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Confidence Estimation for Medical Image
Registration Based On Stereo Confidences

Gorkem Saygili*, Marius Staring, and Emile A. Hendriks

Abstract—In this paper, we propose a novel method to estimate
the confidence of a registration that does not require any ground
truth, is independent from the registration algorithm and the
resulting confidence is correlated with the amount of registration
error. We first apply a local search to match patterns between
the registered image pairs. Local search induces a cost space per
voxel which we explore further to estimate the confidence of the
registration similar to confidence estimation algorithms for stereo
matching. We test our method on both synthetically generated
registration errors and on real registrations with ground truth.
The experimental results show that our confidence measure can
estimate registration errors and it is correlated with local errors.

Index Terms—Confidence estimation, medical image registra-
tion, stereo confidence.

I. INTRODUCTION

I MAGE registration is widely used in medical image anal-
ysis to align different scans [1]–[4]. Although there are

many registration algorithms, their accuracies vary between
different image pairs and applications.
Quantifying errors in medical image registration is a crucial

task. The quantity of errors indicate whether to trust the reg-
istration or not on a particular location. Furthermore, the pa-
rameters of a registration can be tuned adaptively on the erro-
neous regions to have a better alignment [5]–[8]. In general,
the assessment of errors are done by the experts based on vi-
sual inspection or using residual (difference) image. However,
expert-based assessment of the registration quality becomes in-
feasible when there are large sets of data from many subjects.
Hence, it is important to develop fully-automatic confidence
estimation methods for medical image registration. Such auto-
matic methods can be used when the ground truth data is not
available as well as to guide the medical expert while gener-
ating the ground truth through visual inspection.
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Apart from image registration, confidence maps do also play
an important role in the assessment of the so called ‘disparity
image’ that are produced by stereo matching algorithms. Stereo
matching has been an extensively researched topic of computer
vision [9]–[11]. The main goal of stereo matching is to find the
matching pixels between two images of the same scene from
different viewpoints.
In order to improve the accuracy of stereo matching al-

gorithms, recent research aims to extract confidence maps
[12]–[14].Without any ground truth depthmeasures, confidence
maps are extracted by exploiting the shape of the matching cost
space. An extensive overview of stereo confidences is presented
in [10]. In general, full-search is computationally infeasible
especially for non-rigid image registration since non-rigid med-
ical image registration may have thousands, even millions of
parameters to optimize compared to the disparity of the stereo
matching. Hence, stereo confidences cannot be directly used
in medical image registration. Furthermore, stereo confidences
are not correlated with the amount of error in matching.
In this paper, we propose a fully-automatic confidence esti-

mation method to measure the uncertainty in non-rigid regis-
tration. Our method relies on the fact that rigid and non-rigid
deformations can be accurately modelled by local models such
as translations estimated for each voxel [15] which is analog-
ical to the non-rigid deformation field. Therefore, the quality of
non-rigid registrations can be assessed by a local search for sim-
ilar patterns in small neighbourhoods. As a first step, we extract
local descriptors for each voxel [16], [17]. The cost space for
each voxel is constructed by calculating the Euclidean distance
between the extracted features of the voxels of the fixed image
and their local neighbors in the moving image. We then calcu-
late the confidence of the registration on each voxel using the
proposed confidence function on the voxel's cost space.
In this paper, we make the following contributions:
• We introduce a confidence measure that requires no ground
truth, no explicit model for the transformation, noise or
images.

• Our confidence measure is directly correlated with the
amount of mis-registration.

• Our confidence measure is independent from the type of
registration algorithm as it only needs the fixed image and
the output image of the registration.

• The full-search is applied over perpendicular directions.
Since, full-search over each direction can be calculated in-
dependently, our method is very efficient in terms of GPU
parallelization similar to stereo confidences.

Our paper is organized as follows: In Section II, we review
the existing literature on error estimation in medical image reg-
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istration and stereo confidence estimation. In Section III, we de-
scribe our method in detail. The experimental results are given
in Section IV. Based on the experimental results, we elaborate
on possible improvements for our method and draw conclusions
in Section V.

