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ABSTRACT

Image registration is often used in the clinic, for example during radiotherapy and image-guide surgery, but also
for general image analysis. Currently, this process is often very slow, yet for intra-operative procedures the speed
is crucial. For intensity-based image registration, a nonlinear optimization problem should be solved, usually
by (stochastic) gradient descent. This procedure relies on a proper setting of a parameter which controls the
optimization step size. This parameter is difficult to choose manually however, since it depends on the input
data, optimization metric and transformation model. Previously, the Adaptive Stochastic Gradient Descent
(ASGD) method has been proposed that automatically chooses the step size, but it comes at high computational
cost. In this paper, we propose a new computationally efficient method to automatically determine the step size,
by considering the observed distribution of the voxel displacements between iterations. A relation between the
step size and the expectation and variance of the observed distribution is then derived. Experiments have been
performed on 3D lung CT data (19 patients) using a nonrigid B-spline transformation model. For all tested
dissimilarity metrics (mean squared distance, normalized correlation, mutual information, normalized mutual
information), we obtained similar accuracy as ASGD. Compared to ASGD whose estimation time is progressively
increasing with the number of parameters, the estimation time of the proposed method is substantially reduced
to an almost constant time, from 40 seconds to no more than 1 second when the number of parameters is 105.
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1. INTRODUCTION

Image registration is often used in clinical operations such as radiotherapy1 and image-guide surgery,2 but also
for other general image analysis tasks.3–7 Currently, this process is often very slow,8 yet for intra-operative
procedures the speed is crucial. The main principle of image registration is to align two images, fixed and
moving image, by optimizing the similarity between these two. An often used method for intensity-based image
registration is to solve a nonlinear optimization problem, usually by iterative gradient descent. For this iterative
scheme,9 a suitable step size should be chosen to guarantee the convergence and obtain a reasonable conver-
gence speed. This step size can be chosen manually, like with the Robbins-Monro (RM) stochastic gradient
descent method.10 However, this is a difficult task, since it depends on the input data, optimization metric and
transformation model. Although Klein’s adaptive stochastic gradient descent (ASGD) method11 selects the step
size automatically and with a better performance than manual selection, the estimation time is very long and
memory consumption is high, especially when the number of parameters is larger than ∼ 104. Developing a fast
and automatic selection method for the step size is still an open research topic.

In this paper, we propose a new estimation method to automatically select the optimization step size by
deriving a relation with the observed voxel displacement between iterations. Using the Taylor expansion, we
obtain a relationship between the step size and the voxel displacement. From the decay function used in the
stochastic gradient descent, we get the maximum step size of each resolution. In Section 2, the method to
calculate the parameter a is introduced. Experiments on lung CT data with different metrics are presented in
Section 3. Finally, Section 4 concludes the paper.
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2. METHODS

Intensity-based image registration tries to align two images following a continuous deformation strategy. We can
define the fixed image as IF (x), the moving image as IM (x), and a parameterised coordinate transformation
as T (x,µ), in which µ ∈ R

N is a potentially large vector of transformation parameters. When treating the
registration problem as a nonlinear optimization problem, we get the following iterative minimization problem,
using gradient descent:

µ̂ = argmin
µ

C(IF , IM ◦ Tµ),

µk+1 = µk − γkgk,

γk =
a

(A+ k)
α ,

(1)

with k the iteration number, C the cost function to measure the dissimilarity between the fixed and moving image,
gk = ∂C/∂µk, γk the step size function which is a decaying function with a > 0, A ≥ 1, and 0 < α ≤ 1 usually
manually selected before the optimization. In the decaying function γk, the parameter α controls the speed of
decay, A provides a starting point at the beginning of the optimization and has a relatively small influence for
large k, and a determines the overall scale of the step size. From these three, a is most difficult to select, since it
is dependent on IF , IM , C and even Tµ. The theoretically optimal value for α equals 1, and from experience11, 12

A = 20 provides a reasonable value for most situations.

