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Fast Automatic Step Size Estimation for Gradient
Descent Optimization of Image Registration

Yuchuan Qiao*, Baldur van Lew, Boudewijn P. F. Lelieveldt, and Marius Staring

Abstract—Fast automatic image registration is an important
prerequisite for image-guided clinical procedures. However, due
to the large number of voxels in an image and the complexity of
registration algorithms, this process is often very slow. Stochastic
gradient descent is a powerful method to iteratively solve the reg-
istration problem, but relies for convergence on a proper selection
of the optimization step size. This selection is difficult to perform
manually, since it depends on the input data, similarity measure
and transformation model. The Adaptive Stochastic Gradient
Descent (ASGD) method is an automatic approach, but it comes
at a high computational cost. In this paper, we propose a new
computationally efficient method (fast ASGD) to automatically
determine the step size for gradient descent methods, by consid-
ering the observed distribution of the voxel displacements between
iterations. A relation between the step size and the expectation
and variance of the observed distribution is derived. While ASGD
has quadratic complexity with respect to the transformation
parameters, fast ASGD only has linear complexity. Extensive
validation has been performed on different datasets with different
modalities, inter/intra subjects, different similarity measures and
transformation models. For all experiments, we obtained similar
accuracy as ASGD. Moreover, the estimation time of fast ASGD is
reduced to a very small value, from 40 s to less than 1 s when the
number of parameters is 105, almost 40 times faster. Depending
on the registration settings, the total registration time is reduced
by a factor of 2.5–7 for the experiments in this paper.

Index Terms—(Stochastic) gradient descent, gradient descent
optimization, image registration, optimization step size.

I. INTRODUCTION

I MAGE registration aims to align two or more images and is
an important technique in the field of medical image anal-

ysis. It has been used in clinical procedures including radio-
therapy and image-guide surgery, and other general image anal-
ysis tasks, such as automatic segmentation [1]–[4]. However,
due to the large number of image voxels, the large amount of
transformation parameters and general algorithm complexity,
this process is often very slow [5]. This renders the technique
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impractical in time-critical clinical situations, such as intra-op-
erative procedures.
To accelerate image registration, multiple methods have

been developed targeting the transformation model, the inter-
polation scheme or the optimizer. Several studies investigate
the use of state-of-the-art processing techniques exploiting
multi-threading on the CPU or also the GPU [6], [7]. Others
focus on the optimization scheme that is used for solving image
registration problems [8]–[10]. Methods include gradient de-
scent [11], [12], Levenberg-Marquardt [13], [14], quasi-Newton
[15], [16], conjugate gradient descent [10], evolution strate-
gies [17], particle swarm methods [18], [19], and stochastic
gradient descent methods [20], [21]. Among these schemes,
the stochastic gradient descent method is a powerful method
for large scale optimization problems and has a superb perfor-
mance in terms of computation time, with similar accuracy as
deterministic first order methods [10]. Deterministic second
order methods gave slightly better accuracy in that study, but
at heavily increased computational cost. It may therefore be
considered for cases where a high level of accuracy is required,
in a setting where real-time performance is not needed.
In this study, we build on the stochastic gradient descent tech-

nique to solve the optimization problem of image registration
[12]:

(1)

in which is the -dimensional fixed image, is the
-dimensional moving image, is a parameterized co-
ordinate transformation, and the cost function to measure the
dissimilarity between the fixed and moving image. To solve this
problem, the stochastic gradient descent method adopts iterative
updates to obtain the optimal parameters using the following
form:

(2)

where is the iteration number, the step size at iteration
, the stochastic gradient of the cost function,

with the true gradient and the approximation
error . The stochastic gradient can be efficiently calculated
using a subset of voxels from the fixed image [21] or using
simultaneous perturbation approximation [22]. As shown pre-
viously [10], stochastic gradient descent has superior perfor-
mance in terms of computation time compared to deterministic
gradient descent and deterministic second order methods such
as quasi-Newton, although the latter frequently obtains some-
what lower objective values. Similar to second order methods,
stochastic gradient descent is less prone to get stuck in small
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local minima compared to deterministic gradient descent [23],
[24]. Almost-sure convergence of the stochastic gradient de-
scent method is guaranteed (meaning that it will converge to
the local minimum ”with probability 1”), provided that the step
size sequence is a non-increasing and non-zero sequence with

and [25]. A suitable step size
sequence is very important, because a poorly chosen step size
will cause problems of estimated value ”bouncing” if this step
size is too large, or slow convergence if it is too small [26], [27].
Therefore, an exact and automatically estimated step size, inde-
pendent of problem settings, is essential for the gradient-based
optimization of image registration. Note that for deterministic
quasi-Newton methods the step size is commonly chosen using
an (in)exact line search.
Methods that aim to solve the problem of step size estimation

can be categorized in three groups: manual, semi-automatic,
and automatic methods. In 1952, Robbins and Monro [25] pro-
posed to manually select a suitable step size sequence. Several
methods were proposed afterwards to improve the convergence
of the Robbins-Monro method, which focused on the construc-
tion of the step size sequence, but still required manual selec-
tion of the initial step size. Examples include Kesten's rule [28],
Gaivoronski's rule [29], and the adaptive two-point step size
gradient method [30]. An overview of these methods can be
found here [31], [32]. These manual selection methods, how-
ever, are difficult to use in the practice, because different ap-
plications require different settings. Especially for image reg-
istration, different fixed or moving images, different similarity
measures or transformation models require a different step size.
For example, it has been reported that the step size can differ
several orders of magnitude between cost functions [21]. More-
over, manual selection is time-consuming.
Spall [22] used a step size following a rule-of-thumb that