II. RELATED WORK

Confidence estimation for image registration has been the
primary focus of many studies. Simonson et al. [18] proposed
2D-edge detection based matching with a McNemar test to find
a confidence map assuming that the true transformation be-
tween images is only a rigid translation. Kybic [19] introduced
a bootstrap-resampling based confidence estimation. In their
method, image registration is performed several (100–1000)
times. Similar to [20], [21], their method is computationally
expensive. Additionally, Kybic [22] proposed a fast registra-
tion accuracy estimation method (FRAE) that is based on a
Hessian similarity criterion for each transformation parameter.
Although FRAE is faster than the bootstrap method, calculating
the Hessian is computationally expensive. Furthermore, FRAE
cannot measure the absolute registration error accurately [22].
In addition to these algorithms, there are other algorithms
that can estimate the confidence of a registration as long as
the utilized registration algorithm is formulated as a Bayesian
framework [23], [24]. All of the above mentioned confidence
estimation algorithms need to be integrated with the incorpo-
rated registration algorithm. Sofka et al. [25] included matching
of key-points in an SVM-classifier to decide the correctness of
an alignment. The features are extracted sparsely so a dense
confidence estimation is not possible with their algorithm.
Muenzing et al. [26], [27] employed a two-stage classifier cas-
cade to classify the local alignment patterns into three classes:
correct, poor, and wrong alignment. The main drawback of
learning-based approaches is their limited number of classes
to represent errors in the registration. Hence, the authors re-
placed their classifier with a regressor to obtain continuous
confidence scores instead of discrete classes in [27]. However,
they reported that using regressors instead of classifiers to
obtain continuous measures did not achieve accurate results.
Lotfi et al. [28], [29] used reinforcement learning to create an
uncertainty measure for probabilistic image registration. The
resulting measures were thresholded to indicate the degree of
error into three classes; low, medium and high error. However,
no explicit correlation with the amount of registration error
was indicated. Learning techniques have also been used to
predict errors in medical image segmentation. Kohlberger et
al. [30] used a generic learning approach based on regression
to estimate the Dice coefficient and the overlap error. The
drawback of their algorithm is that the result does not indicate
the spatial location of the errors. Crum et al. [31] proposed a
residual-image based error detection algorithm, which uses a
Gaussian scale-space to determine the scale of the registration
error. As the main drawback, detection of the spatial locations
of the registration error is not possible with their algorithm. Fe-
dorov et al. [32] proposed using the robust Hausdorff distance
on the edges of registered images. Their algorithm can assess
the accuracy of an alignment at the edges of the image pairs.
Park et al. [8] extracted the mismatch (residual) maps using

mutual information (MI) and intensity-based radial dilation
between the aligned pairs.
In this paper, we introduce a confidence measure based on

stereo confidence measures that is densely computed for each
voxel and is correlated with the registration error. Furthermore,
our method is independent from the type of registration algo-
rithm and requires no ground truth or user intervention.

III. METHOD

Our algorithm is composed of three steps: feature extraction,
matching (full-search) and confidence estimation. In the fol-
lowing subsections, we describe each of these steps in detail.

A. Feature Extraction
In stereo matching, choosing robust features for constructing

the cost space is an important step. The features should be rep-
resentative and dense to find an estimation of the disparity for
each pixel. It has been shown that the complexity and the ac-
curacy of the features are closely related [33]–[35]. Although
simple features such as intensity can be easily extracted, they
cannot perform as well as the complex ones such as mutual in-
formation [36] and normalized cross correlation [37]. Sotiras et
al. [3] described different features for image registration many
of which are also used in stereo matching. It has been shown
that a similar relation between complexity and accuracy of sim-
ilarity measures also exist for image registration [4].
Daisy features [17] are robust descriptors that are designed

for wide-baseline (long distance between camera pairs) stereo
matching. It extracts gradient orientation histograms similar to
SIFT [38] and GLOH [39]. Though, Daisy convolves the ex-
tracted histograms with different-sized Gaussian kernels to ob-
tain weighted sums which makes it very efficient to compute.
Furthermore, varying-sized Gaussian kernels provide descrip-
tors at multiple scales. Fig. 1(a) represents the structure of the
Daisy descriptor.
The Modality Independent Neighborhood Descriptor

(MIND) [40] is a feature that is specifically designed for
multi-modal image registration. For each voxel, MIND features
are calculated using absolute intensity differences and the
variation inside a local neighborhood. The calculated features
can be incorporated in a similarity measure for both mono and
multi-modal matching by using the Euclidean distance [28].
Even non-rigid deformations can be accurately modelled

by local translations [15]. Hence, we opt to measure how
well aligned the two registered images are by applying a full
search in local neighbourhoods of all voxels. To do so, we
use the Daisy and MIND features to obtain robust and dense
descriptors which can be effectively computed and are prone to
radiometric differences between the image pairs.

