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ABSTRACT

Accurate lung vessel segmentation is an important operation for lung CT analysis. Hessian-based filters are
popular for pulmonary vessel enhancement. However, due to their low response at vessel bifurcations and
vessel boundaries, extracting lung vessels by thresholding the vesselness is inaccurate. Some literature turns
to graph cuts for more accurate segmentation, as it incorporates neighbourhood information. In this work,
we propose a new graph cuts cost function combining appearance and shape, where CT intensity represents
appearance and vesselness from a Hessian-based filter represents shape. In order to make the graph representation
computationally tractable, voxels that are considered clearly background are removed using a low threshold on the
vesselness map. The graph structure is then established based on the neighbourhood relationship of the remaining
voxels. Vessels are segmented by minimizing the energy cost function with the graph cuts optimization framework.
We optimized the parameters and evaluated the proposed method with two manually labeled sub-volumes. For
independent evaluation, we used the 20 CT scans of the VESSEL12 challenge. The evaluation results of the
sub-volumes dataset show that the proposed method produced a more accurate vessels segmentation. For the
VESSEL12 dataset, our method obtained a competitive performance with an area under the ROC of 0.975,
especially among the binary submissions.
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1. INTRODUCTION

Lung vessel detection is a key research topic in pulmonary CT image processing, since accurate vessel segmen-
tation is an important step in extracting imaging bio-markers of vascular lung diseases. For example, systemic
sclerosis (SSc) is related to pulmonary hypertension (PH),1 which is related to narrowing of the small vessels,
and therefore vessel analysis could be used as a bio-marker for PH in SSc. A few methods have been proposed for
lung vessel segmentation. According to the VESSEL12 challenge,2 the popular Hessian-based methods3 perform
well. They enhance tube-like structures by modeling the eigenvalues of the Hessian matrix, but tend to give
a low response at the vessel bifurcations and at the vessel boundaries. In our previous work, a strain energy
filter4 overcomes the bifurcations problems to some degree by analyzing the shape-tuned strain energy density.
However, thresholding the strain energy filter’s vesselness does not provide accurate results either. In order to
improve the vessel segmentation, we turned to graph cuts where we can more easily combine different sources of
information via the cost function, and additionally include neighbouring information.

Graph cuts consider the segmentation a labeling problem.5 The voxel nodes are labeled to object or back-
ground, according to node connections and their weights. Several approaches using graph cuts for vessel segmen-
tation were proposed. Chen et al.6 proposed a regional graph cuts based method for liver vessel segmentation
with clustering method for initialization. Freiman et al.7 proposed a graph cuts based method for carotid artery
segmentation by coupling Frangi’s vesselness and intensity into the cost function. In order to cope with memory
and computational challenges, they divided the scan volume into several regions with a small overlap, computed
graph cuts for each block independently, and merged the segmentations.

In this paper, an automatic lung vessel segmentation method based on graph cuts is proposed. A fairly low
threshold is applied on the strain energy based vesselness to label voxels that are certainly part of the background,
the remaining voxels are included as nodes in the graph. Instead of using vesselness as the vessel data cost term
directly,7 we take it as a shape feature and compute the vessel data term with a prior distribution. Combining
appearance (CT intensity) and shape, the cost function is calculated. To deal with memory requirements, we
employed a low overhead sparse matrix implementation to record graph connections and their weights allowing
the processing of the entire image volume. After the graph structure is established, the graph cuts optimization
framework is applied for vessel segmentation. The proposed lung vessel segmentation method was optimized and
evaluated on two manually labeled sub-volumes, and evaluated independently on the VESSEL12 dataset.
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2. METHODS

Our segmentation method consists of three steps: 1) the strain energy filter for lung vessels enhancement, 2) the
graph structure representation, and 3) the graph cuts based vessels segmentation.