the step size times the magnitude of the gradient is approxi-
mately equal to the smallest desired change of in the early
iterations. The estimation is based on a preliminary registration,
after which the step size is manually estimated and used in sub-
sequent registrations. This manual procedure is not adaptive to
the specific images, depends on the parameterization , and re-
quires setting an nonintuitive ‘desired change’ in .
For the semi-automatic selection, Suri [26] and Brennan [27]

proposed to use a step size with the same scale as the mag-
nitude of observed in the first few iterations of a prelimi-
nary simulation experiment, in which a latent difference of the
step size between the preliminary experiment and the current
one is inevitable. Bhagalia also used a training method to es-
timate the step size of stochastic gradient descent optimization
for image registration [33]. First, a pseudo ground truth was ob-
tained using deterministic gradient descent. Then, after several
attempts, the optimal step size was chosen to find the optimal
warp estimates which had the smallest error values compared
with the pseudo ground truth warp obtained in the first step. This
method is complex and time-consuming as it requires training
data, and moreover generalizes training results to new cases.
The Adaptive Stochastic Gradient Descent method (ASGD)

[21] proposed by Klein et al. automatically estimates the step
size. ASGD estimates the distribution of the gradients and the
distribution of voxel displacements, and finally calculates the

initial step size based on the voxel displacements. This method
works for few parameters within reasonable time, but for a large
number of transformation parameters, i.e., in the order of or
higher, the run time is unacceptable and the time used in esti-
mating the step size will dominate the optimization [34]. This
disqualifies ASGD for real-time image registration tasks.
In this paper, we propose a new computationally efficient

method, fast ASGD (hereafter FASGD), to automatically select
the optimization step size for gradient descent optimization, by
deriving a relation with the observed voxel displacement. This
paper extends a conference paper [34] with detailed method-
ology and extensive validation, using many different datasets
of different modality and anatomical structure. Furthermore, we
have developed tools to perform extensive validation of our
method by interfacing with a large international computing fa-
cility. In Section II, the method to calculate the step size is intro-
duced. The dataset description is given in Section III. The exper-
imental setup to evaluate the performance of the new method is
presented in Section IV. In Section V, the experimental results
are given. Finally, Sections VI and VII conclude the paper.

II. METHOD

A commonly used choice for the step size estimation in gra-
dient descent is to use amonotonically non-increasing sequence.
In this paper we use the following decaying function, which can
adaptively tune the step size according to the direction and mag-
nitude of consecutive gradients, and has been used frequently in
the stochastic optimization literature [5], [20], [21], [25], [29],
[31], [32], [35], [36]:

(3)

with , , , where gives
a theoretically optimal rate of convergence [35], and is used
throughout this paper. The iteration number is denoted by ,
and . The function is a
sigmoid function with :

(4)

in which determines the maximum gain at each iteration,
determines the maximal step backward in time, and af-

fects the shape of the sigmoid function [21]. A reasonable choice
for the maximum of the sigmoid function is , which
implies that the maximum step forward in time equals that of
the Robbins-Monro method [21]. It has been proven that con-
vergence is guaranteed as long as [21], [36]. Specifically,
from Assumption A4 [36] and Assumption B5 [21], asymptotic
normality and convergence can be assured when
and . In [21, (Equation (59))] was
used, which requires the estimation of the distribution of the ap-
proximation error for the gradients, which is time consuming.
Moreover, a parameter is introduced which was empirically
set to 10%. Setting avoids a costly computation, and
still guarantees the conditions required for convergence. For the



QIAO et al.: FAST AUTOMATIC STEP SIZE ESTIMATION FOR GRADIENT DESCENT OPTIMIZATION OF IMAGE REGISTRATION 393

minimum of the sigmoid function we choose in
this paper, fulfilling the convergence criteria.
In the step size sequence , all parameters need to be se-

lected before the optimization procedure. The parameter con-
trols the decay rate; the theoretically optimal value is 1 [21],
[37]. The parameter provides a starting point, which has most
influence at the beginning of the optimization. From experience
[21], [37], provides a reasonable value for most situa-
tions. The parameter in the numerator determines the overall
scale of the step size sequence, which is important but difficult
to select, since it is dependent on , , and . The step
size can differ substantially between resolutions ([21, Figure 4])
and for different cost functions ([21, Table 2]). This means that
the problem of estimating the step size sequence is mainly de-
termined by . In this work, we therefore focus on automatically
selecting the parameter in a less time-consuming manner.

