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Purpose: Whole lung densitometry on chest CT images is an accepted method for measuring tis-
sue destruction in patients with pulmonary emphysema in clinical trials. Progression measurement is
required for evaluation of change in health condition and the effect of drug treatment. Information
about the location of emphysema progression within the lung may be important for the correct inter-
pretation of drug efficacy, or for determining a treatment plan. The purpose of this study is therefore
to develop and validate methods that enable the local measurement of lung density changes, which
requires proper modeling of the effect of respiration on density.
Methods: Four methods, all based on registration of baseline and follow-up chest CT scans, are
compared. The first naïve method subtracts registered images. The second employs the so-called
dry sponge model, where volume correction is performed using the determinant of the Jacobian of
the transformation. The third and the fourth introduce a novel adaptation of the dry sponge model
that circumvents its constant-mass assumption, which is shown to be invalid. The latter two methods
require a third CT scan at a different inspiration level to estimate the patient-specific density-volume
slope, where one method employs a global and the other a local slope. The methods were validated on
CT scans of a phantom mimicking the lung, where mass and volume could be controlled. In addition,
validation was performed on data of 21 patients with pulmonary emphysema.
Results: The image registration method was optimized leaving a registration error below half the
slice increment (median 1.0 mm). The phantom study showed that the locally adapted slope model
most accurately measured local progression. The systematic error in estimating progression, as mea-
sured on the phantom data, was below 2 gr/l for a 70 ml (6%) volume difference, and 5 gr/l for a
210 ml (19%) difference, if volume correction was applied. On the patient data an underlying linear-
ity assumption relating lung volume change with density change was shown to hold (fit R2 = 0.94),
and globalized versions of the local models are consistent with global results (R2 of 0.865 and 0.882
for the two adapted slope models, respectively).
Conclusions: In conclusion, image matching and subsequent analysis of differences according
to the proposed lung models (i) has good local registration accuracy on patient data, (ii) effec-
tively eliminates a dependency on inspiration level at acquisition time, (iii) accurately predicts
progression in phantom data, and (iv) is reasonably consistent with global results in patient data.
It is therefore a potential future tool for assessing local emphysema progression in drug eval-
uation trials and in clinical practice. © 2014 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4851535]
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1. INTRODUCTION

Lung densitometry on chest CT images can be used as a sur-
rogate marker for measuring the destruction of lung tissue in
pulmonary emphysema.1 While methods to perform global
quantification of lung density exist,1 local quantification is
studied less frequently. Information about the location of em-
physema progression may help in assessing the efficacy of
drug treatment.2 For example, with global density quantifica-

tion a treatment effect could go unnoticed if a drug protects
the healthy part of the lungs, while the affected part cannot
be saved. In addition, pulmonary emphysema is sometimes
confined to one lobe or part of the lobe, which need to be
identified for deciding on a treatment plan. Therefore, precise
localization of density changes is required. Since emphysema
is a slowly progressive disorder, visual inspection of CT scans
can only indicate progression in severe cases or after many
years, thus a quantitative approach is needed.
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Examples of global quantification methods are lung den-
sity estimators, which include the average density of the lung,
the pth percentile point (Perc, the Hounsfield Unit (HU) at
which p percent of the lung voxels have a lower value, e.g.,
Perc15) or relative area (RA, the percentage of lung voxels be-
low a certain HU, e.g., RA-910). Comparison of these estima-
tors between baseline and follow-up can be used to evaluate
disease progression3 for the complete lung. In the early devel-
opment of local measurements, these global estimates were
used to measure progression in separate partitions stacked
cranio-caudally.2 From these partitions, a rough estimation
was given on the predominant location of emphysema (basal
or apical). Another, more anatomy-based strategy to locally
estimate changes in density is to segment regions of the lung,
such as lung lobes4–7 or even lobe segments.8 The density es-
timators can subsequently be computed per region. To obtain
a progressively more localized analysis, increasingly smaller
objects have to be identified, and the corresponding region in
the follow-up scan has to be found. In the end, the density val-
ues of voxels have to be compared directly without computing
derived parameters like RA and Perc15.

Other algorithms compute CT derived local features based
on texture.9 Pairs of inhale-exhale scans have also been used
to measure different components of COPD, such as trapped
air: employing thresholds,10 using RA,11 the HU ratio be-
tween inhale and exhale at corresponding locations,12 or many
more features derived from these pairs in combination with
a classifier.13 Arzhaeva et al.14 proposed a method for esti-
mating progression of interstitial lung disease, using among
others a registration-derived subtraction image. Change was
marked in three categories as stable, progressed, or regressed.
Commonly these methods do not take the inspiration level of
the lung into account (no volume correction), so they do not
lead to a more accurate local progression estimate of the em-
physema component; they have the lobe as the smallest defini-
tion of regional progression,11–13 or only evaluate their meth-
ods against global progression measures, pulmonary function
tests, or in coarse categories (e.g., GOLD stages).