2.1 Vessel enhancement filter

Due to an overly simplified cylindrical model, the response of traditional Hessian-based filters is low at the vessel
bifurcations. The strain energy filter, which is based on the strain energy density theory from solid mechanics,
aims to remedy this. Based on an intensity continuity assumption, and a relative Hessian strength measure
to ensure the dominance of second-order over first-order derivatives to suppress undesired step edges, the final
vesselness was calculated as follows:

ϕ(σ, x) =

{
0, if 1

3 (λ1 + λ2 + λ3) > −ζλm
exp

(
−η ||OI||λm

)
V κ(x)ρ(H, v), otherwise,

(1)

in which σ is scale, λi are the eigenvalues with λm the maximum eigenvalue, ||OI||/λm measures relative Hessian
strength, V κ(x) is a measure for vessel shape and ρ(H, v) measures structure strength. The parameters 0 < ζ <
1, η > 0, κ > 0 and −1 < v < 0.5 are user-defined. More details can be found in the original paper.4

2.2 Graph representation

High resolution pulmonary CT scans consist of almost 500 slices per scan, with 512*512 voxels each slice.
Considering the lung region only, the graph still consists of almost ten million nodes and hundred million
edges (26-neighbours in a 3D grid). To cope with memory requirements, previous work used a block region
strategy6.7 However, this introduces discontinuities in the merged part of detected vessels. In this paper, we
used a thresholding strategy to reduce the graph size.

A fairly low threshold was used on the vesselness to label voxels as background. The nodes of the graph
consist of the remaining voxels, source and sink nodes. The edges between the source/sink node and voxel nodes
are called t-edges, and the edges between neighbourhood voxel nodes are named n-edges. The t-edges and their
weights can be represented easily with a dense matrix. For the n-edges, a sparse matrix was adopted to record the
adjacent connections and their weights. If we use ’1’ and ’0’ to represent the ’connection’ and ’non-connection’
of the voxels respectively, all the ’1’ locate at the several parallel diagonals of the sparse matrix. The adjacent
sparse matrix can be determined efficiently and memory-saving by assigning the diagonal vectors. The diagonal
vectors can be generated easily by analyzing the neighbour connection type. Then, the n-edge’s sparse matrix
can be extracted from the whole 3D grid adjacent sparse matrix with remaining voxels’ index.

2.3 Proposed cost function for the graph cut

Segmentation is treated as a labeling problem by graph cuts, L = {Lp|p ∈ P}. The proposed energy function is:

E(L) =
∑
p∈P

(
wDCT

p (Lp) + (1− w)Dvsl
p (Lp)

)
+ γ

∑
(p,q)∈N ,Lp 6=Lq

Vp,q(Lp, Lq), (2)

where the data term consists of appearance (CT intensity) DCT
p (Lp) and shape (vesselness) Dvsl

p (Lp), and w
is the balance weight. Vp,q(Lp, Lq) is the cost of the edge (p, q) and γ is a user-defined positive coefficient for
adjusting the smoothness.

Commonly Gaussian functions are used in the data term,7 but this will cause voxels with high intensity
or vesselness, i.e. far away from the center of the Gaussian, to obtain a low vessel probability. Therefore we
employed a sigmoid function:

DCT
p (Ip|Lp = l) =

1

1 + e−α
CT
l (Ip−βCT

l )
; Dvsl

p (Ip|Lp = l) =
1

1 + e−α
vsl
l (Ip−βvsl

l )
. (3)
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(a) Original CT slice (b) Slice of sub-volume (c) Reference standard (d) Graph cuts result

Figure 1. Segmentation result on reference region. (a) reference region. (b) one slice of the extracted region. (c) manually
segmented reference standard. (d) segmentation result of our proposed method.

The choice for the free parameters of the sigmoid function is given in Section 3.1. The boundary cost Vp,q(Lp, Lq)
is based on the similarity in appearance of neighbouring voxels p and q, weighted by their spatial distance:

Vp,q(Lp, Lq) =

{
e−
|Ip−Iq|
dist(p,q) , if Lp 6= Lq and (p, q) ∈ N

0, otherwise
(4)

If two nodes of the n-edge (p, q) have similar appearance but a different label, the edge’s boundary cost will be
high.