A. Maximum Voxel Displacement
The intuition of the proposed step size selection method is

that the voxel displacements should start with a reasonable value
and gradually diminish to zero. The incremental displacement
of a voxel in a fixed image domain between iteration
and for an iterative optimization scheme is defined as

(5)

To ensure that the incremental displacement between each iter-
ation is neither too big nor too small, we need to constrain the
voxel's incremental displacement into a reasonable range.
We assume that the magnitude of the voxel's incremental dis-
placement follows some distribution, which has expectation

and variance , in which is the norm. For
a translation transform, the voxel displacements are all equal,
so the variance is zero; for non-rigid registration, the voxel dis-
placements vary spatially, so the variance is larger than zero. To
calculate the magnitude of the incremental displacement ,
we use the first-order Taylor expansion to make an approxima-
tion of around :

(6)

in which is the Jacobian matrix of size
. Defining and combining with the

update rule , can be rewritten as:

(7)

For a maximum allowed voxel displacement, Klein [21]
introduced a user-defined parameter , which has a physical
meaning with the same unit as the image dimensions, usually
in mm. This implies that the maximum voxel displacement for
each voxel between two iterations should be not larger than :
i.e We can use a weakened form for
this assumption:

(8)

where is a small probability value often 0.05. According to
the Vysochanskij Petunin inequality [38], for a random variable

with unimodal distribution, mean and finite, non-zero vari-
ance , if , the following theorem holds:

(9)

This can be rewritten as:

(10)

Based on this boundary, we can approximate (8) with the fol-
lowing expression:

(11)

This is slightly different from the squares used in [21, Equa-
tion (42)], which avoids taking square roots for performance
reasons. In this paper we are interested in the incremental dis-
placements, not its square. Combining with (7), we obtain the re-
lationship between step size and maximum voxel displacement
as follows:

(12)

B. Maximum Step Size for Deterministic Gradient Descent
From the step size function it is easy to

find themaximum step size , and themax-
imum value of , . This means that the largest
step size is taken at the beginning of the optimization procedure
for each resolution. Using (12), we obtain the following equa-
tion of :

(13)

For a given , the value of can be estimated from the initial
distribution of at the beginning of each resolution.

C. Noise Compensation for Stochastic Gradient Descent
The stochastic gradient descent method combines fast con-

vergence with a reasonable accuracy [10]. Fast estimates of the
gradient are obtained using a small subset of the fixed image
voxels, randomly chosen in each iteration. This procedure in-
troduces noise to the gradient estimate, thereby influencing the
convergence rate. This in turn means that the optimal step size
for stochastic gradient descent will be different compared to de-
terministic gradient descent. When the approximation error

increases, the search direction is more unpredictable,
thus a smaller and more careful step size is required. Similar to
[21] we assume that is a zero mean Gaussian variable with
small variance, and we adopt the ratio between the expectation
of the exact and approximated gradient to modify the step size

as follows:

(14)

D. Summary and Implementation Details
1) The Calculation of for Exact Gradient Descent: The

cost function used in voxel-based image registration usually
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takes the following form:

(15)

in which is a similarity measure, is a discrete set of voxel
coordinates from the fixed image and is the cardinality of
this set. The gradient of this cost function is:

(16)

The reliable estimate of relies on the calculation of the
exact gradient. We obtain a trade-off between the accuracy of
computing with its computation time, by randomly selecting
a sufficiently large number of samples from the fixed image.
Specifically, to compute (16) we use a subset of size

equal to the number of transformation parameters .
Then, is computed at each voxel co-

ordinate . The expectation and variance of
can be calculated using the following expressions:

(17)

(18)

2) The Calculation of : The above analysis reveals that
the noise compensation factor also influences the initial step
size. This factor requires computation of the exact gradient
and the approximate gradient . Because the computation of the
exact gradient using all voxels is too slow, uniform sampling is
used, where the number of samples is determined empirically
as . To obtain the stochastic gradient
, we perturb by adding Gaussian noise and recompute the
gradient, as detailed in [21].
3) The Final Formula: The noise compensated step size is

obtained using the following formula:

(19)

In summary, the gradient is first calculated using (16), and
then the magnitude is computed at each voxel , fi-
nally is obtained. In step 2, the noise compensation is
calculated through the perturbation process. Finally, is ob-
tained through (19).

E. Performance of Proposed Method

In this section, we compare the time complexity of the fast
ASGD method with the ASGD method. Here we only give the
final formula of the ASGD method, for more details see refer-
ence [21]. The ASGD method uses the following equation:

(20)

where is a scalar constant related to the distribution of the
exact gradient [21], is the covari-
ance of the Jacobian, and denotes the Frobenius norm.
From (13), the time complexity of FASGD is dominated by

three terms: the Jacobian with size , the gradient
of size , and the number of voxels from which the ex-

pectation and variance of are calculated. The matrix com-
putation requires multiplications and
additions for each of the voxels , and therefore the time
complexity of the proposed method is . The domi-
nant terms in (20) are the Jacobian (size ) and its covari-
ance matrix (size ). Calculating from right to
left requires multiplications and additions for and
an additional operations for the multiplication with the
left-most matrix . Taking into account the number of voxels

, the time complexity of the original ASGD method is there-
fore , as . This
means that FASGD has a linear time complexity with respect to
the dimension of , while ASGD is quadratic in .
For the B-spline transformation model, the size of the non-

zero part of the Jacobian is much smaller than the full Jacobian,
i.e., only , where is determined by the B-spline order
used in this model. For a cubic B-spline transformation model,
each voxel is influenced by control points, so
in 2D and in 3D. For the fast ASGD method the
time complexity reduces to for the cubic B-spline
model. However, as the total number of operations for the cal-
culation of is still , the time complexity of
ASGD is . Since , the domi-
nant term of FASGD becomes the number of samples , while
for ASGD it is still a potentially very large number .

III. DATA SETS

In this section we describe the data sets that were used to eval-
uate the proposed method. Data sets were chosen to represent a
broad category of use cases, i.e., mono-modal and multi-modal,
intra-patient as well as inter-patient, from different anatomical
sites, and having rigid as well as nonrigid underlying deforma-
tions. The overview of all data sets is presented in Table I.