In this paper, we rely on image registration to establish
local correspondence between follow-up chest CT scans. In
principle, this enables computation of disease progression on
a per-voxel basis. There has been considerable interest in
the registration of CT scans of the lungs, either for follow-
up or over the respiratory cycle. Gorbunova et al.15 and Yin
et al.16 proposed to use a similarity metric based on the
sum of squared differences, modified to account for differ-
ences in inspiration level. Features other than image intensity
have been proposed to improve the registration, such as us-
ing landmarks,17, 18 or vessel centerlines and lung surfaces.19

In 2010, a grand challenge on pulmonary image registration
was organized, the EMPIRE10 challenge,20 which provides a
good overview of the many registration approaches. Intensity-
based registration algorithms were among the ones with the
best registration accuracy.

The major challenge for proper estimation of emphysema
progression using CT is the large influence of the inspira-
tion level on lung density, relative to the influence of emphy-
sema. Scanning with the same volume is difficult: even with

spirometric control21 lung volumes can differ 30%, which in-
dicatively translates to 20 gr/l, which is about ten times the
expected global progression in emphysema per year3 (aver-
aged over the entire lungs and over a large population). Other
challenges are the inflow of blood during inspiration, which
changes lung mass and density as well.22

In summary, local progression estimation is confronted
with two major challenges: (a) to obtain a sufficient quality
of lung tissue correspondence between baseline and follow-
up CT scans and (b) to develop a model that best represents
the in vivo relation between lung density and volume during
the respiratory cycle. It is then the aim of this study to de-
velop methods for detailed local analysis of emphysema pro-
gression that are independent of the respiratory state of the
lungs at acquisition. The methods are based on image regis-
tration, are targeted to quantification instead of classification,
and provide a measure of lung tissue destruction. This paper
is a major extension of our earlier work.23 We propose a first
method based on the assumption that the lung behaves as a
(dry) sponge. This method is subsequently modified to allow
for a more flexible relation between lung volume and den-
sity, based on a third CT scan, resulting in two more methods.
Combined with a naïve model that neglects the dependency
on lung volume this results in four methods, which are de-
scribed in Sec. 2. The experiments and results are described
in Sec. 3, and a discussion is given in Sec. 4.

2. METHODS

Our goal is to estimate emphysema progression between
two time points, t ∈ {b, f}, denoting baseline and follow-up,
given one or more CT scans for each time point t. The CT
scans are denoted by It (x ), where x denotes spatial position
within the image. In this image, density is estimated in gr/l
by adding 1000 to the Hounsfield Units,24 as used in clinical
trials.1, 25 The basic relation between mass m and volume V

is given by m = Vρ, where ρ denotes density, which can be
rewritten to

log ρ = log m − log V, (1)

see Fig. 1 for a visual representation. The volumes can be
globally measured using lung segmentation, as has been done
for global lung densitometry. Local volumes and more impor-
tantly the change in local lung volume can also be determined,
using the method described in Sec. 2.B. Given this lung vol-
ume (change) and the density as measured by the CT scan-
ner, lung mass can be estimated (locally) using a model like
Eq. (1) relating mass, volume, and density.

In the remainder of this section, we describe in Sec. 2.A
a preprocessing step for data recalibration. Section 2.B de-
scribes the image registration technique that finds correspon-
dence of the CT scans between time points. There we also
describe how local volume change is commonly derived from
the registration result. In Sec. 2.C, we propose four lung mod-
els for progression estimation, and we give the main equation
for local emphysema progression estimation. Section 2.D de-
scribes the visualization of the local progression images used
in the paper.
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FIG. 1. The relation between density and volume in a log-log plot depicted
at baseline. The slope s of the log-log plot is possibly different from −1 and
dependent on the location.

2.A. CT image recalibration

Over time the image acquisition characteristics of a CT
scanner may change,26 despite the inscanner calibration for
water and air, and therefore the baseline and follow-up scan
may not be directly comparable. Since the goal of this work
is to compare scans from different time points, it is very im-
portant to recalibrate the data. Recalibration is based on auto-
matic measurement of the average HU of air outside the body
and of blood in the descending aorta, using the inhouse devel-
oped software called Pulmo (commercialized by Medis spe-
cials, Leiden, The Netherlands). These measurements should
be equal to −1000 and 50 HU, respectively.26 The intensity
values of the scans are rescaled linearly according to these
measurements.

