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Purpose: Atherosclerosis is the primary cause of heart disease and stroke. The detailed assessment of
atherosclerosis of the carotid artery requires high resolution imaging of the vessel wall using multiple
MR sequences with different contrast weightings. These images allow manual or automated classifi-
cation of plaque components inside the vessel wall. Automated classification requires all sequences to
be in alignment, which is hampered by patient motion. In clinical practice, correction of this motion
is performed manually. Previous studies applied automated image registration to correct for motion
using only nondeformable transformation models and did not perform a detailed quantitative vali-
dation. The purpose of this study is to develop an automated accurate 3D registration method, and
to extensively validate this method on a large set of patient data. In addition, the authors quantified
patient motion during scanning to investigate the need for correction.
Methods: MR imaging studies (1.5T, dedicated carotid surface coil, Philips) from 55 TIA/stroke pa-
tients with ipsilateral <70% carotid artery stenosis were randomly selected from a larger cohort. Five
MR pulse sequences were acquired around the carotid bifurcation, each containing nine transverse
slices: T1-weighted turbo field echo, time of flight, T2-weighted turbo spin-echo, and pre- and post-
contrast T1-weighted turbo spin-echo images (T1W TSE). The images were manually segmented by
delineating the lumen contour in each vessel wall sequence and were manually aligned by applying
throughplane and inplane translations to the images. To find the optimal automatic image registration
method, different masks, choice of the fixed image, different types of the mutual information image
similarity metric, and transformation models including 3D deformable transformation models, were
evaluated. Evaluation of the automatic registration results was performed by comparing the lumen
segmentations of the fixed image and moving image after registration.
Results: The average required manual translation per image slice was 1.33 mm. Translations were
larger as the patient was longer inside the scanner. Manual alignment took 187.5 s per patient resulting
in a mean surface distance of 0.271 ± 0.127 mm. After minimal user interaction to generate the mask
in the fixed image, the remaining sequences are automatically registered with a computation time of
52.0 s per patient. The optimal registration strategy used a circular mask with a diameter of 10 mm,
a 3D B-spline transformation model with a control point spacing of 15 mm, mutual information as
image similarity metric, and the precontrast T1W TSE as fixed image. A mean surface distance of
0.288 ± 0.128 mm was obtained with these settings, which is very close to the accuracy of the manual
alignment procedure. The exact registration parameters and software were made publicly available.
Conclusions: An automated registration method was developed and optimized, only needing two
mouse clicks to mark the start and end point of the artery. Validation on a large group of patients
showed that automated image registration has similar accuracy as the manual alignment procedure,
substantially reducing the amount of user interactions needed, and is multiple times faster. In conclu-
sion, the authors believe that the proposed automated method can replace the current manual proce-
dure, thereby reducing the time to analyze the images. © 2013 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4829503]
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1. INTRODUCTION

Atherosclerosis is the primary cause of heart disease and
stroke. These cardiovascular diseases are the leading cause
of death in the Western world.1 Atherosclerosis is a progres-
sive disease which, at an early stage, is characterized by the
accumulation of lipids and inflammatory cells in the vessel
wall of large arteries, and, at a later stage, by the formation
of plaque lesions inside the vessel wall.2 Identification of vul-
nerable plaques, lesions with a high risk to rupture which in
turn can lead to a cardiovascular event such as stroke, is of
high clinical relevance.

Magnetic Resonance Imaging (MRI) of the carotid artery
vessel wall is often used to assess atherosclerosis and is one
of the most promising imaging modalities for visualizing
plaque in the carotid artery. It is noninvasive, does not involve
ionizing radiation, and is highly reproducible.3 Detailed
assessment of atherosclerosis in the carotid artery requires
high resolution imaging of the vessel wall using multiple MR
sequences with different contrast weightings.4 A MRI exam-
ination of the carotid artery usually starts with the acquisition
of a time of flight (TOF) magnetic resonance angiography
sequence which provides a global overview of the vascular
structure. Subsequently, several additional 2D acquisitions
can be planned and acquired to obtain information about
the vessel wall morphology and plaque composition. These
vessel wall images are usually scanned perpendicular to the
carotid artery and typically have a high resolution inplane
(0.4 mm) and a significantly lower throughplane resolution
(3 mm). Manual or automated analysis of the vessel wall
images allows identification and quantification of the plaque
components inside the vessel wall. Based on this information,
the clinically relevant vulnerable plaques can be distinguished
from stable plaques.

The duration of a multisequence MRI protocol is between
30 and 60 min. Due to patient movement significant misalign-
ment may occur between the sequences. The effect of pa-
tient motion is especially noticeable inplane; a movement of
1 mm by the patient can result in a shift of multiple pixels in
the subsequent MR sequence. The effect of movement in the
throughplane direction is less obvious due to the lower resolu-
tion, but is still present. These translations between different
sequences due to patient movement decrease the accuracy of
plaque quantification and increase the time needed by a hu-
man expert to analyze the images because comparing similar
locations between the images is less straightforward due to the
inconsistency in the spatial relation between the sequences.
Therefore, patient movement should be corrected for.