A. RIRE Brain Data – Multi-Modality Rigid Registration

The Retrospective Image Registration Evaluation (RIRE)
project provides multi-modality brain scans with a ground truth
for rigid registration evaluation [39]. These brain scans were
obtained from 9 patients, where we selected CT scans and MR
T1 scans. Fiducial markers were implanted in each patient, and
served as a ground truth. These markers were manually erased
from the images and replaced with a simulated background
pattern.
In our experiments, we registered the T1 MR image (moving

image) to the CT image (fixed image) using rigid registration.
At the website of RIRE, eight corner points of both CT and MR
T1 images are provided to evaluate the registration accuracy.

B. Spread Lung Data – Intra-Subject Nonrigid Registration

During the SPREAD study [40], 3D lung CT images of 19
patients were scanned without contrast media using a Toshiba



QIAO et al.: FAST AUTOMATIC STEP SIZE ESTIMATION FOR GRADIENT DESCENT OPTIMIZATION OF IMAGE REGISTRATION 395

Aquilion 4 scanner with scan parameters: 135 kVp; 20 mAs
per rotation; rotation time 0.5 s; collimation: 4 5 mm. Images
were reconstructed with a standardized protocol optimized for
lung densitometry, including a soft FC12 kernel, using a slice
thickness of 5 mm and an increment of 2.5 mm, with an inplane
resolution of around 0.7 0.7 mm. The patient group, aging
from 49 to 78 with 36%-87% predicted had moderate to
severe COPD at GOLD stage II and III, without antitrypsin
deficiency.
One hundred anatomical corresponding points from each

lung CT image were semi-automatically extracted as a ground
truth using Murphy's method [41]. The algorithm automatically
finds 100 evenly distributed points in the baseline, only at char-
acteristic locations. Subsequently, corresponding points in the
follow-up scan are predicted by the algorithm and shown in a
graphical user interface for inspection and possible correction.
More details can be found in [42].

C. Hammers Brain Data – Inter-Subject Nonrigid Registration

We use the brain data set developed by Hammers et al. [43],
which containsMR images of 30 healthy adult subjects. Theme-
dian age of all subjects was 31 years (range 20 ~ 54), and 25 of
the 30 subjects were strongly right handed as determined by rou-
tine pre-scanning screening. MRI scans were obtained on a 1.5
Tesla GE Sigma Echospeed scanner. A coronal T1 weighted 3D
volume was acquired using an inversion recovery prepared fast
spoiled gradient recall sequence (GE), TE/TR/NEX 4.2 msec
(fat and water in phase)/15.5 msec/1, time of inversion (TI) 450
msec, flip angle 20 , to obtain 124 slices of 1.5 mm thickness
with a field of view of 18 24 cm with a 192 256 matrix
[44]. This covers the whole brain with voxel sizes of 0.94 0.94
1.5 . Images were resliced to create isotropic voxels of

0.94 0.94 0.94 , using windowed sinc interpolation.
Each image is manually segmented into 83 regions of interest,

which serve as a ground truth. All structures were delineated
by one investigator on each MRI in turn before the next struc-
ture was commenced, then a separate neuroanatomically trained
operator evaluated each structure to ensure that consensus was
reached for the difficult cases. In our experiment, we performed
inter-subject registration between all patients. Each MR image
was treated as a fixed image as well as a moving image, so the
total number of registrations for 30 patients was 870 for each
particular parameter setting.

D. Ultrasound Data – 4D Nonrigid Registration

We used the 4D abdominal ultrasound dataset provided
by Vijayan et al. [45], which contains 9 scans from three
healthy volunteers at three different positions and angles. Each
scan was taken over several breathing cycles (12 seconds per
cycle). These scans were performed on a GE Healthcare vivid
E9 scanner by a skilled physician using an active matrix 4D
volume phased array probe.
The ground truth is 22 well-defined anatomical landmarks,

first indicated in the first time frame by the physician who ac-
quired the data, and then manually annotated in all 96 time
frames by engineers using VV software [46].

IV. EXPERIMENT SETUP
In this section, the general experimental setup and the eval-

uation measurements are presented and more details about the
experimental environment are given.

A. Experimental Setup
The experiments focus on the properties of the fast ASGD

method in terms of registration accuracy, registration runtime
and convergence of the algorithm. We will compare the pro-
posed method with two variants of the original ASGD method.
While for FASGD and are fixed, the ASGD method au-
tomatically estimates them. For a fair comparison, a variant of
the ASGD method is included in the comparison, that sets these
parameters to the same value as FASGD: and

. In summary, three methods are compared in all the
experiments: the original ASGD method that automatically es-
timates all parameters (ASGD), the ASGD method with default
settings only estimating ( ) and the fast ASGD method
(FASGD). The fast ASGD method has been implemented using
the C++ language in the open source image registration toolbox
elastix [37], where the ASGD method is already integrated.
To thoroughly evaluate FASGD, a variety of imaging prob-