2.B. Image registration

To be able to compare corresponding locations of two
density images, registration of the original CT data is used.
The spatial transformations are estimated using nonrigid
intensity-based image registration, using the software pack-
age elastix,27 see http://elastix.isi.uu.nl. Image registra-
tion is formulated as an optimization problem, where the op-
timal transformation parameters μ̂ are found by solving

μ̂ = arg min
μ

C(Tμ; Ib, If ), (2)

with Tμ the coordinate transformation parameterized by μ,
which relates the two images. To obtain a course alignment,
an affine registration is performed prior to nonrigid registra-
tion. The nonrigid transformation is modeled by B-splines.28

Several similarity measures were tested, i.e., sum of squared
differences (SSD), normalized correlation (NC), mutual in-
formation (MI) and its normalized version (NMI). In addi-
tion, localized versions29 of these metrics were tested (LSSD,
LNC, LMI, LNMI), by drawing samples from a randomly
chosen cubic sample region. A region size of 50 × 50 ×
50 mm was used in this paper.29 A multiresolution approach
was used for images as well as transformations, with a Gaus-
sian image pyramid. An adaptive stochastic gradient descent
(ASGD) optimizer30 was used for solving Eq. (2). Lung
masks obtained from the software Pulmo were used to fo-
cus the registration on the lungs. Lung masks were gener-

ated by means of a standard region growing algorithm, de-
scribed by Stoel and Stolk,21 and excludes the large ves-
sels. Exact registration parameter settings can be found on
the parameter file database hosted at the elastix web-
site (http://elastix.isi.uu.nl , entry par0015). For all registra-
tions, we used 1000 iterations per resolution, and if not stated
otherwise five resolutions and a final B-spline grid spacing of
10 mm were employed.

The determinant of the spatial Jacobian of the transfor-
mation JT = det(∂T/∂x ) is a measure of the local relative
change in volume between baseline and follow-up (Vf /Vb,
where Vb and Vf are the local volumes at baseline and follow-
up, respectively). A value equal to 1 means no change in
volume; >1 means expansion; <1 means compression; <0
indicates a folding in the deformation field. The measure is
quantitative: a value of 1.1 means a 10% increase in volume.
It has been shown that the spatial Jacobian correlates with
ventilation31 and pulmonary function.32 In Sec. 2.C, we de-
scribe how it is used in our methods.

2.C. Lung models and progression measure

We developed a number of models that describe the rela-
tion between density and volume in the lung, and calculate
progression from them.

2.C.1. Uncorrected model

A naïve model would be to assume that density is inde-
pendent of volume changes and to measure progression by a
simple subtraction of the matched images, implying the lung
model

If (T (x)) = Ib(x ) + progression(x ). (3)

2.C.2. Sponge model

The (dry) sponge model of the lung assumes mass preser-
vation over the lung breathing cycle mb = mf, so ρf =
ρbVb/Vf , or

If (T (x)) = Ib(x )[JT (x )]−1 + progression(x ). (4)

This method was originally applied in 2003, with a vol-
ume correction term globally estimated from segmented lung
volumes.34

2.C.3. Adapted slope models

The assumption of mass preservation by the sponge model
implies a linear relation between log V and log ρ, with a
slope of −1. It is known, however, that this assumption is
not correct, due to variability in lung blood perfusion during
breathing,22 trapped air, and CT scanner effects. This changes
the measured mass of the lungs. Figure 2 shows the varia-
tion in volume-density slope as measured in a patient popula-
tion. These experimental results33 suggest to adapt the sponge
model, such that the slope s is not fixed to −1. The model
is adapted to: ρf = ρb(Vf /Vb)s , which can be expressed in
terms of the CT images by

If (T (x)) = Ib(x )[JT (x )]s(x ) + progression(x ), (5)
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FIG. 2. Volume-density slopes in patient data as measured in a multicenter trial. Vertically the slope of the log of volume against the log of Perc15 is given.
Reproduced from Ref. 33.

where s(x ) is the slope of the log volume-log density rela-
tion that may or may not be dependent on the location x
(see below). A slope of s = −1 corresponds to the sponge
model. For s > −1, the adapted model states that when in-
haling (Vf > Vb), the density decreases with a rate below
the sponge model, and vice versa. In other words, when in-
haling, for s > −1, the density decreases less than can be
contributed to the increase in volume, so mass is entering
the lungs. As in the sponge model, the adapted slope mod-
els assume a linear relationship between log V and log ρ

over the breathing cycle. This assumption is verified in the
experiments.

The slope parameter s enables a more realistic model, but
requires setting to a proper value. Estimation of this value
comes at the cost of an additional scan taken at baseline or
follow-up at a different inspiration level, see Fig. 3. We can
assume that there is no change in emphysema at the same
time point, so we can estimate the (local) relation between
density and volume for a given patient. This extra scan is de-
noted by I FRC

t , with corresponding volume V FRC
t and density

ρFRC
t , where ∼FRC means approximate functional residual

capacity.
2.C.3.a. Global slope model. A global but patient-

specific value of the slope s (independent of spatial location
x ) can be determined by measuring the total lung volumes
and overall mean densities of the scans It and I FRC

t and us-
ing s(x ) = s = (log ρFRC

t − log ρt )/(log V FRC
t − log Vt ), see

Fig. 1.
2.C.3.b. Local slope model. The slope is estimated lo-

cally from the CT scans at baseline time b at position x as

follows:

s(x ) = sb(x ) = log I FRC
b (T b(x)) − log Ib(x )

log JT b
(x )

. (6)

This allows for a local evaluation of the volume-density slope
to compensate for local differences in lung perfusion, as per-
fusion is nonstationary.