According to Plakhov’s method13 and the original ASGD method, an adaptive scheme is attained by using
the following functions:

γ(tk) =
a

(tk +A)α
,

tk = [tk−1 + f(−gT
k−1gk−2)]

+,

f(x) = fmin +
fmax − fmin

1− (fmax/fmin)e−x/ω
,

(2)

in which f(x) is a sigmoid function, fmax, fmin, ω and a should be (automatically) determined. The iteration
number is replaced by an artificial time parameter, which is a function of the inner product of two consecutive
gradients. The intuition is that larger steps can be taken when the inner product is large. The sigmoid function
f constrains the change in time to the range [fmin, fmax]. In this work, we use the same adaptive scheme and
focus on automatically selecting the parameter a in a simple and less time-consuming way.

2.1 Displacement estimation

The displacement of voxel xj between iteration k and k + 1 is defined by

dk(xj) = T (xj ,µk+1)− T (xj,µk) . (3)

During the optimization process, it is better to constrain the deformation dk to a reasonable range. This ensures
that the transformation is not too big or too small during the iterative optimization.11

Klein introduced a user-defined parameter δ as the maximum allowed voxel displacement. We use the same
scheme to assume that the maximum voxel displacement for each voxel between two iterations should be not larger
than δ: i.e ‖dk(xj)‖ ≤ δ, ∀xj ∈ ΩF . We can use a weakened form for this assumption: P (‖dk(xj)‖ > δ) < ρ,
where ρ is a small probability value often 0.05, which means this situation nearly could not happen. We use the
Vysochanskij Petunin14 inequality to approximate this function, and we get

E‖dk‖+ 2
√
V ar‖dk‖ ≤ δ. (4)
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2.2 Estimation of a

We use the Taylor expansion to make an approximation of dk around µk

dk ≈
∂T

∂µ
(xj ,µk) · (µk+1 − µk) = Jj (µk+1 − µk) , (5)

in which Jj =
∂T
∂µ (xj,µk). Together with Equation (1), dk can be rewritten as

dk(xj) ≈ −γkJ(xj)gk = −γkMk(xj), (6)

where Mk(xj) = J(xj)gk. Considering the expectation and variance of all voxels, the Vysochanskij Petunin
inequality can be rewritten to

γk

(
E ‖Mk‖+ 2

√
V ar ‖Mk‖

)
≤ δ. (7)

From the step size function γ(tk) = a/(tk + A)α, it is easy to find the maximum step size γmax = γ0 = a/Aα,
from which the maximum value of a, am = γmaxA

α can be obtained. After computing the value of E‖Mk‖ and√
V ar‖Mk‖, we obtain the following:

am =
δAα

E‖Mk‖+ 2
√
V ar‖Mk‖

= δAα/


 1

N

∑

xj∈ΩF

‖Mk(xj)‖F + 2

√
1

N−1

∑

xj∈ΩF

(‖Mk(xj)‖F − E‖Mk(xj)‖F )
2


 ,

(8)

in which ‖ · ‖F is the Frobenius norm. We choose k equal to zero, so that for a given δ, the value of a can be
estimated from the initial distribution of M0 at the beginning of each resolution.

Compared to deterministic gradient descent, larger gradients are obtained during the optimization for stochas-
tic gradient descent, due to the estimation error. For larger gradients, a smaller step size is needed, so a com-
pensation is needed when using stochastic gradient descent. We adopt the compensation factor from Klein et
al,11 which is defined as η = E‖g‖/ (E‖g‖+ E‖ǫ‖), resulting in the compensated step size a = ηam.