The current way in clinical research to correct patient
movement is manual alignment of the vessel wall images by
an expert. First, in one sequence the lumen and outer wall
contours are delineated, followed by manual intrascan image
alignment by applying a combination of throughplane trans-
lation of the complete image stack and inplane translation
for individual image slices. The expert takes into account the
appearance of the images and uses the lumen and outer wall
contours as a reference. Once all images are aligned, regions
of plaque can be identified and characterized by evaluating

the relative signal intensities in the available imaging se-
quences. Various schemes for plaque classification have been
reported for different imaging protocols, which can be used
to identify regions of calcification, lipid core, intraplaque
hemorrhage, ulceration, and fibrous tissue.5–7 In case the
segmentation of the plaque components is performed by an
automated method,8–10 accurate alignment of the images is
essential since most of these methods classify pixels in the
vessel wall using the signal intensities from the different
MR sequences, thereby assuming pixelwise correspondence
between the images.

Since manual alignment is a user dependent and a
time-consuming procedure, automatic image registration has
been applied in a number of studies. An overview of these
studies is given in Table I. In previous work, registration was
mainly performed in 2D,8, 10–12 ignoring any patient move-
ment in the throughplane direction. In all studies, a region
of interest around the carotid artery was used and image sim-
ilarity metrics based on correlation, mutual information (MI),
or gradients in the image were used. Transformation models
were limited to translation and rotation. Fei et al.13 performed
image registration in 3D allowing for translation and rota-
tion in all three directions, and Tang et al.14 used a 3D affine
transformation. It is however to be expected that patient mo-
tion also results in nonrigid deformation of the carotid vessel
wall.15, 16 Another limitation of the above studies is that the
registration results were either assessed visually or no valida-
tion was performed. Quantitative validation was performed in
only one study on five healthy volunteers.12 To overcome the
limitations of these studies, 3D nonrigid image registration
methods should be investigated, optimized, and quantitatively
validated on a large set of patient data.

Therefore, the purpose of this study was to investigate
patient movement during scanning, to develop an accurate au-
tomated 3D registration method, and to perform a quantitative
validation. The contribution of this study is threefold: (1) the
manual alignments of a large number of studies were analyzed
to quantify the average patient movement in MR vessel wall
studies, thereby motivating the need for correction; (2) the
development of an optimal 3D registration method; and (3) to
perform a quantitative validation of the registration results us-
ing an independent reference standard on a large population.

2. MATERIALS AND METHODS

2.A. Image data

Images from 55 TIA or stroke patients with ipsilateral
<70% carotid artery stenosis were randomly selected from
a larger cohort.17 MR images of the stenosed artery were ob-
tained on a 1.5T scanner using a dedicated carotid surface coil
(both Philips Healthcare, Best, The Netherlands). Five MR
pulse sequences were acquired around the carotid bifurcation,
each containing nine transverse slices: 3D T1-weighted turbo
field echo (T1W TFE), 3D TOF, 2D T2-weighted turbo spin-
echo (T2W TSE), and pre- and postcontrast 2D T1-weighted
turbo spin-echo images (T1W TSE), with precise acquisition
parameters as described by Kwee et al.18 For all sequences,
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TABLE I. Literature overview (ROI = region of interest, MI = mutual information).

Study Dataset description Image similarity metric ROI usage Transformation model Validation method

Adame et al. (Ref. 11) 19 patients, two MR
sequences

Correlation coefficient Yes 2D translation None

Biasiolli et al. (Ref. 12) Five volunteers + 20
patients, three MR
sequences

Correlation ratio MI
Gradient MI

Yes 2D translation + rotation Five volunteers:
quantitative validation. 20
patients: visual validation.

Hofman et al. (Ref. 8) 25 patients, five MR
sequences

Normalized MI Yes 2D translation + rotation None

Liu et al. (Ref. 10) 26 patients, five MR
sequences

Active edge map Yes 2D translation 87% correct, no further
details given.

Fei et al. (Ref. 13) Two volunteers + one
patient, three MR
sequences

Normalized MI Unknown 3D translation + rotation Visual validation

Tang et al. (Ref. 14) 48 patients, two MR
sequences

MI Yes First 3D rigid, then 3D affine Visual validation

the field of view was 100 × 80 mm, with a matrix size of
256 × 205 (inplane resolution, 0.39 × 0.39 mm), except for
the T1W TFE sequence (field of view, 100 × 80 mm; ma-
trix size, 256 × 163; inplane resolution, 0.39 × 0.49 mm).
The slice thickness of the T1W TFE and TOF sequences was
3.0 mm with no slice gap. The slice thickness of the T1W
TSE and T2W TSE sequences was 2.5 mm with a slice gap
of 0.5 mm. All images were reconstructed to a pixel size of
0.20 × 0.20 mm2 inplane. This study was approved by the
institutional medical ethics committee and all patients gave
written informed consent.