In summary, with the above models, local progression in
terms of density changes can be estimated by

progression(x ) = If (T (x)) − Ib(x )[JT (x )]s(x ), (7)

where s(x ) = 0 for the uncorrected model, s(x ) = −1 for the
sponge model, s(x ) = s (a global but patient-specific con-
stant) for the global slope model, and s(x ) as estimated with
Eq. (6) for the local slope model. A “progression measure”
equal to zero indicates no progression, and >0 (<0) indicates
more (less) tissue mass.

In order to enable comparison between our local progres-
sion estimation and previous global estimates, we also global-
ized the local measurements by taking the median value over
all local data. The median is a robust estimator of the mean
local progression, less sensitive to outliers.

2.D. Data visualization

In the remainder of this paper, we visualize the progres-
sion image (7) either by showing it as a grayscale image (e.g.,
Fig. 10), or as a color overlay on the original baseline im-
age (e.g., Fig. 11). The color overlay is constructed as fol-
lows: vasculature is detected by a vessel enhancement filter35
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FIG. 3. Relations between chest CT scans. At baseline we have two CT scans available at two different inspiration levels: Ib and I s
b . Scans are related by the

transformations T (x), T b(x), and Tf (x). TLC: total lung capacity; ∼FRC: approximate functional residual capacity.

and depicted in red; a decrease in density (progression of
emphysema) is depicted in green; an increase in density in
yellow (green and yellow were chosen to account for color-
blindness of the user).

3. EXPERIMENTS AND RESULTS

In this section, we present the evaluation of the two main
components that enable local progression estimation, i.e.,
(a) the ability to find correspondence, and (b) the accuracy
of the proposed lung models. We optimized the registration
procedure on patient data (see Sec. 3.B). The lung models
were evaluated on both phantom and patient data, in several
steps. First, we performed a phantom experiment to explore
the contributions of the intrinsic sources of error, such as in-
terpolation and scanner variability, see Sec. 3.C. We proceed
with the evaluation of the lung models, on phantom data in
Sec. 3.D, and patient data in Sec. 3.E. The data are described
in Sec. 3.A.

3.A. Data

A phantom mimicking the lung was constructed similar to
Stoel et al.,36 see Fig. 4. It consists of a cylinder filled with
foam representing lung tissue. Volume is adjustable by mov-
ing a piston inside the cylinder, while mass is retained. In ad-
dition, local density can be modified by segmenting a piece
of foam, and digitally modifying the density at that location.
The phantom was scanned at several volumes on a Toshiba
Aquilion 64 scanner. The CT scan was reconstructed at a 512
× 512 matrix with an inplane resolution of 0.4 × 0.4 mm,
using a soft FC04 kernel. Each scan contained ∼700 slices,
which were 0.5 mm thick, with 0.3 mm increment.

Additionally, we gathered follow-up CT data sets from 21
patients (ten males; aged 34–74 at baseline, mean 56) suf-

fering from pulmonary emphysema, due to α(1)-antitrypsin
deficiency.1 These scans were acquired during the SPREAD
study1 with institutional review board approval, using a
Toshiba Aquilion 4 scanner with scan parameters: 135
kVp; 20 mAs per rotation; rotation time 0.5 s; collimation:
4 × 5 mm. Scans were made during breath hold, without

FIG. 4. The phantom mimicking the lung.
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FIG. 5. The interobserver difference on patient data. Numbers on top of the graph denote the number of differences larger than 15 mm. The two horizontal lines
denote inplane voxel size (0.7 mm) and half the slice increment (1.25 mm), respectively. Patients 12 and 19 are excluded from further analysis.

contrast media. Images were reconstructed with a standard-
ized protocol optimized for lung densitometry,21 including a
soft FC12 kernel, using a slice thickness of 5 mm and an
increment of 2.5 mm, with an inplane resolution of around
0.7 × 0.7 mm. Note that the thick slice reconstruction was
chosen as it followed from an optimization study for global
densitometry,21 and is also used in several drug evaluation
trials.1, 25 At each time point (23–34 months apart, median
29), two scans were acquired at different inspiration levels
(patients were verbally instructed): total lung capacity (TLC)
and ∼FRC.

3.B. Image registration optimization: Patient data

We optimized the registration procedure by determining
which registration setup performs the best for intrapatient reg-
istration of our data. We tested the effect on registration accu-
racy of (i) using lung masks to focus the registration; (ii) the
similarity metric (SSD, NC, MI, NMI); and (iii) using locality
in the metric29 (LSSD, LNC, LMI, LNMI). The TLC follow-
up scan was registered nonrigidly to the TLC at baseline.
For initialization, an affine registration using NC was per-
formed prior to nonrigid registration. A Wilcoxon signed rank
test was performed to compare the registration results, where
p < 0.05 denotes a statistically significant difference. The
mean error per patient was computed, which were then com-
pared between the different registration setups. Bonferroni ad-
justment of p was used as a conservative multiple-comparison
correction.