3. EXPERIMENTS AND RESULTS

3.1 Data, environment settings and evaluation

The new method was implemented in the C++ language in the open source platform elastix.12 The experiments
were performed on a workstation with 24 GB memory, and 8 cores running at 2.4 GHz. We used 3D lung CT
images acquired during the SPREAD study15 (around 446 × 315 × 129 voxels) of 19 patients scanned without
contrast media. The patient group, aging from 49 to 78 with 36%-87% predicted FEV1 had moderate to severe
COPD at GOLD stage II and III, without α1 antitrypsin deficiency. One hundred anatomical corresponding
points from each lung CT image were chosen semi-automatically using Murphy’s method16 to obtain a ground
truth.

In this paper two aspects of the new method were considered: registration accuracy and estimation speed. To
evaluate the registration accuracy, the anatomical points of the fixed image were transformed using the obtained
transformation and then compared with the corresponding points in the moving image. If one of the observers
marked a point as unsure it was considered an unreliable point, and those points were excluded from validation
to obtain the ground truth as reliable as possible. The Euclidean distance between the corresponding points was
used as a measure of registration accuracy:

disti = ‖T (piF )− piM‖. (9)

To evaluate the method, four commonly used similarity metrics were tested using a B-spline transformation
model: mean squared difference (MSD), normalized correlation (NC), mutual information (MI) and normal-
ized mutual information (NMI). The registration scheme includes a three level multi-resolution framework and
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(a) Fixed image (b) Moving image

(c) ASGD (d) am (e) ηam

Figure 1. Lung CT images. One example slice of the lung CT data from (a)fixed image, (b)moving image, (c) original
ASGD result image, (d)proposed method without noise compensation, (e)proposed method with noise compensation.

ASGD ASGD′ am ηam
MSD 1.09 1.10 1.09 1.12
NC 1.50 1.51 1.56 1.55
MI 1.65 1.65 1.69 1.66
NMI 1.66 1.65 1.67 1.68

Table 1. The median Euclidean distance error (mm)

Gaussian smoothing filter with a fixed standard deviation of 2, 1 and 0.5 mm, for each resolution. The grid
size is halved in B-spline control point grid in order to increase the transformation accuracy. In the experi-
ments, we chose the same value of α and A as Klein: α = 1 from the theoretically optimal setting and A = 20
from experience. The given value of δ is equal to the image voxel size. The sigmoid function parameters
fmax = 1.0, fmin = −0.8, ω = 10−6 were chosen for three more parameter selection methods — ASGD only esti-
mating a (ASGD′), the new method without (am) and with compensation (ηam). The original method (ASGD)
automatically selects all these parameters.

Then the difference of the Euclidean distance errors was calculated between the proposed methods and original
method. To assess the registration performance, a Wilcoxon signed rank test (P = 0.05) for the registration
results was performed. For 19 patients, we first obtained the mean distance error of 100 points for each patient
then performed Wilcoxon signed rank test to these mean errors. To evaluate the estimation speed, the parameter
estimation time and pure registration time of each resolution were measured. The scopes of estimated values of
a of the first resolution for each patient are shown to present the difference between the proposed and original
method.
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Figure 2. The difference of Euclidean distance error in mm of the registration results compared to ASGD. The median
Euclidean distance error of ASGD is 1.09, 1.50, 1.65 and 1.66 for MSD, NC, MI and NMI, respectively. The notion of *
indicates a statistically significant difference with ASGD, and + with ASGD′. The two numbers on the top of each box
denote the number of the outliers larger (worse) and smaller (better) than 2 and -2 mm, respectively.

