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Pulmonary Fissure Detection in CT Images
Using a Derivative of Stick Filter

Changyan Xiao*, Berend C. Stoel, M. Els Bakker, Yuanyuan Peng, Jan Stolk, and Marius Staring

Abstract—Pulmonary fissures are important landmarks for
recognition of lung anatomy. In CT images, automatic detection
of fissures is complicated by factors like intensity variability,
pathological deformation and imaging noise. To circumvent this
problem, we propose a derivative of stick (DoS) filter for fissure
enhancement and a post-processing pipeline for subsequent seg-
mentation. Considering a typical thin curvilinear shape of fissure
profiles inside 2D cross-sections, the DoS filter is presented by
first defining nonlinear derivatives along a triple stick kernel
in varying directions. Then, to accommodate pathological ab-
normality and orientational deviation, a cascading
and multiple plane integration scheme is adopted to form a
shape-tuned likelihood for 3D surface patches discrimination.
During the post-processing stage, our main contribution is to
isolate the fissure patches from adhering clutters by introducing a
branch-point removal algorithm, and a multi-threshold merging
framework is employed to compensate for local intensity inho-
mogeneity. The performance of our method was validated in
experiments with two clinical CT data sets including 55 publicly
available LOLA11 scans as well as separate left and right lung
images from 23 GLUCOLD scans of COPD patients. Compared
with manually delineating interlobar boundary references, our
method obtained a high segmentation accuracy with median

-scores of 0.833, 0.885, and 0.856 for the LOLA11, left and
right lung images respectively, whereas the corresponding indices
for a conventional Wiemker filtering method were 0.687, 0.853,
and 0.841. The good performance of our proposed method was
also verified by visual inspection and demonstration on abnormal
and pathological cases, where typical deformations were robustly
detected together with normal fissures.
Index Terms—Fissure segmentation, image enhancement, pul-

monary fissure, stick derivative.

I. INTRODUCTION

P ULMONARY fissures are double layers of invaginations
of visceral pleura that anatomically separate the lungs

into lobes and segments [1]. Interlobar fissures are the physical
boundaries between pulmonary lobes, dividing the human lung
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into five lobes (three in the right lung and two in the left lung).
Accessory fissures often occur between bronchopulmonary
segments but may also enter subsegmental or interbronchial
planes [2]. Pulmonary fissures are important landmarks for
delineation of pulmonary anatomy, and have significant value
in localization of lesions and assessment of disease processes
[3]. Particularly, there is an increasing requirement for quan-
tification of fissure integrity or completeness, which is closely
relevant to lung disease characterization and can be calculated
as the percentage of the interlobar border defined by a fissure
[4], [5]. However, automated or computer-aided segmenta-
tion of pulmonary fissures in CT images is not an easy task.
The main challenges come from complicating factors such as
their thin, weak and variable structures, pathological defor-
mation, inhomogeneous intensity, imaging noise along with
interferences from adjacent vessels, bronchi and pathological
structures (e.g., fibrotic tissue).
Several automatic or semi-automatic methods have been

reported in the literature to realize pulmonary fissures segmen-
tation. With the lung parenchyma segmentation, pulmonary
airway and vessel trees extraction techniques gradually be-
coming mature [6], an indirect strategy is to utilize these
detected tissues to guess the fissure position on the basis of
some prior assumptions. Among them, the sparse distribu-
tion of vessels and bronchi in the neighborhood of fissures
is commonly used anatomical knowledge, which has been
integrated under different segmentation frameworks like the
watershed transform [7], [8], Voronoi division [9], adaptive
sweeping [10], minimal path [11] and neural network classifier
[12]. Another more global constraint is integrated in lung atlas
schemes including the single atlas search initialization [13] and
a multi-atlas selection mechanism recently proposed by van
Rikxoort et al. [14]. Although these indirect methods could
provide an approximate estimation of the fissure position and
thus help to reduce computational burden, the most reliable
information still comes from the object itself. This is also the
reason why the fissure appearance and shape characteristics
are attracting more attention for accurate localization and
refinement [15], [16].
Much effort has been made to efficiently exploit the direct