The ground truth for the registration was defined using the
method by Murphy et al.37 The algorithm automatically finds
100 evenly distributed points in the baseline, only at charac-
teristic locations. Subsequently, corresponding points in the
follow-up scan are predicted by the algorithm and shown in
a graphical user interface for inspection and possibly correc-
tion. Two observers participated in this study, a pulmonologist
(J.S.) and an experienced CT researcher (M.E.B.). They first
annotated the points independently, after which a consensus

reading was performed on those points the observers did not
agree exactly. As a result, consensus reading was performed
on a median of 29 points per patient (range: 19–39). Points for
which an observer could not find a corresponding point were
marked as unsure. If one of the observers marked a point as
unsure it was considered an unreliable point, and those points
were excluded from validation to obtain the ground truth as
reliable as possible. All automatically predicted points were
manually checked. Two patients (12 and 19) progressed con-
siderably, such that it was not possible to establish correspon-
dence at certain locations (a clear misregistration), and the
corresponding CT scans were therefore excluded from fur-
ther evaluation (except to generate Fig. 8). From the remain-
ing 19 scan pairs we excluded 51 out of a total of 1900 points,
of which 31 were from one patient (patient 13). The interob-
server difference is depicted in Fig. 5 with a mean and median
distance of 0.63 and 0.0 mm, respectively. This means that for
the majority of points the observers agreed exactly, which is
facilitated by the software prediction strategy to improve the
reproducibility, the thick slices that limit the number of land-
mark choices, and the characteristic locations of the points.
Optimization was subsequently performed using the registra-
tion error derived from the manually annotated corresponding
points.

Figure 6 shows the results for the registration optimization.
The use of lung masks slightly but significantly improved the
registration for SSD and NC, where median errors decrease
from 1.1 to 1.0 mm for both methods, and slightly decreased
the accuracy for MI (from 1.1 to 1.4 mm) and NMI (from
1.1 to 1.3 mm), see Fig. 6(a). Localization of the similarity
measures significantly worsened the registration results for
our application to 6.8, 2.0, 2.0, and 1.9 mm, respectively,
notably for the SSD metric [Fig. 6(b)]. SSD and NC with
the lung mask were the best measures as indicated by their
small median error (both 1.0 mm), and we select NC for fur-
ther experiments. The median registration error was there-
fore below half the slice increment for the best registration
methods.
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FIG. 6. Registration accuracy for the several methods, evaluated on patient data using 1849 locations. Numbers on top of the graph denote the number of
registration errors larger than 15 mm. A star denotes a significant difference with the previous column after Bonferroni correction; a † with NC using a mask.
The two horizontal lines denote inplane voxel size (0.7 mm) and half the slice increment (1.25 mm), respectively. For (a), in each group of two boxplots
the left one denotes registration without using a lung mask and the right one with. Similarly, for (b), where global vs local metrics are plotted. The affine
registration accuracy on the left-most column was added as a benchmark: (a) without vs with lung mask, global metrics, (b) global vs localized metrics, with
masks.

3.C. Intrinsic sources of error: Phantom study

To establish the influence of related factors on the pro-
gression estimation accuracy, like interpolation, registration,
and CT scanner effects, we performed some basic tests on
the phantom that do not change volume and density, and ide-
ally should result in measuring no progression: (C1) to eval-
uate interpolation errors we scanned the phantom, rotated the
resulting images digitally over 6◦, 29◦, and 90◦ around the
vertical axis, and rotated them digitally back; (C2) for es-
timating errors in the registration process we registered the
phantom with itself after an initial digital offset; (C3) to study
the combined errors from registration and interpolation, we
scanned the phantom, digitally rotated the image, and reg-
istered the original image with the rotated version; (C4) to
estimate errors from the CT scanner in addition to interpola-
tion and registration errors we scanned the phantom, moved

it physically in the scanner, rescanned it, and registered the
two images. In the above experiments, a rigid registration was
performed using four resolution levels and NC as a similarity
measure.

The results are accumulated using the mean and standard
deviation of the progression within the phantom, and are
given in Table I, for the uncorrected model only, since no
change in volume or density was made. Except in experiment
C4, small systematic and random errors were found in the pro-
gression estimation. So, digital resampling (interpolation) has
not much influence on the results and simple registration did
not produce large systematic as well as random errors. How-
ever, more complex registrations on clinical data may produce
larger errors. Experiment C4 showed that the highest variabil-
ity originates from scanner variations, where a standard devi-
ation of ∼10 gr/l was found, but with similar systemic errors
as in experiment C3.
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TABLE I. Intrinsic sources of error. Progression estimation errors (gr/l, mean
± std). The experiments marked with an asterisk were manually initialized
within the capture range, since the rotation was too large, and the cylinder
phantom is rotation invariant.

