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ABSTRACT

Longitudinal brain image series offers the possibility to study
individual brain anatomical changes over time. Mathemat-
ical models are needed to study such developmental trajec-
tories in detail. In this paper, we present a novel approach
to study the individual brain anatomy over time via a linear
geodesic shape regression method. In our method, we in-
tegrate separate pairwise registrations between the baseline
image and the follow-up images into a unified spatial regis-
tration plus temporal regression framework. Different from
previous geodesic shape regression approaches, which use the
LDDMM framework to estimate the brain anatomical change
over time, our method is based on the LogDemons method
to decrease the computation cost, while maintaining the dif-
feomorphic property of the deformation over time. Moreover,
a temporal regression constraint is explicitly implemented in
each optimization iteration to make sure that the entire de-
velopmental trajectory can be compactly represented by the
baseline image and an optimal stationary velocity field. Our
method is mathematically well founded in the Alternating Di-
rection Method of Multipliers (ADMM), which for our image
regression application is interpreted in diffeomorphic space
instead of Euclidean space. We evaluate our new method on
2D synthetic images and real 3D brain longitudinal image se-
ries, and the experiments show promising results in regression
accuracy as well as estimated deformations.

Index Terms— stationary velocity field, shape regres-
sion, longitudinal brain image, LogDemons

1. INTRODUCTION

In the last 10 years, extensive research has been done on mod-
eling the shape changes in longitudinal brain image series
[1–3]. A standard solution is to directly extend pairwise reg-
istrations to longitudinal image series [1,4,5]. However, such
piece-wise approaches often have jumps in the trajectory and
fail to correctly represent anatomical development. To avoid
these jumps, smooth kernel based methods [2] and geodesic
shape regression methods [3] were proposed. While the for-
mer is more flexible, geodesic shape regression has a much
clear physical meaning as a geodesic path passing through all

images and can compactly represent the entire developmental
trajectory by the baseline image and a single initial condition
that determines the entire path.

In the computational anatomy field, the geodesic path be-
tween a pair of images can be computed depending on either
the initial momenta (LDDMM [6]) or the stationary veloc-
ity field (SVF, e.g. LogDemons [7]). Currently, the geodesic
shape regression methods [3, 8] only focus on the LDDMM
framework, even though it is very time and memory consum-
ing.

In this paper, we propose a new linear shape regression
model based on the symmetric LogDemons method for lon-
gitudinal images. Our method has three advantages. Firstly,
our method can be computed more efficiently than LDDMM
based methods, owing to the LogDemons framework. Sec-
ondly, we propose a new iterative SVF merging step that en-
forces any pairwise deformation to follow a single trajectory.
Thirdly, our method is mathematically well founded in the
Alternating Direction Method of Multipliers (ADMM).

2. METHOD

2.1. Preliminaries

In our approach, the developmental trajectory is determined
by a single initial SVF. As mentioned in [7], the LogDemons
method extends the classical Demons model into the Log-
Euclidean domain. The entire deformation path can be rep-
resented as the tangent space SVF v and the time interval t,
using the exponential map φ(v, t) = Exp(v, t). This is equiv-
alent to the unit time interval geodesic path with re-scaled ve-
locity field φ(v, t) = Exp(v, t) = Exp(v × t, 1), according
to [9].

Since the exponential map guarantees to move a point
from the tangent space of a manifold to the manifold itself,
the trajectory of φ(v, t) is guaranteed to be always on the im-
age manifold and the geodesic path determined by the SVF.

2.2. Linear Geodesic Shape Regression

The linear geodesic shape regression is an extension of least
square regression from Euclidean space to diffeomorphic
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space, and it seeks to minimize the sum of squared dif-
ferences between the measured and the predicted image,
while keeping the deformation diffeomorphic. For a given
longitudinal image list {I0, I1, I2, .., IN} with scans at age
{A0, A1, A2, .., AN}, the regression cost function can be
written as:

E({φ1, φ2, .., φN}) =
N∑
i=1

‖Ii − I0 ◦ φi‖2L2
+Reg(φi), (1)

where φi is the deformation from baseline image I0 to follow-
up image Ii, and the regularization of the deformation field
Reg(φi) is used to encourage the deformation to be diffeo-
morphic.