B. Matching—Full Search
Stereo matching algorithms aim to find corresponding points

between the reference and target images. In stereo matching, the
search for corresponding pixels is applied along a 1D horizontal
line [41]. The distance function that calculates the difference
between the extracted features creates a 1D cost space for each
pixel. The confidence can be estimated for each pixel by using
functions that analyze the shape of this cost space [10].
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Fig. 1. (a) Structure of the Daisy descriptor [17], (b) full search over 2D local region. and axes, (c) corresponding cost space.

Medical image registration aims to align one (moving)
image to another (fixed) image. Depending on the type of
registration, algorithms may have thousands of parameters
in total. Compared to stereo matching which has only one
parameter to optimize, the disparity, it is a more challenging
problem. Since stereo matching algorithms aim to find just
one disparity for each pixel, it is computationally feasible
to search all possible disparities and select the disparity that
achieves the minimum cost. However for most image registra-
tion algorithms, full-search for each parameter is not feasible
because of the excessive number of parameters. Therefore,
stereo confidence measures cannot be applied directly in image
registration algorithms. As a solution, we propose to compute
our confidence measure from the cost space that we obtain
by applying full-search over spatial directions for each voxel.
Since any deformation can be modelled as local translations
[15], we extract stereo confidences from the cost space that we
obtain from a full-search over the local neighbourhood for each
image element.
In contrast to stereo, corresponding voxels in medical images

can exist in any location in their local neighborhood. Since there
is no epipolar constraint in image registration, full-search should
be applied over a 2D space as shown in Fig. 1(b), or over a 3D
space. An example of the obtained cost space for 2D search is
shown in Fig. 1(c). Since the aim of registration was to align
the two images, the corresponding voxels (the global minimum
of the cost space) should be located at the center of the search
space for a correct registration.
After extracting features for each voxel, we calculate the Eu-

clidean distance between the extracted features of fixed and
moving images at each location in a local neighborhood. Taking
the mean of the cost space for each voxel in a local neighbour-
hood is a common procedure of almost all stereo matching al-
gorithms since the cost space of an individual pixel is noisy.
Therefore, we also take the mean of each cost space over a fixed
local neighborhood , to reduce noisy results.
Let and denote the extracted features of

the voxels in the local neighborhood of the center voxel
at and the target voxels that are located at
in the full-search direction, in the fixed and deformed moving
images, respectively. indicates the amount of shift in 2D or

3D similar to the disparity in stereo matching. The cost space
for the voxel at is constructed as:

(1)

Let the global minimum of the cost space be at :

(2)

If the registration is optimal, we expect to be at the center, ,
of the search space as in Fig. 1(c). Hence, correct alignment is
achieved at that location.

C. Confidence Estimation
The shape of the cost curve (as depicted in Fig. 2) indicates

how distinctive the matching voxels are compared to the neigh-
boring voxels. The cost space like in Fig. 2(e) may indicate cor-
rect registration, whereas random shapes like in Fig. 2(k) point
out possibly wrong alignments. On the contrary, voxels that
share similar gradient along an edge may have a valley-like cost
space shape as in Fig. 2(h).
Registration Maximum Likelihood (RML) is the con-

fidence measure that we propose for image registration
specifically. RML explores both the steepness and the location
of the global minimum in the cost space of each voxel and
derives a confidence measure for each voxel that reveals the
quality of alignment.
A cost space with a steep global minimum as depicted in

Fig. 2(e) indicates a correct alignment which also pinpoints the
distinctiveness of a voxel at a particular location. Any shift of
the global minimum from the center indicates a misalignment
(error in registration). In order to make RML correlated with
the registration error, we use a Gaussian function, , that
is centered at the center of the search space. penalizes
the dislocation of the voxel at proportional to the Euclidean
distance of its shifted location to the center of search space,
. Hence, independent from the type of deformation, as the

global minimum gets shifted from the center of the search space,
decreases:

(3)
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Fig. 2. Cost space examples extracted using Daisy features. The red region is the area with misalignment. All areas outside the red box are aligned perfectly. The
yellow, green and blue points indicate locations with correct alignment not on edge, correct alignment on an edge, and misalignment, respectively: (a) original
image, (b) synthetically deformed image, (c) RML confidence without cross-section, (d) RML confidence with cross-section, (e) cost space of the yellow spot,
(f-g) cross-sections on and directions, (h) cost space of the green spot and (i-j) its cross-sections, (k) cost space of the blue spot and (l-m) its cross-sections at
the center, respectively.