2.B. Gold standard

An expert observer with four years of experience in
vessel wall analysis traced the lumen boundary of the com-
mon or the internal carotid artery in each image slice of each
MR sequence in all 55 studies. During delineation, all se-
quences were shown to the expert, so all image information
was available to obtain accurate contours. The set of lumen
contours form a manual segmentation and are further referred
to as the gold standard in the remainder of the paper.

2.C. Manual alignment

A second expert with two years of experience in MRI
plaque analysis performed manual alignment and manual
segmentation in all 55 studies. Manual alignment was per-
formed by aligning the images from the different sequences
to the precontrast T1W TSE image. This sequence is often
used to delineate the vessel wall contours and provides a
good visualization of the carotid vessel wall and most plaque
components. First, the expert delineated the lumen and outer
contours of the common or the internal carotid artery in the
precontrast T1W TSE sequence, which were then overlaid
on the other sequences. Next, the images of the remaining
sequences were inspected and a throughplane translation was
applied to the complete image stack if needed. Finally, each
image slice was aligned to the lumen and outer contours by

applying an inplane translation. The set of throughplane and
inplane translations defines the manual alignment. The con-
tours which served as an aid for the alignment were not used
in the remainder of this paper. All manual alignments and
segmentations were performed using a dedicated software
package (VesselMASS; Leiden University Medical Center,
Leiden, The Netherlands).19 An example of the image data
including manual alignment and lumen contour is shown
in Fig. 1.

2.D. Automatic image registration

The goal of automatic image registration is to determine
a spatial transformation that relates positions in one image
to corresponding positions in another image. After success-
ful registration, information from the different images can be
compared, combined, or analyzed.20 Registration is the pro-
cess of finding a coordinate transformation T(x) that makes
the moving image IM(T(x)) spatially aligned to the fixed image
IF(x). The degrees of freedom of T(x) determine the types of
deformation that can be recovered and these deformations are
defined by the choice of the transformation model.21 The reg-
istration problem can be formulated as an optimization prob-
lem in which a cost function C, which is negatively related
to an image similarity metric S, is minimized with respect to
Tμ, where Tμ is a parameterization of transformation T and
subscript μ represents a vector that contains the values of the
transformation parameters

FIG. 1. T1W TSE image (left) with delineated lumen contour (white), TOF
image with the T1W TSE lumen contour overlaid showing misalignment
(middle), TOF image after manual alignment (right).
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μ̂ = arg min
μ

C(Tμ; IF , IM ), (1)

C(T ; IF , IM ) = −S(T ; IF , IM ). (2)

This minimization problem is commonly solved by employ-
ing an iterative optimization strategy.22

There are several choices possible for the transformation
model. Performing a 2D translation per image slice is simi-
lar to the process of manual alignment by the expert. It pro-
vides a 2D translation vector for each image slice. Examples
of other transformation models are, in order of increasing flex-
ibility, the rigid, the affine, and the nonrigid B-spline transfor-
mation. The rigid transformation treats the image as a rigid
body which can translate and rotate. The affine transforma-
tion extends the rigid transformation by adding scaling and
shearing to the model. The nonrigid transformation is mod-
eled as a weighted sum of B-spline basis functions placed on
a uniform control point grid. By moving the control points
of the B-spline functions, the underlying image is deformed.
The B-spline transformation can model local deformations in
the image, produces a smooth transformation, and is com-
putationally efficient.23 The flexibility of the deformation is
defined by the resolution of the control point grid.

In the context of the multisequence MR images of the
carotid artery, one of the images is chosen as fixed image
and the remaining images will each serve as the moving im-
age. Each MR sequence has a different image contrast and the
set of sequences can be considered as a multimodal dataset.
Therefore, an image similarity metric should be chosen that
is suitable for multimodal image pairs, such as MI (Refs. 24
and 25) or Normalized Mutual Information (NMI).26

The image similarity metric should only be calculated in
a region of interest (ROI) around the carotid artery, other-
wise the automatic registration algorithm might align the se-
quences to the dominant neck-air boundary or other struc-
tures. The ROI was implemented by defining an image mask
centered over the lumen.

In this study, multiple image registration strategies were
investigated to find the optimal strategy for MR vessel wall
images of the carotid artery. Strategies were created by vary-
ing the choice of the fixed image, two different types of the
mutual information image similarity metric, the transforma-
tion model and the image mask. The following choices were
investigated:

� Fixed image: A human expert often uses one sequence
as a reference. In this dataset, the precontrast T1W TSE
was chosen to be the reference sequence. However, for
automated methods this might not be the best sequence,
therefore each of the sequences was tested as fixed
image.

� Image similarity metric: MI and NMI were tested as im-
age similarity metrics.

� Transformation model: The selected models were 2D
translation per image slice, 2D rigid transform per im-
age slice, 3D rigid transform, 3D affine transform,
and 3D B-spline transform. For the 3D B-spline trans-
form, different values of the B-spline control point grid

spacing were evaluated. The investigated values ranged
from 2 to 200 mm.