In our approach, we assume that brain shape changes ac-
cording to a tangent space SVF, and we use the log-domain
trajectory SVF v0 to compactly define the entire geodesic de-
formation path

φ(v0, t) = Exp(v0, t) = Exp(v0 × t, 1). (2)

Instead of regularizing the deformation φi, we regularize the
velocity field v0 × ti, and we obtain a new regression cost
function (1) in the log-domain:

E(v0) =

N∑
i=1

‖Ii−I0◦Exp(v0×ti, 1)‖2L2
+Reg(v0×ti) (3)

where the age interval ti = Ai −A0.
To compute the optimal trajectory SVF v0 more effi-

ciently, we first introduce new variables vi = v0 × ti and re-
place v0×ti by vi to transfer the log-domain cost function (3)
into a global variable consensus optimization problem [10],
with product space variable w = {v1, v2, . . . , vN} and the
feasible region C = {(v1, v2, . . . , vN )|vi = v0 × ti}.

To solve the shape regression problem in the diffeomor-
phic space, we interpret the scaled form ADMM method [10]
in diffeomorphic instead of Euclidean space, by replacing
the augmented Lagrangian term ‖vi = v0 × ti‖22 with func-
tion Dist(v1, v2) = ‖Log(Exp(−v1) ◦Exp(v2))‖2L2

for the
geodesic distance. Then the diffeomorphic space augmented
Lagrangian form is written as

Lρ({vi}, v0, {ui}) =
N∑
i=1

[‖Ii − I0 ◦ Exp(vi, 1)‖2L2

+Reg(vi) + (
ρ

2
)Dist(vi, v0 × ti − ui)] + g(v0),

(4)

where ui is defined as scaled dual variable of the original dual
variable yi and ui = 1

ρyi. dist(vi, v0×ti−ui) is the geodesic
distance between the SVF vi and v0 × ti − ui, and g(v0)
encodes the feasible region constraint C.

In order to solve this hard constraint problem (4), we use
the ADMM method:

vk+1
i =argmin

vi

[‖Ii − I0 ◦ Exp(vi, 1)‖2L2
+Reg(vi)

+ (ρ/2)Dist(vi, v
k
0 × ti − uki )]

(5)

vk+1
0 =

∏
C
{vk+1

1 , . . . , vk+1
N }+ {uk+1

1 , . . . , uk+1
N } (6)

uk+1
i = uki + vk+1

i − vk+1
0 × ti (7)

vk+1
i = uk+1

i + vk+1
0 × ti, uk+1

i = 0 (8)

For Equation (5), it minimizes the sum of three terms: the
image intensity difference, the deformation update distance
and the vector field smoothness. Comparing to [7], we can see
that these three terms are also used to define the LogDemons
energy. By setting ρ

2 = σi

σx
, where σi is related to the noise

of image and σx related to the uncertainty of spatial match,
the minimization of vk+1

i is equivalent to the optimization of
the LogDomain Demons energy. The optimal vk+1

i can there-
fore be efficiently computed using the symmetric LogDemons
registration method [7].

For the second step (6), the projection
∏

C can be treated
as finding the optimal element in the product space W =
(V × V × ... × V) in the feasible region w? = {v0 ×
t1, v0× t2, ...v0× tN} that minimizes the Euclidean distance
to w = {v1, v2, ...vN}. This projection operation on the
product space W is equivalent to the least square regression
problem in the original velocity field space V and the optimal
vk+1
0 is therefore computed as

vk+1
0 =

∑N
i=1 ti × v

k+1
i∑N

i=1 t
2
i

. (9)

For the last step (7,8), the algorithm just projects the prod-
uct space point w = {v1, v2, ...vN} onto the feasible region
and then transfers it back to the original velocity field space
V:

vk+1
i = vk+1

0 × ti. (10)

After computing the trajectory SVF v0 = vk+1
0 , the de-

formation from the baseline image to the follow-up image at
any time point t can be computed as φ(v0, t) = Exp(v0, t)
and we can interpolate or extrapolate the image It at time t as
It = I0 ◦ Exp(v0, t).