3. EXPERIMENTS AND RESULTS

3.1 Parameter estimation

The parameters used in the strain energy vesselness filter were taken from the literature:4 ζ = 0.5, η = κ = 0.2,
v = 0.0, and using scales δ ∈ {1, 2, 3}. The parameters in the graph cuts energy function were optimized with
sub-volumes data, γ was set to 0.01, the weight w in Eq.(2) was 0.6. For the sigmoid cost function’s parameters,
we designed an algorithm to estimate them automatically. Before estimation, we removed voxels which have
high vesselness or intensity, because those voxels can affect the distribution estimation severely. Afterwards, a
threshold was used to set the initial background and foreground. The Gaussian distribution of the intensity
in the foreground is estimated by the mean µ and the standard deviation std of the initial foreground. Then,
we fitted the sigmoid function to the unnormalized Gaussian such that Sigmoid(β) = Gaussian(β) = 0.5. For
estimating the fuzziness parameter α we did several experiments and finally found that the best fitting curve
was obtained by: Sigmoid(µ) = 0.95.

3.2 Data and results

In order to evaluate the proposed segmentation method, we chose two sub-volumes across the boundary of
pulmonary lobes for manual annotation by an expert (see Figure 1). In total, two reference standard sub-volumes
from different patients, Dataset1 with size 65*60*120 and Dataset2 with size 91*70*121, were extracted.

Centerline-based evaluation was applied to these two sub-volumes dataset. The centerlines were extracted
from segmented vessels with the ’DtfSkeletonization’ module in MeVisLab. The centerline of the segmentation
result was compared with the centerline of the reference standard. If the distance between the two centerlines are
less than the local vessel radius, they were counted as true positives. The number of false negatives was calculated
as the number of voxels on the reference standard centerline minus the number of true positives. The number of
false positives was calculated using the number of voxels on the segmented centerlines minus the number of true
positives. Then the precision, recall and F1 score, F1 = 2TP/(2TP +FP +FN), were calculated. We compared
the proposed method with thresholding the Frangi’s vesselness, thresholding the strain energy filter’s vesselness
and a Freiman’s based method.7 For the thresholding vesselness methods, 70 thresholds were evaluated ranging
between the minimum and maximum of vesselness, and the optimized results of the filters are given in Table 1.

For independent evaluation, we used the VESSEL12 dataset of 20 anonymized CT scans from three hospitals,
representing a wide range of clinical images. The manual labelling was performed on pre-generated points, and
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Table 1. Evaluation results on the sub-volumes dataset
Dataset1 Dataset2

Recall Precision F1 score Recall Precision F1 score
Frangi filter3 0.734 0.508 0.601 0.629 0.515 0.566
Freiman’s based method7 0.823 0.478 0.605 0.643 0.487 0.554
Strain Energy filter4 0.708 0.729 0.718 0.622 0.712 0.664
Our method 0.733 0.792 0.761 0.667 0.715 0.690

Table 2. Evaluation results of the VESSEL12 dataset: Az score, Specificity and Sensitivity of our submission across all
categories. Categories 1: Principal, 2: Small Vessels, 3: Medium Vessels, 4: Large Vessels, 5: Vessel/Airway Wall, 6:
Vessel/Dense Lesion, 7: Vessel/Mucus-filled bronchi, 8: Vessel-in-lesion/Lesion, 9: Vessel/Nodules.

1 2 3 4 5 6 7 8 9
Az 0.975 0.953 0.977 0.993 0.867 0.481 0.331 0.661 0.238
Specificity 0.910 0.865 0.910 0.979 0.588 0.239 0.112 0.451 0.038
Sensitivity 0.929 0.966 0.953 0.960 0.929 0.929 0.929 0.829 0.929

only those points were included for which the labels from three independent observers are the same. The segmen-
tation vessels were evaluated against the manual annotations. We submitted our binary vessel segmentations to
VESSEL12 organizers, and our method obtained an area under the ROC (Az) of 0.975, which is a competitive
performance on VESSEL12, especially among the binary submissions. The evaluation results of our method is
shown in Table 2; the evaluation results of other submissions can be found in the paper.2

4. CONCLUSION AND DISCUSSION

A graph cuts based segmentation method is proposed to extract lung vessels. By combining appearance and
shape features, a new data term cost function was designed. An efficient and accurate strategy was adopted
to cope with memory requirements of a graph representation. From the evaluation results, we obtained a
competitive performance. The method could be improved by adding more information, such as the inclusion of
radius information in the data term and by designing a more accurate boundary cost using differences in multiple
features. The airway wall and nodule removal could improve the performance by reducing the false positives.
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