� Mask shape and size: The mask was centered over the
lumen in the fixed image and various mask shapes and
sizes were selected. The shape was either a circle or a
square and the respective diameter or width varied from
4 to 40 mm.

2.E. Determination of the lumen center in each
image slice

The image mask was centered over the lumen in each
image slice of the fixed image. In each slice, the center of the
lumen was derived from the gold standard lumen contours.
Additionally, the center of the lumen was derived from auto-
mated lumen segmentation.27 This automated procedure was
applied to the MR sequence which was evaluated as the best
fixed image in Sec. 3.B.2. The segmentation procedure was
started by manually indicating a point in the lumen center in
the first and the last slice, and subsequently the lumen was
segmented. In some cases, a third point was indicated around
the bifurcation to ensure a correct segmentation.

2.F. Quantitative evaluation

Evaluation of the automatic registration was performed by
comparing the lumen segmentations of the fixed image and
moving image after registration. In the case of successful reg-
istration, the lumen segmentations should have a large overlap
and a small surface to surface distance. The gold standard lu-
men contours were used for this validation. Both the overlap
and distance between the segmentations were used to quantify
the registration accuracy.

The automatic image registration finds a coordinate trans-
formation which is defined as a mapping from the fixed image
to the moving image. Therefore, the lumen contours of the
fixed image are transformed to the moving image domain, in
which both contours can be compared to each other. Because
the transformed contour can move outside the 2D image
plane after a 3D registration, it is not possible to compare
the contours on a per slice basis. To be able to compare the
results of both 2D and 3D registrations, the lumen contours
were converted into 3D tubular surface meshes. The surface
mesh was created by interpolating a 3D tubular surface
through the contours using linear interpolation.

The overlap between the lumen surfaces was calculated
using the Dice similarity coefficient (DSC).28 The DSC was
calculated as follows:

DSC = 2 |LFT ∩ LM |
|LFT| + |LM | , (3)

where LFT represents the transformed lumen segmentation of
the fixed image, LM the lumen segmentation of the moving
image, and | · | denotes the number of voxels within the seg-
mentation. A DSC of 1 indicates perfect overlap between both
lumen surfaces, a value of 0 means that there is no overlap
between the surfaces.
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The distance between the lumen surfaces was calculated
by sampling points on the surface each 0.05 mm. Sampled
points on the transformed fixed lumen surface which were
positioned outside the moving image domain, points above
or below the slice stack of the moving image, were discarded.
Then for each point on the transformed fixed lumen surface,
the distance to the closest point on the moving lumen surface
was calculated. The average of the distances was defined as
the mean surface distance (MSD)

MSD = 1

n

∑n

i=1
minq∈LM

√
‖ pi − q‖2, (4)

where pi is a point on the transformed fixed lumen surface, n
is the number of points on the transformed fixed lumen sur-
face, and q is a point on the moving lumen surface. A smaller
distance indicates a better registration result. The MSD and
DSC scores are summarized by using the median including
the interquartile range (IQR) indicated by the plus minus sign
and boxplots. The IQR is the difference between the 75th and
the 25th percentiles. To compare different registration strate-
gies with either the manual alignment or an automated regis-
tration strategy, the Wilcoxon signed rank test was applied to
the MSD and DSC scores. A p-value smaller than 0.05 was
considered to indicate statistical significance.

3. EXPERIMENTS AND RESULTS

Three experiments were conducted to investigate several
aspects of the registration of multispectral MR vessel wall im-
ages of the carotid artery. In the first experiment, the need for
registration was investigated by analyzing the manual align-
ments performed by the expert to quantify the amount of pa-
tient motion per MR study. In the second experiment, the
automatic image registration method was optimized. In the
third experiment, we investigated if future improvements of
the automated methods are possible. We estimated a lower
limit on the registration error by registering the manual lumen
segmentations instead of the MR image data.

3.A. Manual alignment

The manual alignments applied by the expert were
analyzed to investigate the amount of patient movement
within one MR study. For each study, the MR sequences were
sorted in chronological order. Then, for each MR sequence,
the average applied translation with respect to the first ac-
quired MR sequence was measured per slice and averaged
over all slices. As a result, the average translation for the
first sequence was zero. This calculation was performed for
each study generating 55 averages per MR sequence. The av-
erage and standard deviation of these 55 averages were calcu-
lated for each MR sequence. For the first ten studies, the time
needed to perform the manual alignment was recorded.

The analysis results of the manual alignments are shown in
Fig. 2. In total, 1980 image slices were manually aligned (nine
slices per sequence, four MR sequences, 55 studies). The av-
erage translation per image slice was 1.33 mm. The transla-
tions were larger as the patient was longer inside the scanner.
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FIG. 2. Average applied manual alignment based on 55 studies and five se-
quences. The length of the error bars is two standard deviations.

The average duration of the manual alignment procedure was
187.5 ± 12.4 s per patient.