3.2 Results

One slice of the lung CT data is shown in Figure 1 for the fixed image, moving image, original ASGD result
image and proposed method result image, respectively. Table 1 shows the median Euclidean distance error of all
corresponding points (after excluding 18 unsure points) for four different metrics and methods. The results in
Figure 2 show the difference with ASGD of the registration errors for each of the four metrics using 500 iterations
and 3 resolutions. The number of parameters N is 4× 103, 2× 104 and 9× 104, for each resolution respectively.
It can be seen that the median accuracy of the new method and the original ones is almost the same. Compared
with ASGD and ASGD′, the method ηam had a significant difference for metrics MSD, MI and NMI, but this
difference is smaller than 0.05 mm. The improvement in runtime is shown in Figure 3, in which the original
estimation time takes a large part of the total runtime per resolution, while the new method consumes only
a small fraction of the total runtime. The estimation time of ASGD and ASGD′ are progressively increasing
from 3 seconds to 40 seconds with the number of parameters increasing from 4× 103 to 9 × 104, while the new
method maintains a constant estimation time no more than 1 second. When N = 106, the estimation time is
even more than 1000 seconds for ASGD, see Figure 4. From Figure 5 we can see that with the compensation
factor, the value of a is more similar to ASGD and ASGD′, while without compensation the value is quite large.
Figure 6 presents the step size γk from which we can see that the step size of ASGD and ASGD′ are usually
located between ηam and am, except for NC. Considering Figure 5 and Figure 6, we can find that with the noise
compensation the step size more closely resembles the original result.
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Figure 3. Runtime in seconds. The blue, green and red bar indicate estimation time, pure registration time and total time
elapsed in each resolution, respectively.

4. CONCLUSION AND DISCUSSION

A new automatic estimation method for selecting the optimization parameter a of the step size for nonrigid image
registration has been presented. Our main contribution is to select parameter a automatically from the observed
distribution of voxels displacements between iterations. A relation between the step size and the expectation
and variance of the observed distribution is then derived. The new method has been verified on four similarity
metrics with 3D lung CT image data using a nonrigid B-spline transformation model.

From Figure 3, we can see that the estimation time of the original ASGD increases sharply from a few seconds
to almost 40 seconds when the number of parameters changes from 103 to 104, and even to 1000s for 106 (Figure
4), but the pure registration time is almost constant for each resolution. The reason is that for the original ASGD
algorithm, the estimation method mostly depends on a huge covariance matrix computation of the Jacobian of
the transformation, where its size is determined by the number of transformation parameters. With the new
method, the computation time is sharply reduced. However, in this paper we only consider an almost constant
image size around 446× 315× 129, and the image size also influences the estimation time of a, which should be
further studied.
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Figure 4. One example of runtime in seconds of original ASGD method for Mutual Information metric. The blue line is
the pure registration time and red one the estimation time. The number of parameters for four resolution is 4680, 22440,
141081 and 975966, respectively.

0

5

10

15

20

25

ASGD ASGD′
0

5

10

15

20

25

ASGD ASGD′ amam ηamηam

(a) MSD

0

5

10

x 10
6

ASGD ASGD′ am ηam

(b) NC

0

2

4

6

8

x 10
5

ASGD ASGD′ am ηam

(c) MI

0

0.5

1

1.5

2

x 10
6

ASGD ASGD′ am ηam

(d) NMI

Figure 5. The value of a for MSD, NC, MI, NMI for the three resolutions.

With respect to registration accuracy, we can see that the median Euclidean distance error of these method is
almost the same. Without the noise compensation factor, the Euclidean distance error compared with the original
method is within 0.3 mm, while with the noise compensation factor it is within 0.2 mm. Comparing the number
of outliers (> 2mm or < −2mm) without the noise compensation factor the positive and negative numbers are
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Figure 6. An example of the step size using 500 iterations in each resolution for each method. The red line is original
ASGD, the black line ASGD′, blue line is am (without compensation) and green line is ηam (with compensation).

larger, but this only means that it is different from the original method. With the noise compensation factor,
the number of outliers is very small but with a significant difference. So, the influence of the noise compensation
factor should be further considered.

In comparison with the original ASGD method, the results of the new method show that there is a sharp cut of
the estimation time, i.e. the estimation time is reduced from minutes to seconds when the number of parameters
is larger than 104, while maintaining the registration accuracy as tested for four metrics. The methodology will
be released as open source via the next release of elastix. Future work will focus on experimental validation of
the proposed method in different transformation models, different clinical applications and different image sizes.
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