Similar to stereo confidences [10],RMLshould favour the cost
spaces with a steep global minimum as in Fig. 2(e). However,
voxels sharing similar gradients (structure) along the edges cre-
ates a valley-like shape in the cost space as depicted with green
in Fig. 2. Favouring only cost spaces like Fig. 2(e) inevitably
enforces the correctly aligned edge locations to have low confi-
dence as depicted in Fig. 2(c). To obtain high confidence on the
correctly-aligned edges, we take the cross-sections of the cost
space along all search directions, , at the center of the search
space as shown in Fig. 2(f) and Fig. 2(g). For each cross-section,

we analyze the steepness of the cost curve around the center. If
the registration is optimal, we expect to have at least one cross-
section that has its steep global minimum at the center. Hence,
we take the maximum confidence of all search directions:

(4)

(5)

(6)
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Fig. 3. Example cost functions to demonstrate the necessity of using :
(a) Cost function with a steep global minimum at the center (indicated with
red), (b) non-bell shaped cost function. Blue region indicates violation of global
minimum at the center.

where is a function to penalize the cost values that are
smaller than the center value. A correct alignment in image
registration is only possible when the global minimum of the
cost space resides at the center of the search space, at , as de-
picted in Fig. 3(a). Therefore, RML should check the shape of
the cost space at the center of the search space and favor the
global minimum if it resides at the center. In case of any viola-
tion, RML needs to penalize the cost values that is smaller than
the center value as indicated with blue in Fig. 3(b). is
maximal when and gets lower as increases
or decreases:

if
otherwise. (7)

The result of our RML confidence measure is depicted in
Fig. 2(d). Different from Fig. 2(c), we obtain high confidence
also on the correctly-aligned edge locations by using the cross-
sections.

IV. EXPERIMENTS

We conducted several experiments to test the performance
of RML compared to other commonly used confidence mea-
sures. In our tests, we used both synthetical deformations and
real registration ground-truth. In the following sections, we first
introduce the details of our experiments and the dataset, then we
elaborate on the experimental results.

A. Data and Experimental Setup

1) Data: In our experiments, we used three different datasets
that include both lung CT and brain MRI scans. Lung CT im-
ages from 21 patients were recorded in the SPREAD study [42].
Each scan has around voxels. Additionally,
there are 100 expert-marked ground truth points for each scan
that we used for our real registration experiments. In addition to
SPREAD, we used the adult maximum probability brain atlas
(HAMMERS with atlas) dataset [43]–[45]. This dataset con-
tains brain scans from 30 healthy adults and 83 manually seg-
mented regions for each scan which we used as ground truth
in our experiments. We also utilized the HAMMERS dataset in
our synthetic deformation experiments. Finally, for our multi-
modality experiments, we used the T1 and T2 brain MRI im-
ages from the RIRE dataset [46].

2) ComparedMethods: For our expriments, we implemented
two versions of our method. The first one applies full-search
in horizontal and vertical directions. The second version also
considers deformations between slices and constructs the cost
function in three dimensions. The latter version requires more
computational time and resources. Additionally, we used two
different features, the Daisy and MIND descriptors for the full
search. We conducted our synthetic simulations with both 2D
and 3D deformations. To compare our method with existing
confidences, we implemented confidence measures with the
Hausdorff distance, MLM [47] and confidence obtained from
the Daisy residual image [16]:
Hausdorff Distance. The Hausdorff distance is commonly

used in medical image registration for error estimation. Fedorov
et al. [32] incorporated the Hausdorff distance to measure con-
fidence. In this paper, we calculated the Hausdorff distance be-
tween voxel intensities of the fixed and moving images.
MLM [47]. Maximum likelihood measure is among the best

performing stereo confidence measures. It is similar to our con-
fidence measure in terms of the underlying function. We incor-
porated the Daisy cost space to calculate the MLM confidence.
Residual (Difference) Image. Residual images are used to

find the difference between two images. Park et al. [8] proposed
adaptive registration algorithm based on residual images (mis-
match maps) similar to confidence maps. Since we incorporated
both the Daisy [17] and the MIND [40] features, we measured
the residual images by taking the absolute difference of the ex-
tracted Daisy and MIND features of two images. We converted
the residual images into confidence maps by subtracting each
location from the maximum residual.
3) Error and Quality Measures: Medical image registration

algorithms are often quantified using two different methods.
One of these methods is the use of expert control points. Med-
ical experts mark corresponding points between the two images.
Each pair is expected to be at the same location after the regis-
tration. Hence, the amount of dislocation indicate the registra-
tion error. The second method is the use of segmentation maps.
The transformation that is obtained after registration is applied
to the segmentation maps of the two registered images. The
Dice Similarity Coefficient (DSC) is calculated by measuring
the overlap between the corresponding transformed segments.
Both DSC and the amount of shift of expert control points are
commonly used as quantitative measures of quality in medical
image registration.
In addition to these methods, registration algorithms are