2.3. Algorithm Summary

To deal with the large deformation and compute the linear
shape regression more efficiently, we add a multi-resolution
strategy into the method. The entire pipeline is summarized
in Algorithm 1.

3. EXPERIMENT AND RESULT

3.1. Synthetic images experiment

To test if our shape regression method can model image
changes, our first experiment is on the 2D synthetic binary
bull’s eye image series, shown in Fig. 1, where the motion is
well captured using our method.
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Data: longitudinal images I0, I1, I2, . . . , IN and scan
age, resolution number, max iterations

Result: Trajectory SVF v0
forall the resolutions do

down-sample Ii,∀i
if the lowest resolution then

v00 = Id
else

up-sample v0
end
forall the iterations do

forall the follow-up images do
compute vk+1

i based on vki , using
LogDemons [7],

end
compute vk+1

0 based on vk+1
i , using Equation

(9)
forall the follow-up images do

vk+1
i ← vk+1

0 × ti, using Equation (10)
end

end
v0 ← vk+1

0 and vi ← vk+1
i

end
Algorithm 1: Multi-resolution linear geodesic shape re-
gression

Our second experiment is on a square moving from left to
right with vertical oscillations, shown in Fig. 2. In this ex-
periment, we compare our iterative merging approach with a
final merging approach [8], which computes v0 (see (6)) only
after the full registrations. From the result, we can see that
iterative merging matches better and maintains the rigidity of
the square. We repeat this experiment with more time sam-
ples, which indeed improves our regression results, see Fig.
3.

To quantify the non-rigidity in the mesh inside the square,
we compute the standard deviation of the Jacobian determi-
nant of the obtained deformations from the two previous mo-

Fig. 1. Synthetic bulls eye experiment images (top row), re-
sults of geodesic shape regression (Bottom row), the result
deformation field is shown with the red mesh.

Fig. 2. Motion of a square. First row: follow-up images;
Second row: predicted images using iterative merging; Third
row: predicted images using final merging.

Fig. 3. Motion of a square with more sample points.

tion of square experiments, and show the result in Table 1.

3.2. Real brain images

We also validate our linear shape regression method on a real
3D brain longitudinal image series from the ADNI dataset
(adni.loni.usc.edu)(SubID 033 S 0514). All the lon-
gitudinal images are rigidly aligned to the baseline image first.
Then we use all the brain images in the time-series to compute
a linear regression model to fit all the images with the pro-
posed iterative merging method. The result is given in Fig.
4, showing that the proposed method captures the ventricle
expansion well.

Table 1. Std of the Jacobian determinant inside the
square,with different sample numbers and merging methods

im 1 im 2 im 3 im 4 im 5 im 6
5-iter 0.020 0.035 0.050 0.049
5-final 0.074 0.143 0.222 0.249
7-iter 0.013 0.021 0.026 0.030 0.061 0.077
7-final 0.039 0.077 0.113 0.144 0.187 0.215
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Fig. 4. Experiment of our linear shape regression method on real 3D brain data (age range: 80.9− 85.9). The blue focus lines
indicate the same position in the image domain. Row 1: follow-up images; Row 2: prediction using the proposed method.

3.3. Compare pairwise velocity spread

To show the different behavior of the iterative and final merg-
ing strategies, we measure how well each pairwise deforma-
tion follows a single deformation path. To this end we com-
pute the so-called generalized variance, i.e. the determinant of
the co-variance of the unit time pairwise SVF’s before merg-
ing: Spread({vi}) = mean(det(cov({vi(x)/ti}))). The re-
sult is given in Fig. 5, showing that the proposed method bet-
ter aligns the pairwise SVFs to the common direction, where
the spread was reduced with several orders of magnitude.
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Fig. 5. Log-plot of inter-pair unit time velocity field spread

4. CONCLUSION

In this paper, we present a new fast linear geodesic shape re-
gression method. By introducing the ADMM framework, we
rebuild the shape regression problem as a list of independent
LogDemons problems, which are coupled in every iteration.
Experiments on both 2D synthetic images and a 3D brain
longitudinal image series show that the proposed method is
promising in modeling longitudinal shape changes. Based on
the LogDemons method, our linear geodesic shape regression
method is much faster than the traditional LDDMM-based
geodesic shape regression methods.
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