Experiment 6◦ 29◦ 90◦

C1. interpolation 0.03 ± 0.2 0.03 ± 0.2 0.08 ± 0.3
C2. registration 0.00 ± 0.0 0.00 ± 0.0* 0.00 ± 0.0*
C3. C1 + C2 0.36 ± 1.0 0.40 ± 1.1 0.25 ± 0.7
C4. C1 + C2 + CT 0.38 ± 9.7
scanner

3.D. Lung model evaluation: Phantom study

Volume correction was validated using the cylinder phan-
tom, with and without progression.

3.D.1. Without progression

The volume was modified by moving the piston. Obvi-
ously, this volume change has a marked impact on the den-
sity, and models should be able to deal with that. We acquired
a scan at Vb = 1100 ml and one at Vf = 1300 ml. The slope
was measured using a third scan of the phantom at a volume
V s

b = 1000 ml. Since the mass did not change between scans,
the ground truth is that there is no progression anywhere.
Nonrigid registration was performed using NC as a similarity
measure, in combination with the Euclidean distance metric38

using three manually annotated corresponding anchor points,
in order to deal with the lower contrast in the phantom com-
pared to clinical CT data.

The measures of progression, according to the four mod-
els, were computed after registration, and the difference
with the known (zero) progression (the error) is given in
Table II. When no volume correction was applied (uncor-
rected method), the systematic progression error deviated sub-
stantially from zero (−10.5 gr/l). Both the sponge (0.99 gr/l)
and slope models (0.19 and −0.15 gr/l) showed a systematic
progression error much smaller than the uncorrected model.
The adapted slope models had the smallest systematic error.

3.D.2. With local progression

In order to measure the random and systematic errors of the
proposed methods, both the volume was changed physically
and the local density of the phantom was adjusted digitally as
follows. The middle volume (1100 ml) was chosen as base-
line Ib, larger volumes as followup If, and smaller volumes

TABLE II. Phantom validation, no induced progression. Progression estima-
tion errors (gr/l, mean ± std, absolute mean).

Model Progression error [gr/l]

Uncorrected − 10.46 ± 17.6 14.4
Sponge 0.99 ± 16.1 11.1
Global slope 0.19 ± 16.1 11.1
Local slope − 0.15 ± 18.2 13.1

were used for slope estimation I s
b . For a first experiment, we

chose If at 1180 ml and I s
b at 1040 ml (∼80 ml difference),

and for a second If at 1300 ml and I s
b at 880 ml (∼200 ml

difference). A piece of foam was segmented manually, and
its density was changed digitally by subtracting the values
v ∈ {1, 2, 5, 10, 15, 20, 40} gr/l from the piece of foam. The
piece of foam moves and deforms when moving the piston.
The ground truth is zero progression in the background and
v in the piece of foam. Nonrigid registration was performed
using NC as a similarity measure.

The results are shown using bar charts in Fig. 7, where the
whiskers denote the standard deviation. The median estimated
progression error in the background was zero for all models
that apply volume correction, but much larger for the uncor-
rected model. The median progression in the piece of foam
was close to the imposed progression (i.e., a small systematic
estimation error). For the 200 ml difference in volume, the ac-
curacy of the sponge model was worse than that of the adapted
slope models. Standard errors are ∼10 gr/l for the 80 ml
difference and increased to ∼20 gr/l for the 200 ml differ-
ence. An example progression image of the phantom is shown
in Figs. 10(a) and 10(c).

3.E. Lung model evaluation: Patient data

3.E.1. Linearity

The assumption that the volume-density relation is log-log
linear over the breathing cycle, as mentioned in Sec. 2.C, was
validated by measuring the volume-density relation in our pa-
tient group. CT data at many stages of the breathing cycle are
not available due to dose restrictions. Each patient was, how-
ever, scanned at two different volumes, enabling measurement
of the slopes at different volumes. For each patient, we there-
fore computed the change in lung volume and the change in
median lung density, at baseline between ∼FRC and TLC.

Figure 8 shows the relation between volume and density
change for the patient data. It clearly shows a linear relation
with a fit value of R2 = 0.94, thereby confirming the log-
linearity assumption of the adapted slope models.

3.E.2. Globalized-local vs global

The local methods were globalized as described in
Sec. 2.C, which enables comparison with a global progression
measure derived from the 15th percentile point.1 This global
progression measure was previously proposed and has been
used in several clinical trials.1, 25 It employs a mixed-effects
regression model with density as outcome and lung volume
as covariate.

The globalized local density change is compared to the
global measure. The results are shown in a correlation plot in
Fig. 9. The correlation between the globalized local methods
and the global result were 0.643, 0.855, 0.865, and 0.882 for
the uncorrected, sponge, global, and local slope method, re-
spectively. The highest correlation was obtained by the meth-
ods with volume correction. Note that the uncorrected model
overestimates progression, because the mean lung volume at
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FIG. 7. Phantom study: changing both volume and density. (a) and (b) 80 ml difference, (c) and (d) 200 ml difference, (a) and (c) median background
progression, (b) and (d) median progression difference with the ground truth in the piece of foam. (a) Background, 80 ml, (b) piece of foam, 80 ml,
(c) background, 200 ml, (d) piece of foam, 200 ml.

baseline was 6.9 l and 7.3 l at follow-up, a difference of 5%.
Also note that the globalized local and the global measure are
not completely identical, because the global measure was de-
rived from the 15th percentile point of the histograms and the
accumulated measure from density differences. Example pro-
gression images of patients are shown in Figs. 10(b), 10(d),
and 11.