often tested on synthetically created deformations [28], [31],
[32]. One of the main reasons of using synthetically created
deformations is its full control over the amount of induced error
which is not affected by segmentation errors and expert-related
mistakes.
A confidence measure is expected to indicate a wrong align-

ment in a synthetically deformed region with lower confidence
than its correctly registered neighbors. Hence, the wrong align-
ment can be clearly presented to the observer. Fig. 4(d)–(f) show
the results of different confidence estimation algorithms that are
applied to the image pairs in Fig. 4(a) and 4(c). The brighter the
region, the higher the confidence and vice versa. The result of
RML in Fig. 4(f) clearly indicate the deformed region with low
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Fig. 4. Synthetically deformed image generation: (a) initial image, (b) synthet-
ically-padded deformation (indicated with red), (c) resulting deformed image;
confidence estimation results for: (d) stereo confidence (MLM [47]), (e) Haus-
dorff distance [32], (f) RML, respectively.

confidence. In order to measure how distinct the deformed re-
gion is, we computed the ratio of the mean confidence of the de-
formed region, , with the mean confidence of its non-deformed
neighbor, , and use this as the distinctiveness score, :

(8)

4) Experiments: We generated non-rigid deformations on
random regions synthetically from the original images using
grid points. To add deformation, one of the grid points was
shifted from its original position to a different location as in-
dicated with red in Fig. 4(b). Non-rigid registration was applied
over the grid points (as ground truth landmarks) to align the two
images. Since the two images were identical initially, mis-align-
ment occurred only in the neighborhood of shifted grid point as
shown in Fig. 4(c). In our synthetical experiments, we randomly
chose a grid point and dislocated it with a random shift. We re-
peated this step 50 times and calculated the mean and standard
deviation of the errors with respect to the amount of shift on the
grid point. As a result of our synthetical experiments, we expect
to find the confidence measure that can represent the deformed
regions more distinctively than the others. Furthermore, we opt
to find a correlation between distinctiveness and the amount of
mis-alignment in our synthetical experiments.
As for one of our real registration experiment, We explored

if there is any correlation between confidences and registra-
tion error by considering the expert ground truth points after
a real non-rigid registration using SPREAD lung CT data. We
applied a rigid transformation that was followed by a B-spline
non-rigid registration to align follow-up scans of patients. The
obtained transformation after registration was applied to the ex-
pert control points in order to find their locations after the regis-
tration. The amount of dislocation was measured for every point
to quantify the registration error. We expect to find a correlation
between the dislocation and the confidences.

As our final experiment, we tested our confidence measure on
ground truth segmentation maps using the median dice overlap
score. Similar to the experiment with expert control points, non-
rigid registration was applied between the two different images
and the obtained transformation was used to align the segmen-
tation maps of these images. As the result of this experiment, we
opt to find a correlation between the DSC score and our confi-
dence measure.
We implemented our method usingMatlab and partially C++.

We used fixed parameters for all of our experiments. The Daisy
parameters were chosen the same as the default parameters in
[17] except the radius, , which was set to 5. Since we used
two different features, we normalized the cost space first be-
fore applying our confidence measure. We set the parameters of
RML experimentally. For the confidence measures, was
fixed to 0.02. was set to 3. Finally, the neighborhood for ag-
gregation and the search radius were both set to 5. All of the
parameters are held constant through the experiments.

B. Results
1) Confidence at the Synthetically-Deformed Regions Under

2D Deformation: The most important aspect of confidence esti-
mation is to indicate erroneous regions. Therefore, the resulting
confidence images have low intensity at deformed regions com-
pared to their non-deformed regions. Fig. 5 shows the confi-
dence maps between the image and its deformed replica with
small (Fig. 5(a)) and large (Fig. 5(e)) deformations. The defor-
mation is non-rigid and the deformed region is indicated in red
((Fig. 5(b), 5(f)). The confidence estimations are obtained using
the proposed RML confidence with MIND and Daisy features.
The confidence results show that, as the amount of deforma-
tion increases, the deformed region becomes darker in the con-
fidence image. Hence, the distinctiveness of the deformed re-
gion in the confidence image is perceptually correlated with the
amount of added deformation to the image.
2) Confidence at the Synthetically-Deformed Regions Under