lems including different modalities and different similarity mea-
sures are considered in the experiments. Specifically, the exper-
iments were performed using four different datasets, rigid and
nonrigid transformation models, inter/intra subjects, four dif-
ferent dissimilarity measures and three imaging modalities. The
experiments are grouped by the experimental aim: registration
accuracy in Section V-A, registration time in Section V-B and
algorithm convergence in Section V-C. The RIRE brain data
is used for the evaluation of rigid registration. The SPREAD
lung CT data is especially used to verify the performance of
FASGD on four different dissimilarity measures, including the
mean squared intensity difference (MSD) [2], normalized cor-
relation (NC) [2], mutual information (MI) [12] and normalized
mutual information (NMI) [47]. The Hammers brain data is in-
tended to verify inter-subject registration performance. The ul-
trasound data is specific for 4-dimensional medical image reg-
istration, which is more complex. An overview of the experi-
mental settings is given in Table I.
For the evaluation of the registration accuracy, the exper-

iments on the RIRE brain data, the SPREAD lung CT data
and the ultrasound abdominal data, were performed on a local
workstation with 24 GB memory, Linux Ubuntu 12.04.2 LTS
64 bit operation system and an Intel Xeon E5620 CPU with
8 cores running at 2.4 GHz. To see the influence of the pa-
rameters and on the registration accuracy, we perform an
extremely large scale experiment on the Hammers brain data
using the Life Science Grid (lsgrid) [48], which is a High
Performance Computing (HPC) facility. We tested all combina-
tions of the following settings: ,

(in mm) and
. This amounts to 252 combinations of registra-

tion settings and a total of 657,720 registrations, see Table I.
Each registration requires about 15 minutes of computation
time, which totals about 164,000 core hours of computation,
i.e , making the use of an HPC resource essential.
With the lsgrid the run time of the Hammers experiment is



396 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35, NO. 2, FEBRUARY 2016

TABLE I
OVERVIEW OF DATA SETS AND EXPERIMENTS.

reduced to 2–3 days. More details about the lsgrid are given
in the Appendix.
For a fair comparison, all timing experiments were carried

out on the local workstation. Timings are reported for all the
registrations, except for the Hammers data set, where we only
report timings from a subset. From (19), we know that the run-
time is independent of the parameters and . Therefore, for
the Hammers data, we used and equal to the voxel
size. We randomly selected 100 out of the 870 registrations, as
a sufficiently accurate approximation.
The convergence of the algorithms is evaluated in terms of

the step size, the Euclidean distance error and the cost function
value, as a function of the iteration number.
All experiments were done using the following routine: (1)

Perform a linear registration between fixed andmoving image to
get a coarse transformation , using a rigid transformation for
the RIRE brain data, an affine transformation for the SPREAD
lung CT data, a similarity transformation rigid plus isotropic
scaling for the Hammers brain data, and no initial transforma-
tion for the 4D ultrasound data; (2) Perform a non-linear cubic
B-spline based registration [49] for all datasets except the RIRE
data to get the transformation . For the ultrasound data, the
B-spline transformation model proposed by Metz et al. [50] is
used, which registers all 3D image sequences in a group-wise
strategy to find the optimal transformation that is both spatially
and temporally smooth. A more detailed explanation of the reg-
istration methodology is in [45]; (3) Transform the landmarks
or moving image segmentations using ; (4) Evaluate the
results using the evaluation measures defined in Section IV-B.
For each experiment, a three level multi-resolution strategy

was used. The Gaussian smoothing filter had a standard devi-
ation of 2, 1 and 0.5 mm for each resolution. For the B-spline
transformation model, the grid size of the B-spline control point
mesh is halved in each resolution to increase the transformation
accuracy [49]. We used iterations and 5000 samples,
except for the ultrasound experiment where we used 2000 it-
erations and 2000 samples according to Vijayan [45]. We set

and equal to the voxel size (the mean length of the
voxel edges).

B. Evaluation Measures
Two evaluation measures were used to verify the registration

accuracy: the Euclidean distance and the mean overlap. The Eu-
clidean distance measure is given by:

(21)

in which and are coordinates from the fixed and moving
image, respectively. For the RIRE brain data, 8 corner points
and for the SPREAD data 100 corresponding points are used
to evaluate the performance. For the 4D ultrasound image, we
adopt the following measure from [45]:

(22)

in which and is a landmark at time placed
by observer , is the mean of landmarks
after inverse transformation.
The mean overlap of two segmentations from the images is

calculated by the Dice Similarity Coefficient (DSC) [5]:

(23)

in which is a labelled region and the total number of
regions for the Hammers data.
To assess the registration accuracy, a Wilcoxon signed rank

test ( ) for the registration results was performed. For
the SPREAD data, we first obtained the mean distance error of
100 points for each patient and then performed the Wilcoxon
signed rank test to these mean errors.
Registration smoothness is assessed for the SPREAD exper-

iment by measuring the determinant of the spatial Jacobian of
the transformation, [51]. Because the fluctuation
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Fig. 1. Euclidean distance error in mm for the RIRE brain data performed using
MI.

TABLE II
THE MEDIAN EUCLIDEAN DISTANCE ERROR (MM) FOR THE SPREAD
LUNG CT DATA. THE SYMBOLS AND INDICATE A STATISTICALLY
SIGNIFICANT DIFFERENCE WITH ASGD AND , RESPECTIVELY.

DENOTES NO SIGNIFICANT DIFFERENCE.

of should be relatively small for smooth transformations, we
use the standard deviation of to represent smoothness.
The computation time is determined by the number of param-

eters and the number of voxels sampled from the fixed image.
For a small number of parameters the estimation time can be
ignored, and therefore we only provide the comparison for the
B-spline transformation. Both the parameter estimation time
and pure registration time were measured, for each resolution.