3.B. Automatic image registration

To optimize the automatic image registration method,
numerous registration strategies were processed. Different
masks, choice of the fixed image, image similarity metrics,
and transformation models were evaluated. Investigating all
permutations of these options was not feasible due to the
required amount of computation time. Therefore, a stepwise
approach was taken. First, the effect of the mask shape and
size was investigated. A 3D rigid body transformation was
chosen, MI as metric, and the precontrast T1W TSE image
was used as fixed image. Based on the best mask shape and
size, all combinations of fixed and moving images were
investigated, again with the same transformation and image
metric. Next, the performance of MI and NMI was compared
using the optimal fixed image. Then, the optimal value of the
B-spline control point grid spacing for the 3D B-spline trans-
formation model was determined. Based on the previously
selected registration options, five different transformation
models were investigated. For comparison, the MSD of the
manual alignments was calculated as well as the MSD in case
no registration was applied to the image data. In addition, the
DSC was calculated for this experiment. The best registration
strategy was evaluated with a mask created using the lumen
center extracted from the automated lumen segmentation
procedure. Finally, the throughplane translation was quan-
tified for the different 3D registration methods and the
amount of volume change was quantified for the 3D B-spline
transformation model.

The registration experiments were performed using a
speed optimized beta version of the publicly available Elastix
software.21 Elastix is an open source toolbox for rigid
and nonrigid registration of images. In this work, a ran-
dom image sampler, two resolutions of each 1000 itera-
tions, a trilinear image interpolator, and adaptive stochas-
tic gradient descent as optimizer,29 were chosen. The

Medical Physics, Vol. 40, No. 12, December 2013
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FIG. 3. Mean surface distance for no mask (“none”), circular and square masks of different sizes. A star on top of a column indicates a significant difference
with respect to the optimal score of that shape (lowest median), which is indicated by a hat. The two gridlines show the acquired (0.39 mm) and reconstructed
inplane pixel size (0.20 mm).

exact registration parameters are available in the parame-
ter file database on the Elastix website with ID Par0018
(http://elastix.bigr.nl/wiki/index.php/Par0018).

3.B.1. Masks

In Fig. 3, a boxplot is shown for the different shapes and
sizes of the mask. The optimal circular image mask had a di-
ameter of 10 mm and a MSD of 0.317 ± 0.148 mm. The op-
timal square mask had a width of 10 mm and a MSD of 0.324
± 0.150 mm. In case the mask was too small, such that it did
not contain the complete vessel, or when no mask was used,
large errors appeared. An oversized mask resulted in a larger
MSD and an increase in outliers.

3.B.2. Fixed image

Using the optimal mask, all combinations of fixed and
moving images were evaluated. The results are shown using
a color matrix in Fig. 4. The median MSD and IQR were cal-
culated for each combination of fixed and moving image. The
overall score of a fixed image was calculated by accumulating
the MSD scores of the four moving image corresponding to
the selected fixed image and calculating the median. Using the
precontrast T1W TSE as fixed image resulted in the smallest
overall MSD while using the TOF as fixed image resulted in
the highest MSD. For the further experiments, the precontrast
T1W TSE sequence was selected as fixed image.

3.B.3. MI and NMI

Finally, the image similarity metrics MI and NMI were in-
vestigated as well as the grid size for the deformable B-spline
transformation. MI as image similarity metric performed

slightly better than NMI, the MSD was 0.317 ± 0.148
and 0.324 ± 0.156 mm for MI and NMI, respectively.

3.B.4. B-spline control point grid spacing

Different values of the B-spline control point spacing were
evaluated using MI as image similarity metric. A control point
spacing of 15 mm for the 3D B-spline transformation pro-
vided the best results (Fig. 5), and the results were quite stable
for grid spacings in the range 5–100 mm.

3.B.5. Transformation model

The MSD for the different transformation models using the
optimal mask, fixed image, image metric, and control point
spacing is shown in Fig. 6. The first column of the boxplot
shows the distance without applying any form of registration
(0.590 ± 0.429 mm). The second column shows the results af-
ter manual alignment by the expert (0.271 ± 0.127 mm). The
remaining columns show the different transformation models:
2D translation per image slice (0.303 ± 0.276 mm), 2D rigid
transformation per image slice (0.308 ± 0.298 mm), 3D rigid
transformation (0.317 ± 0.148 mm), 3D affine transforma-
tion (0.307 ± 0.149 mm), and the 3D B-spline transformation
(0.288 ± 0.128 mm). The last column shows the MSD ob-
tained by the best registration strategy using the optimal mask
which was initialized by the automatically segmented lumen
contours (0.286 ± 0.144 mm). Similarly, the DSC scores are
shown in Fig. 7.

The performance of the automated methods increased with
an increasing degree of freedom of the transformation model.
The 3D B-spline registration showed the best registration
accuracy and the MSD score was close to the MSD score
of the manual alignment procedure. The differences in
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FIG. 4. Color matrix showing the median MSD and the interquartile range of the different combinations of fixed and moving images. The rightmost column
shows the overall score for each selected fixed image.