3D Deformation: One of the challenges in medical image reg-
istration is the anatomical variances between image pairs. Any
structural (anatomical) variance between image pairs can have
a substantial importance and should be indicated by the con-
fidence measure with low confidence. In order to test against
structural differences between image pairs, we created inter-
slice deformation and tested different confidence measures on
the center slice. The results of the confidence estimation on the
center slice after 3D deformation is depicted in Fig. 6. Different
from the deformation in 2D, new shapes might appear as shown
in red because of the inter-slice deformation. The results show
that all the confidence measures can indicate the existence of the
deformation. However the results of these algorithms are noisy
since they also give high confidence in the deformed regions.
The proposed algorithm clearly detects the inter-slice deforma-
tion with least noise compared to other confidences.
3) Distinctiveness Under 2D Synthetical Deformation:

Fig. 7(a) shows the result of distinctiveness of the confidence
measures for intra-slice deformations (in 2D). The higher the
distinctiveness, the better the confidence measure. According to
the results, stereo confidence performs similarly with the Haus-
dorff distance [32] and the residual-based confidences perform
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Fig. 5. The resulting confidence images under: (a) small, (e) large deformations, respectively: (b–f) resulting deformed images, (c–g) RML confidence results
with MIND features, (d–h) RML confidence results with Daisy features.

Fig. 6. Performance of confidence measures under 3D deformation: (a) original, (b) deformed images, (c) intensity difference, (d) Daisy residual, (e) Hausdorff,
(f) MLM, (g) WMN, (h) proposed confidences, respectively. Red indicates the region with a significant deformation.

Fig. 7. Distinctiveness scores under 2D deformation, with single modality: (a)
Distinctiveness of the region, (b) Distinctiveness with respect to the degree of
deformation in voxels.

slightly better. Since we incorporate knowledge that the global
minimum should reside at the center of the cost space as in (2),

our confidence measure outperforms all other confidences. In
this experiment, we incorporate various deformations between
0–25 voxels as depicted in Fig. 7(b). For a good confidence
measure, the distinctiveness has a high correlation with the
amount of deformation as shown in Fig. 7(b). The observed
variance for the RML results in Fig. 7(a) is due to the fact
that we span a large range of deformations. Note that each box
represents 1500 points, and RML with Daisy and with MIND
have 48 and 38 points below the lower whisker, respectively.
Fig. 7(b) shows the distinctiveness score with respect to the

level of deformation. The result clearly shows that distinc-
tiveness increases as the deformation amount increases with
RML confidence. Furthermore, RML substantially outperform
all other measures as the amount of deformation increases to
higher levels.
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Fig. 8. Distinctiveness scores 2D synthetic simulation on multi-modal data: (a)
Distinctiveness of the region, (b) Distinctiveness with respect to the degree of
deformation in voxels.

4) Distinctiveness Between Images of Multiple Modality:
Daisy features are designed to be used for wide-baseline stereo
matching algorithms. In stereo matching, the images are from
the same modality. However, images from multiple modalities
can often be registered in medical image registration tasks.
In contrast to Daisy, MIND features are designed specifically
for medical image registration and build to be robust against
the differences caused by multiple modalities. Therefore, it is
important to test the performance of our confidence estimation
algorithm between images from multiple modalities with both
Daisy and MIND features. We performed our synthetical
experiment between T1 and T2 intra-patient scans from RIRE
dataset. The results are depicted in Fig. 8. Different from our
previous results, RML confidence with Daisy features does not
provide similar results with RML confidence with MIND fea-
tures. The main reason for this result is the diversity of intensity
gradient directions in between different modalities. Since Daisy
relies on gradient orientations as a feature, the change of these
directions in different modalities are recognized as a difference
in alignment. Fig. 9 shows the effect of cross-modality and
polarity differences on the qualitative results of RML with
Daisy and MIND features. The region marked in blue indicates
a region with a polarity change. Although there is no defor-
mation in that region, RML with Daisy wrongly indicates low
confidence. As depicted in Fig. 9(c), RML with MIND provides
more accurate results on both non-deformed and deformed
regions (indicated with red). Hence, RML with Daisy features
has a noisy behaviour as in Fig. 8(b). In contrast to Daisy,
RML with MIND features provide the best performance over
all other confidence measures because of MIND's robustness.
5) Distinctiveness Under Gaussian Noise: The noise

between two images is not just occur in between dif-
ferent modalities. To test our confidence measure against
Gaussian noise, we performed two synthetical experiments
that are applied on images with zero mean Gaussian noise.
Fig. 10(a) and Fig. 10(b) show the results for sigmas of 0.01
and 0.1, respectively. The results indicate that RML with Daisy
is the most robust against Gaussian noise and outperforms all
other confidences. Both RML with MIND features and MIND
residual confidences are outperformed by Daisy as the noise
level increases. Even though the level of Gaussian noise affect
the performance of RML with Daisy features, the correlation
between the level of deformation and the distinctiveness is still
observable as the sigma is increased to 0.1. In contrast, this
correlation does not exist for RML with MIND features.

