affect their connectivity in 3D space. But the
clutters, which mainly come from the residual of pulmonary vessels and airway trees or pathological deformations
like fibrosis, only dominate in a single direction and is prone to be split into small fragments after the sequential
deletion of branch-points. Therefore, based on a 3D connected component analysis, a simple labeling and volume
comparison can easily sift out the desired objects.

3. EXPERIMENTS AND EVALUATION

Presently, our algorithms were implemented in Matlab (MathWorks Inc.). The runtime of the DoS filter for a
typical 256× 512× 512 size 3D image is around 810s on our computer, configured with a 2.67 GHz CPU, 8 GB
memory and a 64-bit Windows 7 operating system.

3.1 Data and reference standard

The proposed filter has been verified in experiments using chest CT scans of 23 Chronic Obstructive Pulmonary
Disease (COPD) patients from a previous study.22 The images were acquired with a Toshiba Aquilion 16 CT
scanner using the parameters: 120 kVp; 140 mAs per rotation; rotation time 0.4 s; collimation: 16×0.5 mm; and
pitch factor: 1.4375. Images were reconstructed with a FC02 kernel (FOV of 295 - 400 mm; slice thickness 0.5
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Original image Sagittal iteration Coronal iteration Axial iteration

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Applying the 2D DoS filter in a cascaded pipeline successively to the sagittal, coronal and axial planes with
L = 9, S = 3, and κ = 0.8. The top row depicts one axial slice, and the bottom row is the 3D visualization using volume
rendering. From left to right, the original image and the filtering results corresponding to iterations in three different
cross-sections are respectively given.

mm; increment 0.5 mm). Scans were made during breath hold at full inspiration without contrast media. The
patient group had moderate to severe COPD (GOLD stage II and III) without α1 antitrypsin deficiency; aged
49-78, and FEV1 between 36% and 87% predicted.

To evaluate the proposed method, the ground truth of lobar fissures was generated on basis of our previous
lobe segmentations,23 which were manually defined and have been approved by a pulmonologist. Since our
purpose focuses on fissure detection rather than a complete lobe segmentation, the previously obtained lobe
references, which involved interpolation and extrapolation, are not suitable here. Therefore, the ground truth
was adapted as follows: We first automatically extracted the complete interlobar boundaries as a starting point
using a morphological gradient calculation. Then, to purify the result, two trained operators further removed
the non-fissure (invisible to observers) parts with an interactive editing tool developed in Mevislab,24 a third
observer subsequently verified the references and a radiologist was enquired to settle the disputes. Finally, a
skeletonizing operation was applied to ensure a uniform single-pixel width through the fissure reference. In this
paper, we only consider the lobar fissures (no accessory fissures). The major and minor fissures in the right lung
are considered a single object, and then validated together without discrimination.

3.2 Experimental results

In the experiments, we used the parameters L = 9, S = 3, κ = 0.8 for the DoS filtering and a fixed global
threshold of 0.5 for post-processing. The performance of our proposed DoS filter is demonstrated with the
intermediate and final results on a COPD patient image in Fig. 3. Here, only the right lung is shown and a
coarse lung segmentation was needed to mask out adjacent interferences like the ribs. As observed, the fissures
are gradually enhanced through the iterations, though the highly curved parts appear to get a weaker response.
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(a) (b) (c) (d)

Figure 4. Extracting pulmonary fissures with the post-processing algorithms, and an isosurface rendering technique is
used for visualization. Here, (a) indicates the branch-point removed result after binarizing the fissure filter output with a
global threshold 0.5, (b) corresponds to the 10 biggest objects, (c) represents the extracted fissure and its overlaying with
the manually drawn reference is given in (d).

On the other hand, the densely distributed vasculature and airway trees, which is thought a main hurdle to
fissure segmentation, have been largely suppressed. This can be seen across the 2D slices or through the 3D
visualization.

Although the enhancement of fissures has largely benefited the final segmentation, the residual small vessels
or bronchi walls especially those linking to the fissure objects still remain a problem. As described in Section 2.4,
the post-processing algorithm mainly depends on a connected component analysis after removing the branch-
points across each 2D slice of the binary volume. In the experiment, we adopted a fixed global threshold 0.5
for all 23 scans. To illustrate the effect of the post-processing algorithms, the 3D surface rendering of results
corresponding to different stages are given in Fig. 4. Here, Fig. 4a indicates the binarization of Fig. 3h along
with removal of branch-points. Due to a very low threshold being used, a large number of clutter fragments still
appear. Then, using a connected component analysis, the unbroken fissure objects were sifted out. We kept
the 10 biggest objects as labeled in Fig. 4b, where the desired lobar fissures usually have a lower label value
according to their volume sorting. Theoretically, the right major and minor fissures should be respectively the
first and second biggest objects, with the left major fissure being the biggest object among their corresponding
labeled results. In a few cases, to realize a perfect segmentation, manual intervention is needed to select the
real fissures among the 10 objects mainly related to pathological deformation or inherent discontinuity. But it is
possible to develop a fully automatic method when more global prior constraints and anatomical knowledge are
merged.23 As shown in Fig. 4c and d, the extracted fissures are highly consistent with the manual reference.