3.E.3. Consistency

Finally, the consistency of the progression estimates was
examined by computing the progression between baseline
∼FRC and follow-up TLC and comparing it with the progres-
sion estimated using baseline TLC and follow-up TLC (see

Fig. 3). Because the baseline images are different between
the two trajectories (∼FRC vs TLC), a direct voxel-by-voxel
comparison cannot be made. Therefore, we compared the ac-
cumulated local progression estimates.

The difference in accumulated local progression between
the progression methods as measured by the different estima-
tion trajectories, is −1.03 ± 5.2, −0.90 ± 2.6, −0.85 ± 2.2,
and −0.41 ± 2.8 gr/l for the four methods, respectively.

4. DISCUSSION AND CONCLUSIONS

In this study, we present several methods for the estima-
tion of progression of emphysema, based on the registration
of follow-up chest CT scans combined with postprocessing.

FIG. 8. Linear relationship of the volume-density slope over the breathing cycle. Note that the slope is close to sponge model, and also that it is an average over
the patient population opposed to a patient-specific slope.
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FIG. 9. Correlation plot depicting the accumulated local progression against global progression. There was one outlier of the uncorrected model at (−7.3,
−33.0).

Compared to previous methodology,1 this work additionally
offers local assessment, and proposes local volume correction
with a patient-specific volume-density relation to gain inde-
pendence of the respiratory state of the lung at image acquisi-
tion.

A naïve model that does not perform volume correction
was shown to be inaccurate in both phantom and patient data,
see Table II and Figs. 7 and 9. Derivation of subsequent meth-
ods is therefore based on the assumption that the lung be-
haves as a dry sponge, i.e., it is mass-preserving. We con-
firmed that the sponge model does not hold in patient data,33

see Fig. 2. The deviation between sponge model and observed
slopes may be partly explained by changes in lung mass due
to changes in blood flow during respiration,22 and CT scanner
related differences between scans.21 Therefore, a novel adap-
tation to the sponge model is proposed to accommodate for
a global or local patient-specific density-volume slope. A lin-
ear relation between the log of the volume and density was
assumed, which was confirmed by the experiments. The local
volume correction step introduced for the sponge and adapted
slope models is based on the spatial Jacobian of the transfor-
mation relating baseline with follow-up. Gorbunova et al.15

proposed the use of the Jacobian at the same time,23 but used
it for adapting the registration mechanism in a sponge model
setting only, and did not perform local evaluation.

In our study, experiments were performed on phantom and
patient data to optimize the registration and verify the lung
models. A phantom was therefore constructed that mimics a
breathing lung, enabling precise control over volume and den-
sity, which is not possible in patients.21 The constructed phan-

tom additionally enables local validation, also impossible in
patients.

The image registration procedure was optimized on CT
data of emphysema patients, resulting in a scheme based on
normalized correlation, and using lung masks. To our knowl-
edge, this is the first study reporting registration accuracy on
thick slice chest CT data of COPD patients, GOLD stage II
and III. The registration is accurate with a median registration
error of 1.0 mm, which is below half the slice increment.

Two important factors that determine the accuracy of the
local lung models are the registration quality and the cor-
rection for local lung volume changes (see Table II and
Figs. 7 and 9). The accuracy of registration and volume
change are related, since from a perfect match a perfect lo-
cal volume change can be derived. The progression estima-
tion error is therefore largely defined by the residual regis-
tration error, and consequently the registration accuracy can
act as a partial but important evaluation criterium for the lo-
cal progression estimation within patients. A full evaluation
is, however, not possible, since no local clinical ground truth
of emphysema progression exists for patients.

The results of both the phantom and the patient data show
that volume correction is needed to evaluate changes in em-
physema, and that it is the most important factor. The absence
of mass change in the phantom was correctly approximated
by the methods that correct for volume. The adapted slope
models had the smallest systematic and random error.

When synthetically inducing local density change, the es-
timation error remains very close to zero in the background
for all models that use volume correction. In the modified
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FIG. 10. Slope and progression images. (a) and (c) Phantom, local slope model. The segmented piece of foam was digitally modified by 20 gr/l, and is clearly
visible in (c). The circular stripes result from differences in CT image reconstruction. (b) and (d) Patient, local slope model, large vessels are excluded. The
ventral part of both the left and right lungs show darkened areas, denoting progression of emphysema. (a) and (b) Local slope s(x), (c) and (d) progression, local
slope.

area, the systematic error was smaller than 2 gr/l when volume
changed by 80 ml (6%), except for the model without volume
correction, and increased to 4–5 gr/l for a 200 ml volume dif-
ference (19%). In that case, the slope models obtained smaller
errors than the sponge model, and therefore more accurately
estimated changes in mass. In bullae observed in patient data,
the locally adapted slope model is expected to be less accu-
rate, see Fig. 11, second row, third and fourth columns, since
the air density in bullae will not change due to respiration. In
those areas, a local switch to the sponge or global slope model
would possibly improve the accuracy.