Fig. 9. The qualitative effect of multi-modality on RML confidence: (a) T1 and
(b) T2 MRI scans, RML confidence results with (c) MIND, and (d) Daisy fea-
tures, respectively. The blue region indicates an example of polarity difference.
The red region indicates the region of deformation.

Fig. 10. Distinctiveness with 2D synthetic simulation under zero-mean
Gaussian noise with sigma: (a) 0.01, (b) 0.1.

6) Distinctiveness Under 3D Synthetical Deformation: In
this experiment, we explore the effect of deformations in three
dimensions. Hence, we used 3D full search rather than 2D with
both Daisy and 3D MIND features.
Fig. 11(a) shows the results of the ratio of the deformed and

non-deformed regions for the simulation under 3D deformation.
In both cases, our confidence measures outperform the other
confidences. RML confidences based on MIND and Daisy fea-
tures perform similarly.
Fig. 11(b) shows the result of our 3D simulation. Similar to

our previous result for 2D, both of the RML results significantly
outperform the other measures as the amount of deformation
increases.
7) Correlation of Confidence With the Expert Ground Truth

Data on Real Non-Rigid Registration: We tested the confidence
measures with the ground truth data points that are marked by
the experts with 3D deformations. The results are depicted in
Fig. 12. Confidence is shown until 7 mm error, after which only
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Fig. 11. Distinctiveness under 3D deformation: (a) Distinctiveness of the re-
gion, (b) Distinctiveness with respect to the degree of deformation in voxels.

Fig. 12. The confidence levels for 3D full-search with respect to expert ground
truth error in mm on the SPREAD lung data [42].

a few data points were available ( 30), i.e. insufficient to re-
liably estimate confidence. Since we expect a strong correla-
tion between a confidence measure and the amount of error in
registration, the amount of confidence should decrease as the
error increase. MLM confidence, Hausdorff distance measure
and MIND residual do not show any correlation with the regis-
tration error. The Daisy residual shows weak correlation com-
pared to the performance of our confidence measure. The results
indicate that 3D RML confidence measures with both MIND
and Daisy features are strongly correlated with the registration
error from expert ground truth markers. We believe that the
strong correlation is a consequence of our assumption that the
matching points should reside at the center of the search range.
This assumption cannot be used in stereo matching therefore
direct use of stereo confidences do not show a correlation with
the registration error. Since our confidence measures penalize
the amount of translation between the positions of the corre-
sponding points, they are able to correlate the registration error
and the amount of confidence.
8) Confidence Estimation Correlation With DSC on Real

Registration: We conduct another experiment using non-rigid
registration with different parameters in order to obtain a
variety of good and bad registrations. We used one of the most
commonly used quantitative score, the Dice Score (DSC),
to find if RML has any correlation with registration error.
Fig. 13(a) and Fig. 13(b) represents the results of RML with
MIND and Daisy features, respectively.
As the overlap between registered segments increases, the

DSC increases, which indicates better registration. In both of the
results, we see that the RML confidence increases as the DSC
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Fig. 13. Correlation of confidence with respect to regional Dice scores with
real registration: RML with (a) MIND, and (b) Daisy features.

increase. The correlation is low for lower DSC scores and be-
comes more recognizable for higher values. This result together
with the results from the expert ground control points proves
that RML confidence measure can be used on real registrations
as a quantification score.
Fig. 14 represents qualitative results of different confidence

estimators on a real registration. The red-bounded regions indi-
cate some of the locations with substantial perceptual deforma-
tion between fixed and moving images. The results show that
RML with both Daisy and MIND features successfully locate
these regions with low confidence. MLM and Daisy residual
confidences can detect some of these regions whereas the re-
maining confidence maps fail to represent the erroneous re-
gions. The result show that, in addition to synthetical deforma-
tions, RML can also qualitatively indicate deformations in real
registrations.