DSC were smaller compared to the differences in MSD.
The 2D models showed substantial more outliers and a
higher variation in MSD and DSC scores compared to the
3D models. Visual used to investigate the outliers. The
majority of outliers were caused by poor image quality in

either the fixed or the moving image, pulsation artifacts, or
saturation slabs close to the carotid artery. The saturation
slabs were positioned over subcutaneous fat to reduce
ghosting artifacts and over the pharynx to reduce swallowing
artifacts.
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FIG. 5. Mean surface distance for different values of the control point spacing of the 3D B-spline transform. A star on top of a column indicates a significant
difference with respect to the optimal spacing, which is indicated by a hat. The two gridlines show the acquired (0.39 mm) and reconstructed inplane pixel size
(0.20 mm).
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FIG. 6. Mean surface distance for all transformation models (None: no alignment, Manual: manual alignment by the second expert, 2DTrans: 2D translation
per image slice, 2DRigid: 2D rigid transform per image slice, 3DRigid: 3D rigid transform, 3DAffine: 3D affine transform, 3DBspl: 3D B-spline transformation,
3DBspl_ALS: 3D B-spline transformation with a mask based on the automated lumen segmentation). A star on top of a column indicates a significant difference
with respect to the manual alignment procedure. A hat on top of the figure indicates a significant difference with the 3D B-spline model. The three gridlines
show the acquired (0.39 mm) and reconstructed inplane pixel size (0.20 mm) and the median MSD (0.27 mm) of the manual alignment procedure.

The inplane and throughplane translation as a result of
a 3D registration was quantified by calculating the average
translation of the lumen segmentation in these directions for
each 3D registration. The average inplane translation was
1.093 ± 0.913 mm and the average throughplane translation
was 0.738 ± 0.571 mm.

The volume change occurring in the deformable 3D
B-spline transformation was quantified by calculating the av-
erage determinant of the Jacobian of the deformation field
within the fixed mask. A value of 1 indicates no volume
change, a value of 1.1 indicates local expansion of 10%, and
a value of 0.9 indicates local compression by 10%. The mean
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FIG. 7. Dice similarity coefficient for all transformational models (None: no alignment, Manual: manual alignment by the second expert, 2DTrans: 2D transla-
tion per image slice, 2DRigid: 2D rigid transform per image slice, 3DRigid: 3D rigid transform, 3DAffine: 3D affine transform, 3DBspl: 3D B-spline transfor-
mation, 3DBspl_ALS: 3D B-spline transformation with a mask based on the automated lumen segmentation). A star on top of a column indicates a significant
difference with respect to the manual alignment procedure. A hat on top of the figure indicates a significant difference with the 3D B-spline model.
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and standard deviation of the Jacobian determinant over all
patients was 1.00 ± 0.11, showing no systematic change in
volume.

The computation time for the registration of one MR se-
quence with the precontrast T1W TSE sequence was on aver-
age 41.4 s for the 2D translation transform (4.6 s per image
slice), 73.8 s for the 2D rigid transformation (8.2 s per im-
age slice), 5.1 s for the 3D rigid transform, 5.0 s for the 3D
affine transform, and 13.0 s for the 3D B-spline transform.
The registration experiments were performed on a standard
PC equipped with an Intel Xeon processor with four cores
running at 2.4 GHz. An example of a 3D B-spline regis-
tration is shown in Fig. 8. The postcontrast T1W TSE im-
age shows that throughplane correction is required for correct
alignment.

3.C. Lower limit registration accuracy

To investigate the lower limit of the registration accuracy,
the real image data of each sequence was replaced with a bi-
nary mask of the gold standard contours of the lumen of that
sequence. Areas within the lumen were set as foreground (in-
tensity value 1), areas outside the lumen as background (in-
tensity value 0). These masks were then used as the fixed and
moving images in the registration procedure. Instead of us-
ing MI as image similarity metric, the sum of squared differ-
ences was used. The automatic image registration was applied
on the data to fit the lumen segmentations upon each other.
By using the binary lumen masks, perfect image quality is
simulated and the results will show an upper bound of the
registration accuracy using the current choice of registration
parameters.

The lower limit MSD and the regular MSD scores are
shown in Fig. 9. The values of the lower limit MSD are
smaller for transformation models which have more degrees
of freedom, but the medians are in all cases larger than the
reconstructed pixel size.

4. DISCUSSION

The main observation of this study is that automated image
registration of multicontrast MR imaging of the carotid ves-
sel wall using a 3D B-spline transform is almost as accurate
as the current clinical practice of manual alignment by an ex-
pert, with final accuracy in the order of the inplane voxel size.
The required user-interaction to generate the lumen masks to
focus the registration was reduced from one mouse-click per
image slice to only two or three mouse-clicks per MRI exam.
In addition, automated analysis is at least three times faster
than manual alignment of the image data and can potentially
be an order of magnitude faster if run in parallel. This paper
has a number of contributions. First, the need for alignment of
multispectral MR vessel wall images of the carotid artery was
quantified. Second, an optimized automatic registration strat-
egy was proposed after investigating and optimizing differ-
ent parameters of the registration method. Third, a validation
framework was proposed which allows comparison of regis-
tration results with a gold standard. In addition, an estimate of
the maximum performance was derived. This is the first study
to quantify these aspects on a large set of patients.