The phantom experiments further revealed that the random
error for the local models was larger than that of global mod-
els. Differences between voxels were noticed up to 100 gr/l,
see Fig. 10. Simply rescanning the phantom resulted in stan-
dard deviations of 10 gr/l, when summarized over the entire
phantom. Evaluation over groups of patients would reduce
the standard error to the range of ±1 gr/l, similar to previous

global methods.39 These experiments suggest the trade-off be-
tween locality and standard error, meaning that progression
should probably be assessed not on a per-voxel basis, but on
somewhat larger areas.

When globalizing the local models, they were consistent
with previous global methods. However, the local methods
are potentially more sensitive, since small localized changes
cannot be found by global tools, and additionally local inten-
sity increases due to, e.g., fibrosis combined with local em-
physema progression may go unnoticed using global meth-
ods, which may lead to incorrect or incomplete conclusions in
drug evaluation trials. We further showed that the local mod-
els are consistent in the sense that exchanging the role of the
∼FRC and TLC scan when computing progression does not
considerably influence the outcome.

The volume-density slope can also be derived from follow-
up scans, possibly resulting in a different estimation. Since
this slope is estimated from scans in a different domain, a
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FIG. 11. Example progression maps for four patients. Horizontally shown are the baseline image, registered follow-up (acquired 30 months later) and two (left
column) or one (right column) progression maps overlaid on the baseline. For the top left patient, the sponge and local slope model are shown; for the top right
patient, the sponge model; for the bottom left patient, sponge and local slope model; and for the bottom right patient, the local slope model. Green and yellow
indicate an increase resp. decrease in density, and in red the vessels are indicated, see Sec. 2.D.

resampling step is required using the transformation T (x).
Alternatively, the slope could be measured at both time in-
stances, after which the mean could be used, or a compensa-
tion for the difference could be introduced in the progression
model. When comparing two treatment groups, however, it is
appropriate to estimate the slope at baseline. During the trial
the slope may be affected by the drug or by the disease (by,
for example, changes in trapped air), but it is important to
measure the overall change between two time points to avoid
introducing a bias in the analysis, and to avoid progression
being compensated for by adaptation of the slope.

In this study, we used an additional scan to estimate a
patient-specific volume-density slope. This comes at the cost
of an increase in radiation, which may be a downside in clin-
ical practice. In many drug evaluation trials, however, this is
already the standard,1, 25 and a relatively low dose setting is
used compared to HRCT. In this study, we used ∼FRC and
TLC data, while in some other studies a residual volume scan
is taken instead of ∼FRC. Nevertheless, volume correction
as derived from the image registration is expected to handle
those situations, as long as the registration is successful. The
latter is to be expected in the absence of severe pathology,
since these methods have been shown to work in a wide va-
riety of cases and lung volume differences, as shown in this
paper, but also in, for example, the EMPIRE10 challenge.13

This study has some limitations. (1) Patients with severe
progression show changes in lung anatomy, which makes it
harder to register the CT scans, resulting in larger errors in
the progression estimation. (2) A complete clinical validation
was not possible due to the lack of a ground truth of local
progression. Visual inspection of local changes by an expert
is not possible due to the limitations of the human visual sys-
tem, and computer-based measures (densitometry) should be
preferred.40, 41 (3) The phantom CT scan was reconstructed
with thin slices, while for the patient data thick slices were
used. The goal of the phantom study however was to estimate
scanner limitations, while for the patient data we applied set-

tings that are used in practise in clinical trials.1, 25 This subse-
quently also required a different set of registration parameters.
It remains to be investigated if the thick slice protocol which
was optimized for global lung densitometry is also optimal for
local lung densitometry. (4) The proposed methods are also
sensitive to imaging artifacts, such as effects of beam hard-
ening near the ribs, diaphragm, and the shoulders, and streak
and motion artifacts around the heart and lung boundary (car-
diac, breathing), which show up in the progression images,
see Fig. 11. This may give rise to confusion during interpreta-
tion. These disturbances however take typical patterns and can
be distinguished from real progression. The sensitivity may
therefore also be an advantage, since it gives insight in the na-
ture of such artifacts, and these artifacts are also influencing
global measurements, which is currently neglected in trials.

In conclusion, the proposed methods that incorporate vol-
ume correction to locally estimate differences in lung den-
sity (i) effectively eliminate a dependency on lung inspiration
level at acquisition time, (ii) accurately predict progression on
phantom data, and (iii) are reasonably consistent with global
results in patient data. It is therefore a potential tool for assess-
ing local emphysema progression in drug evaluation trials and
in clinical practice.
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