V. DISCUSSION AND CONCLUSION
Our results show that stereo confidences and confidence esti-

mation based on the residual image and the Hausdorff distance
do not show strong correlation with the amount of registration
error. Furthermore, their confidence images do not indicate the
location of the error distinctively. On the contrary the proposed
confidence measure can distinctively indicate the region of error
and the amount of confidence is strongly correlated with the
amount of registration error. The main reason for both obser-
vations is the implicit incorporation of the amount of disparity
in the calculation of confidence.
In contrast to the discrete quality classes of [26], [27], the

proposed confidence provides continuous confidence measures.
The proposed confidence measure can potentially be clustered
in discrete classes to represent e.g. high, medium and low con-
fidence. The cluster boundaries can be chosen depending on the
application at hand, as a post-processing step, which is not pos-
sible with [26], [27] Different from [31], the proposed confi-
dence can distinctively indicate the location of the error and its
calculation is computationally cheaper and highly parallelizable
compared to [19] and [22]. For 2D search on 315 446 image,
proposed algorithm executes in 29 seconds whereas 3D search
executes in 321 seconds without any parallelization on an Intel
i7 quad core CPU at 2.4 GHz.
We incorporated the Daisy and MIND features because they

are efficient to compute and can densely extract important struc-
tural information for each voxel. From our experiments, we re-
alize that the polarity of the gradient is important for the Daisy
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Fig. 14. Qualitative result for real registration: (a) fixed image, (b) moving image, (c) Daisy residual, (d) MIND residual, (e) Hausdorff, (f) MLM, (g) RML Daisy,
(h) RML MIND, respectively. Red indicates the region with a substantial deformation.

features and MIND is more robust to multi-modality registra-
tion than Daisy. On the other hand, Daisy provides better per-
formance under Gaussian noise than the MIND features. These
results shows the importance of similarity measure in our con-
fidence estimation. As a future step, more similarity measures
with better robustness should be tested with our confidencemea-
sure to achieve better performances.
Apart from noise, there are other artefacts that affect the

quality of registration such as non-standardness and intensity
inhomogeneity [48]. In our experiments, we did not test the
effect of these artefacts on our confidence estimation algorithm.
In addition, we did not use any pre-processing of the input
images. As a future study, we plan to first analyse their effect
and then use standardization and non-uniformity correction
approaches [49] as a pre-processing step to overcome such
disturbances.
In our experiments, we used non-rigid deformations since

such deformations have higher degrees of freedom compared
to rigid and affine deformations. Any type of local deforma-
tion induces a shift from the center location and RML considers
the amount of shift in terms of the Euclidean distance from the
center location. Hence, independent from the type of deforma-
tion, the confidence at that location is penalized relative to the
amount of the shift as in (3). Besides, RML is applied separately
from the registration algorithm and only uses the fixed image
and the output of the registration, it does not have a dependency
on the type of registration. Hence, we expect that RML can be
successfully used with all type of registrations including affine
and rigid. Specifically, in case of a global transformation where
all voxels are deformed similarly, we still expect locally dis-
tinctive confidence results since RML not only considers the
amount of shift from the center, but also the steepness of the
minimum of the cost space as in (5). Therefore, homogeneous
(textureless) regions without a steep global minimum, such as
the black corners of the images, will be penalized more than the
regions with steeper global minimum. As a future work, we plan

to explore the advantages of RML over other confidence mea-
sures with different types of transformation models.
Both Daisy and MIND features provide features that are

extracted over a local neighbourhood. Since the deformation
for each voxel is calculated by considering this neighbourhood,
the deformation at one voxel may affect the non-deformed
neighbouring voxels. In order to circumvent this, we can chose
a smaller radius of neighbourhood for both features. However,
using a small radius may induce problems in homogeneous
regions since it restricts the local interactions between neigh-
bouring voxels. Therefore, an adaptive choice of this radius
depending on the local structure may provide better results.
At edges, neighbouring voxels share a similar gradient and

valley-like cost space as discussed in Section III-C. We solve
this problem by taking cross-sections in , and (if exists)
directions. However, by taking a cross-section and estimating
the confidence over multiple dimensions independently, the al-
gorithm does not efficiently explore the whole cost space in all
dimensions. Therefore, we cannot exploit the additional infor-
mation we obtain from all dimensions fully. As a future work,
we will further improve our confidence measure so that it can
both perform accurately on valley-like cost space and can ex-
ploit information from all dimensions fully.
Since RML explores structural similarity after registration,

any pathological differences between the registered pairs are in-
dicated with low confidence. We believe this is a useful prop-
erty of our strategy since the pathological variations may pro-
vide valuable information to the medical experts. As a further
study, we opt to exploit this capability of our algorithm in terms
of providing a feedback to diagnosis algorithms.
In this paper, we proposed a confidence estimation method

for medical image registration. Our method does not require a
ground truth and is independent from the incorporated regis-
tration algorithm. In all of our experiments, our method pro-
duces the most accurate confidence maps, both quantitatively
and qualitatively.
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