3.3 Evaluation

To give a quantitative evaluation of our filtering performance, the Precision-Recall (PR) curves of the 23 filtered
results are calculated with the manually extracted fissures as a ground truth. The left and right lungs are handled
separately. Like our previous work,18 the PR curves are calculated by binarizing the filtered result with varying
global thresholds. Since the fissure width might change with location, we skeletonized the binarized result into
single-pixel width before comparing. For the DoS filtering evaluation, we defined the Volume of Interest (VOI)
as a narrowed region with 40 mm width around the manual reference, since the interferences located much far
away have little influence to real segmentation. But for the post-processing segmentation validation, we adopted
the full lung regions.

The pixels inside the binary result are classified as true positive (TP1) or false positive (FP ) depending on the
overlap with the manual reference. We used a 3mm tolerance for the “overlapping” determination, i.e. those with
a minimum distance less than 3mm from the reference are considered TP1 and the rest being FP . Accordingly,
the reference pixels are divided into TP2 and false negative (FN) using the same overlapping criterion, where
FN corresponds to those located more than 3mm from the binary result. Note the two true positive measures
TP1 and TP2 are not always equal. To avoid the influence of unbalanced number of pixels, we use the normalized
ratios TP1/(TP1+FP ), FP/(TP1+FP ) and FN/(TP2+FN) instead for precision-recall calculation. As shown
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Figure 5. Quantitative evaluation of fissure filtering using the Precision-Recall curves. Here, the proposed DoS filter is
compared with the methods of M. Descoteaux (M.D.)25 and R. Wiemker (R.W.).13 The AUCs and max F1-measures
along with their standard deviations are given sequentially in the brackets of the legends.
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Figure 6. Evaluation of post-processed binary results using the F1−measure, False Discovery Rate (FDR) and False
Negative Rate (FNR) indices. The first and second rows correspond to the left and right lungs of the 23 COPD patient
scans, respectively. Here, the means of the indices are drawn with dotted lines for references, and their digital values are
given in the legends along with the standard deviations.

in Fig. 5, the PR curves corresponding to the left and right lungs of the DoS filtered results are respectively
illustrated, where the area under the PR curve (AUC) and the maximum F1-measure indices are given in the
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legends. As a comparison, the results from two traditional fissure enhancement filters13,25 are depicted together.
Notice the F1-measure is also known as the Dice similarity coefficient (DSC) in the literature.

The post-processed algorithms are validated by comparing their semi-automatic binary segmentations with
the manually defined reference. Like the filtering evaluation, the agreement rate is measured with the F1−measure
and a 3mm distance threshold for overlapping determination is also used. To quantify the over- and under-
segmentation errors, we introduce respectively the False Discovery Rate (FDR = FP/(TP1 + FP )) and the
False Negative Rate (FNR = FN/(TP2 + FN)). As seen in Fig. 6, the performance on the right lungs is
generally better than on the left lungs, indicated by higher F1−measure and lower FDR and FNR indices. The
main reason is that the left fissures more frequently take abnormal appearance along with disturbing background
around the lung boundaries in our data set. Our computerized algorithm appears inferior to human observers
to handle these complicated situations. On average, the FNRs are much higher than the FDRs, which reflects
that “under-segmentation” is the main error source.

4. DISCUSSION AND CONCLUSION

We proposed a filter for pulmonary fissures detection in thoracic CT images. The prior surface shape of fissures in
3D space is simplified and transformed to an equivalent co-linear constraint across multiple transverse planes. A
distinct feature is that we introduced a nonlinear combination of particularly designed anisotropic kernels, which
makes it different from the conventional isotropic filters and can help to get more robust response even under
serious noise and axial discontinuity. Moreover, with the definition of a new likelihood measure for thin linear
shape, an obvious merit of our method is that the undesired interference structures are simultaneously suppressed
along with the fissure enhancement. To obtain clear binary segmentation, our additional contribution is to develop
a clutter disconnecting scheme based on 2D branch-points removal. It has been verified in experiments using
clinical images that the proposed filter outperformed two conventional Gaussian derivative filters on both object
detection and noise suppression.

With a purpose to suppress step-edges like lung and large vessel boundaries, the adoption of min(·) operator
in our filter unexpectedly brings some side effect. For example, as shown in Fig. 6, the fissures of the No. 8,
12 left lung and the No. 2 right lung images appear to be seriously undetected with very high FNRs. After
investigating the original images, we found a large region of asymmetric roof or step-edge like fissures exist in
these samples, which often generate a very low response under the minimum combination of stick responses.
Another potential problem is with the thickened objects like double oblique fissures, which tend to be wrongly
suppressed under the current derivative definition. These can be considered a principle limitation of the proposed
filter and should be our research direction in the future. In spite of the shortcomings, the proposed method is
able to provide a robust fissure segmentation in most cases using only direct intensity and shape information.
This makes it of special value in applications like fissure integrity assessment.
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