V. RESULTS

A. Accuracy Results

In this section, we compare the registration accuracy between
ASGD, and FASGD.
1) RIRE Brain Data: The results shown in Fig. 1 present

the Euclidean distance error of the eight corner points from the
brain images. Themedian Euclidean distance before registration
is 21.7 mm. The result of the FASGD method is very similar to
the ASGD method: median accuracy is 1.6, 1.6 and 1.7 mm for
ASGD, and FASGD, respectively. The value of the
Wilcoxon signed rank test of FASGD compared with ASGD and

is 0.36 and 0.30, respectively, indicating no statistical
difference.
2) Spread Lung CT Data: Table II shows the median of the

mean Euclidean distance error of the 100 corresponding points
of 19 patients for four different similarity measures. Compared
with ASGD, FASGD has a significant difference for MSD,
MI and NMI, but the median error difference is smaller than
0.03 mm.
To compare FASGD and with ASGD we define the

Euclidean landmark error difference as

Fig. 2. The difference of Euclidean distance error in mm compared to ASGD
for the SPREAD lung CT data. The two numbers on the top of each box denote
the number of the landmark errors larger (left) and smaller (right) than 2 and

, respectively. All those landmarks, except one for NMI, belong to the
same patient.

Fig. 3. Box plots of the standard deviation of the Jacobian determinant for
the four similarity measures.

, for each landmark , and similarly for . This
difference is shown as a box plot in Fig. 2. Negative numbers
mean that FASGD is better than ASGD, and vice versa. It can
be seen that both and FASGD provide results similar to
ASGD, for all tested cost functions. The spread of the box
plot for is smaller than that of FASGD, as this method
is almost identical to ASGD.
Smoothness of the resulting transformations is given in

Fig. 3 for all similarity measures. FASGD generates somewhat
smoother transformations over ASGD and for the
MSD, MI and NMI measures.
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Fig. 4. Median dice overlap after registration of the Hammers brain data, as a function of and . A high DSC indicates better registration accuracy. Note that
in this large scale experiment, each square represents 870 registrations, requiring about 870 15 minutes of computation, i.e., almost 200 core hours.

3) Hammers Brain Data: In this experiment, FASGD is com-
pared with ASGD and in a large scale intersubject ex-
periments on brain MR data, for a range of values of , and
the number of iterations .
Fig. 4 shows the overlap results of the 83 brain regions. Each

square represents the median DSC result of 870 brain image reg-
istration pairs for a certain parameter combination of , and
. These results show that the original ASGD method has a

slightly higher DSC than FASGD with the same parameter set-
ting, but the median DSC difference is smaller than 0.01. Note
that the dark black color indicates DSC values between 0 and
0.5, i.e., anything between registration failure and low perfor-
mance. The ASGD and methods fail for ,
while FASGD fails for .
4) Ultrasound Abdomen Data: The results shown in

Fig. 5 present the Euclidean distance of 22 landmarks from
ultrasound images after nonrigid registration. The median
Euclidean distance before registration is 3.6 mm. The result
of FASGD is very similar to the original method. The value
of the Wilcoxon signed rank test of FASGD compared with
ASGD and is 0.485 and 0.465, respectively, indicating
no statistical difference.

B. Runtime Results
In this section the runtime of the three methods, ASGD,

and FASGD is compared.
1) Spread Lung CT Data: The runtime on SPREAD lung CT

data is shown in Fig. 6, in which the time used in the estimations
of the original method takes a large part of the total runtime per

Fig. 5. Euclidean distance in mm of the registration results for Ultrasound data
performed using MI.

resolution, while FASGD consumes only a small fraction of the
total runtime. From resolution 1 (R1) to resolution 3 (R3), the
number of transformation parameters increases from 4
to 9 . For both ASGD and the estimation time in-
creases from 3 seconds in R1 to 40 seconds in R3. However,
FASGD maintains a constant estimation time of no more than 1
second.
2) Hammers Brain Data: The runtime result of the Hammers

brain data is shown in Fig. 7. For this dataset,
in R3, i.e., larger than for the SPREAD data, resulting in larger
estimation times. For ASGD and the estimation time in
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Fig. 6. Runtime of SPREAD lung CT data in seconds. The black, green and
red bar indicate estimation time, pure registration time and total time elapsed in
each resolution, respectively. R1, R2, R3 indicate a three level multi-resolution
strategy from low resolution to high resolution.

the third resolution is almost 95 seconds, while for FASGD it is
almost 2 orders of magnitude smaller ( ).
3) 4D Ultrasound Data: The grid spacing of B-spline con-

trol points used in the 4D ultrasound data experiment is 15 15
15 1 and the image size is 227 229 227 96, so the

total number of B-spline parameters for the third resolution R3
is around 8.7 . From the timing results in Fig. 8, the orig-
inal method takes almost 1400 seconds, i.e., around 23 minutes,
while FASGD only takes 40 seconds.

Fig. 7. Runtime of Hammers brain data experiment in seconds. The black,
green and red bar indicate estimation time, pure registration time and total time
elapsed in each resolution, respectively. R1, R2, R3 indicate a three level multi-
resolution strategy from low resolution to high resolution.

Fig. 8. Runtime of Ultrasound data experiment in seconds. The black, green
and red bar indicate estimation time, pure registration time and total time elapsed
in each resolution, respectively. R1, R2, R3 indicate a three level multi-resolu-
tion strategy from low resolution to high resolution.