Analysis of the manual alignment by the expert shows the
need for registration of carotid MRI studies. The average mis-
alignment per image slice is 1.33 mm, but can be over 2.4
mm, and occurs in all three dimensions. Such a misalignment
causes mismatches in pixel correspondence between MR se-
quences; for example, a location in the vessel wall in one
MR sequence can correspond to the lumen area in another
MR sequence. If the images are not correctly aligned, man-
ual segmentation of the vessel wall and its components might
not be accurate, especially at the boundaries of plaque com-
ponents. In case an automated plaque segmentation method
is applied to the image data, incorrect results are expected,
as these methods classify pixels into plaque components ac-
cording to their signal intensity value in the different MR
sequences.8–10, 30

The different automatic image registration experiments
showed in a stepwise fashion the optimal registration

FIG. 8. Example of MRI images before (top row) and after registration by the optimal 3D B-spline transformation (bottom row). The fixed image is shown in
the first column. The lumen contour of the fixed image (white) is overlaid on all images. The postcontrast T1W TSE image shows that throughplane correction,
which is achieved by using a 3D transformation model, is required for correct alignment.
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FIG. 9. MSD and lower limit mean surface distance (LLMSD) of the different transformation models (2DTrans: 2D translation per image slice, 2DRigid: 2D
rigid transform per image slice, 3DRigid: 3D rigid transform, 3DAffine: 3D affine transform, 3DBspline: 3D B-spline transformation). The two gridlines show
the acquired (0.39 mm) and reconstructed inplane pixel size (0.20 mm).

strategy. The building blocks of the registration were op-
timized to an automated circular mask with a diameter of
10 mm, 3D B-spline transformation model with a control
point spacing of 15 mm, MI as image similarity metric, with
the precontrast T1W TSE as fixed image. After an indication
of the lumen centerline in the T1W image, the other sequences
are automatically registered with a median mean surface error
of 0.288 ± 0.128 mm. As a reference, the error after manual
alignment was 0.271 ± 0.127 mm. The computation time for
the registration of the MR sequences was 52.0 s per patient.
This is much faster than the time needed for manual align-
ment, which was 187.5 s per patient. Average run time can
potentially be further reduced by a factor of 3–4 by running
all registrations in parallel.

The shape and size of the optimal image mask should cover
the luminal area, the vessel wall, and its direct surrounding.
The experiments have shown that most image information
necessary for successful registration is contained in this re-
gion and that neighboring structures, such as veins and mus-
cles, do not have an important contribution to the registration
process. The optimal mask, a circular mask with a diameter
of 10 mm, is slightly larger than the dimensions of the carotid
artery including the vessel wall. Krejza et al.31 reported an
average internal diameter of the internal carotid artery of 4.89
and 6.31 mm for the common carotid artery. The average ves-
sel wall thickness measured by MRI is 0.92 ± 0.21 mm in
elderly subjects with cardiovascular disease.32

The selection of the fixed image was investigated and the
precontrast T1W-TSE sequence was chosen as fixed image.
This is the same image that was used by the human expert
as reference. The relatively large MSD for the TOF sequence
can be explained by the lack of vessel wall depiction in this
sequence. Also the selection of the postcontrast T1W TSE se-
quence as fixed image showed a relatively large MSD. This

sequence is always acquired at the end of the study result-
ing in a higher chance that the subject will move. Moreover,
the administration of contrast agent might cause discomfort
for the patient and can result in extra patient motion as a
reaction to this discomfort. Furthermore, uptake of the con-
trast agent results in an increase of heterogeneity in the ves-
sel wall intensities which might decrease the performance of
the MI image similarity metric. The matrix of MSD scores in
Fig. 4 shows moderate reflection symmetry. Perfect reflection
symmetry matrix was not expected as the used registration
framework is not symmetrical.

After comparing MI and NMI as image similarity metric
and optimizing the control point grid spacing for the 3D B-
spline transformation, all transformation models were com-
pared. The best registration accuracy was achieved by using
the 3D B-spline transformation model. Although the medians
of the MSD and the Dice overlap do not show a substantial
improvement for the 3D transformations compared to the 2D
transformations, Figs. 6 and 7 show that the 3D transforma-
tions have substantially less outliers. Clinically, this means
that much fewer patients will need manual correction, saving
costly reviewing time by the radiologist. Moreover, analysis
of the manual segmentations and the 3D registration results
showed that patient movement occurs in all three directions
and that throughplane translation is in the same order of mag-
nitude as inplane translation. The nonrigid 3D B-spline trans-
formation model showed an improvement over the rigid 3D
transformations. A nonrigid model can better handle rotation
of the neck which can cause compression and expansion of
tissues. Literature indicated that patient movement includes a
nonrigid component.15, 16 Analysis of the deformation fields
of the 3D B-spline registrations shows that small local com-
pressions or expansions occur during registration, but on av-
erage there was no change in volume. Finally, Fig. 5 shows
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that patient motion can be modeled well with a few degrees
of freedom.