Fig. 9. Runtime in seconds of FASGD for ultrasound experiment. The left bar
indicate estimation time of and the right bar is the estimation time of .
R1, R2, R3 indicate a three level multi-resolution strategy from low resolution
to high resolution.

Fig. 9 presents the runtime of estimating and for the
ultrasound data. The estimation of takes a constant time during
each resolution, so for small the estimation of dominates the
total estimation time.
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Fig. 10. An example of the step size decay using 500 iterations except Ul-
trasound image data (2000 iterations) in last resolution from four experiments.
The red line is the original ASGD, the black line is and the green line
is FASGD. (a) RIRE. (b) SPREAD. (c) Hammers. (d) Ultrasound.

C. Convergence
From each of the four experiments, we randomly selected one

patient and analyzed the step size sequence . The results are
presented in Fig. 10 and show that FASGD takes a larger step
size than ASGD and for rigid registration and a smaller
step size for nonrigid registration, when using the same . In
addition, the original ASGD and take a very similar
step size in all experiments even when uses the default
settings for and .
Convergence results of the three methods are presented in

Fig. 11 for several patients. Fig. 11(a) and (b) present the Eu-
clidean distance (mm) at each iteration for three resolutions with
respect to the iteration number. The cost function values are
shown in Fig. 11(c) and (d). The threemethods behave similarly.

VI. DISCUSSION

All experiments in this paper show that the fast ASGD
method works well both in rigid and nonrigid image regis-
tration, showing that the method can deal with differently
parameterized transformations. The method was thoroughly
evaluated on a variety of imaging problems, including different
modalities such as CT, MRI and ultrasound, intra and inter
subject registration, and different anatomical sites such as the
brain, lung and abdomen. Various image registration settings
were tested, including four popular similarity measures. A
very large scale experiment investigated the sensitivity of the
methods to the parameters and .
All experiments show that FASGD has similar accuracy as

the ASGD method. For the rigid registration on the RIRE data
and the nonrigid 4D ultrasound experiment there was no sig-
nificant statistical difference. For the nonrigid SPREAD lung
CT experiment and the Hammers brain data we observed statis-
tically significant differences, however, these differences were
very small: on average less than 0.03 mm on the SPREAD data

Fig. 11. Convergence plots for four different patients. Top row shows the Eu-
clidean distance error (mm) as a function of the iteration number. Bottom row
shows the cost function value (MSD). Each plot shows three resolutions. (a)
ED, patient 1. (b) ED, patient 2. (c) MSD, patient 3. (d) MSD, patient 4.

(less than 5% of the voxel size), and less than 0.01 Dice overlap
on brain data. We conclude that FASGD obtains a very similar
registration accuracy as the original ASGD method.
All results indicate that there is little difference between

ASGD and . Especially from Fig. 10 it can be observed
that both methods take very similar step size during the opti-
mization, as well as similar cost function value and Euclidean
distance error (Fig. 11). This suggests that the default values
of the parameters and are sufficiently accurate, and
that indeed the parameter is the most important parameter to
estimate.
From Fig. 10 it can be observed that FASGD typically esti-

mates smaller step sizes than ASGD, for identical . This was
also observed for the other patients. Fig. 4 confirms this obser-
vation, as the accuracy plot for FASGD is somewhat shifted to
the right compared to the other two methods. This suggests that
more similar step sizes may be obtained when choosing about
twice as large as for ASGD, i.e., to increase the default from one
voxel size to two.
The accuracy results for the Hammers experiment shown in

Fig. 4 present an apparent accuracy increase when
for FASGD. Remember that represents the maximum allowed
voxel displacement per iteration in mm, and that for the med-
ical data used in this paper larger are unrealistic. Note that
for ASGD the registrations start failing when , and for
FASGD when . The temporary increase in accuracy at

for FASGD is due to an undesired decrease in . Note
that ASGD uses the exact same term, see (20), but this does not
result in increased accuracy, since ASGD is already failing for

.
The time performance of the proposed method shown in

Section V-B implies that FASGD has a large reduction in time
consumption of the step size estimation. For the SPREAD
experiment the estimation time in the last resolution is reduced
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from 40 seconds to 1 second. This improvement is crucial
for near real-time registration in high dimensional image
registration.
From Fig. 9 it is observed that a new bottle neck in the step

size estimation is the estimation of the noise compensation pa-
rameter . This is because in this work the calculation of the
gradient is performed with a relatively high number of voxels
from the fixed image. Future work will include the investigation
of accelerated methods to estimate and so further reduce the
step size estimation time, especially for 4D registration prob-
lems. A direct acceleration possibility is the use of paralleliza-
tion, for example by a GPU implementation, as the gradient
computation consists of an independent loop over the voxels.
The FASGD method provides a solution for step size se-

lection for gradient descent optimizers. For Newton-like opti-
mizers this is typically solved by a line search strategy. Note
that such a strategy can not readily be adopted for stochastic op-
timization due to the stochastic approximation of the cost func-
tion [52]. Strengths of quasi-Newton optimizers are their adapt-
ability to problems where the parameters are scaled with respect
to each other, and the availability of stopping conditions. For
FASGD as well as other stochastic gradient descent optimiza-
tion routines typically the number of iterations is used to termi-
nate the optimization. More sophisticated stopping conditions
from deterministic gradient descent methods cannot be readily
adopted. For example, due to the estimation noise, stopping con-
ditions based on cost function values or cost function gradients
cannot be trusted. The alternative to compute exact objective
values every (few) iteration(s), is also not attractive due to the
required computation time. In the elastix implementation a
stochastic gradient computation is in the order of 50 ms, while
exact metric value computation is at least in the order of sec-
onds. A feasible possibility would be to create a stopping con-
dition based on a moving average of the noisy objective values
or gradients.
The use of the lsgrid for the Hammers data experiment