While the differences in registration accuracy between
the different transformation models are small, a nonrigid 3D
transformation model is required to correctly model patient
movement and obtain an accurate alignment. The 3D B-spline
transformation model has the best registration accuracy and
the results show that a 3D model is needed because the
throughplane motion is in the same range as the inplane mo-
tion. An illustrative example of throughplane motion is shown
in Fig. 8. The 3D B-spline transformation model performs
slightly worse than the manual alignment procedure. Visual
inspection of the results showed that most of the differences
can be explained by errors of the automated registration of
the 3DTOF sequence caused by the lack of structural infor-
mation in this sequence. By excluding the 3DTOF sequence
from the experiment, the MSD of the 3D B-spline transforma-
tion model approaches the MSD of the manual alignment and
is no longer significantly different. The 3D B-spline registra-
tion with the mask based on the automated lumen segmenta-
tion performed similarly to the 3D B-spline registration with
the mask that was based on the manual segmentation. This
shows that the automatic image registration can be applied
with minimal user interaction.

The lower limit MSD was found to be slightly larger than
the reconstructed inplane pixel size. The comparison shows
that the results of the different registration strategies are close
to the lowest possible MSD. Hence, major reductions in
MSD are not expected by further optimizing or changing the
registration strategies, but improvements might still lead to
more accurate registration results possibly beating the man-
ual alignment procedure. The minimum value of the lower
limit MSD might be limited by the gold standard contours.
These contours will vary slightly between the MR sequences
because of possible patient movement and human variation
in the delineation process. For example, if the lumen con-
tours in one sequence were drawn slightly larger than in an-
other sequence, it will not be possible to obtain a MSD of
zero.

Compared to previously reported studies on automatic reg-
istration methods for carotid MR vessel wall imaging, this
is the first study in which comprehensive experiments were
performed on a large set of patient studies using quantitative
validation measures. Only one study performed quantitative
validation on simulated neck movements in five volunteers.12

The authors performed the validation in 2D and assumed that
neck movements through the image plane and tissue defor-
mations in the image plane were either absent or negligi-
ble. However, patient movement occurs in all directions and
as such, a 3D image registration approach has advantages,
which is supported by our findings. Also, as the thickness
of imaging slices will decrease in the future due to tech-
nological advancements, the effects of throughplane motion
will have a more prominent effect. Two studies13, 14 used a
3D-based registration method being a rigid body transforma-
tion or affine transformation. Our results show that such a
transformation model is insufficient to generate a good re-
sult. Our data suggest that deformations, such as bending and

stretching,33 should be taken into account when choosing a
registration strategy.

This study is subject to a number of limitations. An
image mask centered over the lumen is required as input for
the automatic image segmentation method. This mask can be
created by the application of an automated method to segment
the carotid lumen,27,34 which requires a minimal user interac-
tion of two or three interactions per MRI exam as performed
in this study.

Motion between slices, which can occur during a 2D
acquisition in which the slices are scanned sequentially, was
not investigated. We assume that the effect is small compared
to the motion between MR sequences. During the acquisi-
tion of one sequence, the patient is instructed not to move
and most likely will move after completion of the sequence.
The error metrics used in this research cannot detect an erro-
neous rotation in case the vessel is mostly circular. However,
the MRI acquisition is centered on the bifurcation and the er-
ror metric is sensitive to the rotation of both bifurcations and
ellipsoid-shaped vessels. The registration of the multispectral
MR vessel wall images is just one of the steps in the analysis
of atherosclerosis in the carotid artery. The final step of the
analysis is the assessment of plaque composition inside the
vessel wall. Accurate alignment of the images is beneficial for
the analysis of the plaque composition. More research should
be conducted to test if there is a difference in outcome of the
plaque composition analysis between manual alignment and
automatic image registration.

To conclude, the need for image registration using a 3D
deformable transformational model was shown, and several
carefully selected, critical components of the registration pro-
cedure were optimized and quantitatively validated on a large
group of patients. The optimal registration strategy was faster
than manual alignment by a human expert, and with simi-
lar accuracy. These results show that automated image reg-
istration can replace the manual alignment, thus reducing the
amount of user interactions needed for analyzing carotid ves-
sel wall images and improving the reproducibility of the anal-
ysis. The proposed method shows high potential for clinical
application. The software and the parameters of the optimal
registration strategy are publicly available.

The main findings of this paper, which were acquired with
data from a 1.5T scanner, were validated on a more recent
3.0T dataset. The results of the 3.0T dataset are in line with
the results of the 1.5T dataset and show that the same registra-
tion settings can be applied to newer MRI data. A short report
is available in the supplementary material.35
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