was essential, and reduced computation time from 19 years to
about 2–3 days. It however did require a one-time investment of
time to develop the software supporting the registration jobs on
the grid. Typical issues we encountered was attempting to store
the results from hundreds of simultaneous executions, which
proved incompatible with maximum transaction rate supported
by the lsgrid Storage Resource Management services. We
were able to solve this by pooling multiple results into a single
storage operation. The infrastructure we built therefore screens
the software under execution from the complexities that are en-
countered when running on the lsgrid. At the same time it is
generic enough to provide a configurable set of execution en-
vironments to support other experiments not just the elastix
workflow used in this work, and can therefore be re-used.

VII. CONCLUSION

In this paper, a new automatic method (FASGD) for es-
timating the optimization step size parameter , needed for
gradient descent optimization methods, has been presented for
image registration. The parameter is automatically estimated
from the magnitude of voxel displacements, randomly sampled
from the fixed image. A relation between the step size and the

expectation and variance of the observed voxels displacement is
derived. The proposed method has a free parameter , defining
the maximally allowed incremental displacement between iter-
ations. Unlike , it can be interpreted in terms of the voxel size
(mm). In addition, it is mostly independent of the application
domain, i.e., setting it equal to the voxel size provided good
results for all applications evaluated in this paper. Compared to
the original ASGD method, the time complexity of the FASGD
method is reduced from quadratic to linear with respect to the
dimension of the transformation parameters . For the B-spline
transformation, due to its compact support, the time complexity
is further reduced, making the proposed method independent
of . The FASGD method is publicly available via the open
source image registration toolbox elastix [37].
The FASGD method was evaluated on a large number of reg-

istration scenario's and shows a similar accuracy as the original
ASGD method. It however improves the time complexity of the
step size estimation from 40 seconds to no more than 1 second,
when the number of parameters is : almost 40 times faster.
Depending on the registration settings, the total registration time
is reduced by a factor of 2.5–7 for the experiments in this
paper.

APPENDIX

The lsgrid infrastructure comprises distributed computing
and storage resources along with a central grid facility. In total
there is potential for approximately 10000 job slots. Job sched-
uling is performed using gLite grid middleware [53] via the
gLite Workload Management System (WMS) [54], which was
developed for the European Grid Infrastructure [55].
While it is possible to use this directly to schedule registra-

tion pipeline jobs, in practice these relatively short jobs are a
poor fit to the standard queue lengths in lsgrid. In addition,
unforseen delays in the push scheduling mechanism result in a
considerable overhead [56]. These issues can be addressed by
layering a pull scheduling system based on pilot jobs onto the
grid software infrastructure. Matching jobs to Workload Nodes
occurs once at pilot job startup after which job tokens are pulled
into the pilot job environment. The concept of Pilot Jobs was
first pioneered in the EGI grid within DIRAC [57], but we em-
ployed a light weight pilot job system developed by SURFsara
called PiCaS [58], [59].
The pilot job architecture shown in Fig. 12 was used to exe-

cute the Hammers pipeline. PiCaS was extended with a wrapper
job to perform standard elements of the pipeline such as envi-
ronment setup and data retrieval. The wrapper job and the Ham-
mers pipeline are coded using Python [60]. The job tokens con-
tain the registration parameters to be used and the storage lo-
cations for the fixed and moving images. Ganga [61] is used
to schedule and monitor pilot jobs which pull and execute the
job-tokens from the PiCaS database. The overall progress of the
execution can be checked by monitoring the status of the job to-
kens using the web browser to access job-token views defined
in database.
Execution of the Hammers pipeline using PiCaS on the ls-

grid follows these steps:
1) Initialize the Hammers jobs tokens. (a) Create the job to-

kens for each Hammers pipeline run. Job tokens contain
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Fig. 12. Running the Hammers pipeline in the pilot job architecture used on
the lsgrid. Arrows represent the flow of information.

job parameters and the grid location of the input data. (b)
Upload the input data needed to specific locations in grid
storage. (c) Monitor execution progress by checking job
token consumption in a browser.

2) Schedule the pilot jobs to commence grid execution. (a)
Schedule pilot jobs with the necessary job requirements
using gLite WMS from inside Ganga. Additional informa-
tion is passed to the pilot job concerning the runtime en-
vironment needed. (b) Monitor the progress of the pilot
jobs using Ganga job monitoring. (c) gLite WMS identi-
fies clusters matching the job requirements and schedules
pilot jobs. Once the pilot is started the PiCaS Wrapper Job
sets up the runtime environment on the worker node.

3) Job tokens are consumed and executed by the running
pilot jobs. (a) Retrieve a job token from the PiCaS job
tokens database and mark it as locked. (b) The necessary
data identified in the job token for each Hammers job is
downloaded by the PiCaS wrapper from grid storage and
the Hammers pipeline is executed. (c) Any results are
uploaded to the grid storage location as specified in the
job token. (d) The job token is updated with the result:
success or failure. In failure cases log-files are appended
to assist in debugging.

4) Job results can be immediately downloaded while the run
is in progress.

All tools that were created are reusable for other large scale
image processing with the lsgrid .
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