fissure information. Based on the fact that the profile of pul-
monary fissures across transverse planes can be approximated
with piecewise straight lines, Kubo et al. [17] presented a 2D
VanderBrug operator to enhance the linear structures and si-
multaneously suppress streak artifacts. Their method was later
extended to 3D space as a sheet-emphasis filter [18]. Zhang et
al. [13] began with a 2D ridgeness measure to enhance fissure
contrast, the direction and intensity continuity was integrated
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under a fuzzy reasoning framework to sift out the fissure ob-
jects. Wiemker et al. [19] proposed two equivalent fissure like-
lihood filters using structure tensors and Hessian matrices for
shape description. A similar likelihood function was recently
defined by Lassen et al. [15] and the plane filter of Li et al.
[20] can also be considered a pilot method to enhance the fis-
sure-like tissues. To automatically distinguish what should be
enhanced or suppressed, van Rikxoort et al. [21] presented a su-
pervised filter, which adopts a pattern recognition technique to
select the most important features and was further harnessed to
group the unordered structures into bigger fissure plates [22]. A
computational geometry approach has been developed by Pu et
al. [23], where they utilized a statistical approach to extract the
pulmonary fissures in 3D space after iteratively smoothing the
triangle meshes with a Laplacian filter. The same authors later
suggested an anisotropic morphological operator as a post-pro-
cessing method to smoothen fissure surfaces and fill small holes
[24]. Furthermore, their method was improved by a piecewise
plane fitting algorithm [16] to directly identify fissure patches
from the original lung sub-volumes. Ross et al. [25] employed
a particle system that samples the image domain and provides a
set of candidate fissure locations based on image derivative fea-
tures. A maximum a posteriori estimation was then applied to
eliminate poor candidates and remove residual noise particles.
Later, their ridge surface sampling scheme was merged with a
lobe boundary shape model to improve fissure discrimination
[26]. Recently, Kinder et al. [27] proposed a line enhancing filter
as an extension to the previous Hessian filter [19]. Their method
is close to our proposed filter but they used a single stick tem-
plate.
Motivated by a line detection model in speckle images [28],

we present a derivative of stick (DoS) filter for fissure enhance-
ment with emphasis on direction estimation and interference
suppression. The basic idea is to probe the presence of 2D fis-
sure profiles across section planes by formulating it as a M-ary
hypothesis testing problem, where a rectangle neighborhood is
divided into various straight line-segments (i.e., sticks) corre-
sponding to potential fissure directions. Different from tradi-
tional isotropic or spot kernel filters, our method defines a like-
lihood measure by investigating appearance feature along ori-
enting templates, which make it more appropriate for extremely
anisotropic and thin elongated structures. For subsequent seg-
mentation, we introduce a post-processing pipeline based on
connected component analysis, where multi-threshold binarized
images are directly merged after removing adhering clutters
with a branch-point detection algorithm.
In this paper, our main purpose was to extract pure fissure

patches rather than generate a full lobe segmentation. This
means that only the visible fissures on CT are extracted and
no interpolation operation was applied to extend the fissure
plane or fill its inner holes. An early version of this method has
been presented at a conference [29]. In this current work, the
algorithms are improved further and the experiments have been
extended into a full validation. The remainder of the paper is
organized as follows. In Section II, the methods are described
in details. The data and reference are described in Section III.
We give the experiment and evaluation results in Section IV,
and in Section V the conclusions are presented.

II. METHODS

In this section, we present our framework for fissure detec-
tion, which consists of a fissure enhancement filter as well as a
post-processing segmentation pipeline.

A. A Derivative of Stick Filter for Fissure Enhancement
As a distinct 3D planar or surface structure in human lungs,

the pulmonary fissures possess some distinguishable shape and
appearance features. If we cut a volume CT image with mutu-
ally orthogonal planes, the fissure profiles will typically appear
as bright thin curvilines in at least two planes, see the normal
fissure profiles in Fig. 1. This observation is considered an im-
portant property in our paper to discriminate the fissure patches
from other pulmonary tissues. For example, small pulmonary
vessels might happen to be a bright line inside a single trans-
verse plane, but they hardly show similar shapes in other per-
pendicular sections. An exception is those vessel segments run-
ning parallel to a certain coordinate axis, which might simulta-
neously take a linear shape across two orthogonal sections. This
will happen with low probability and is ignored in this paper.
Based on this observation, a fissure enhancement filter is de-

veloped. Although essentially a 2D filter, the 3D surface char-
acteristics of fissures will be indirectly taken into account by
merging information from orthogonal planes.
1) A Rotating Stick Kernel Transformation: A problem with

pulmonary fissure detection in CT images is that they often ap-
pear to be a single pixel wide and even broken for several pixels.
The traditional smoothing filters without a matched line shape
constraint are inappropriate, because the thin and weak fissures
are at risk of being swept out together with the noise [27].
Motivated by a line detection model in speckle images [28],

we introduce a realistic method to probe the presence of 2D fis-
sure profiles across each section plane by approximating them
with piecewise straight line-segments called sticks. To adapt the
direction change, a rotating kernel transformation [30] is in-
troduced by first decomposing a rectangular neighborhood into
single-pixel width and fixed length sticks, where each of them
represents a potential fissure orientation. Typically, an
neighborhood can be decomposed into sticks, which
is done by spatially sampling and discretizing the rotating lines
through the center, see Fig. 2 for an example of . Note
this is essentially a ary hypothesis testing problem with
each hypotheses being a possible fissure or stick direction.
To some extent, the original single stick model can be consid-

ered as an extreme case of the anisotropic Gaussian filter, where
the long axis scale is much larger than the short axis scale. To
account for intensity variance or local discontinuities along the
fissure, a rectangular window average rather than a Gaussian
weighting is adopted to minimize the influence of the relative
position.
Definition of Nonlinear Derivatives: Based on this rotating

kernel transformation, our DoS filter is developed by further
introducing a triple stick template instead of a single stick as
the filtering kernel. Due to anatomically sparseness or lack of
vessels and bronchi around lobar boundaries, the neighboring
background on both lateral sides of the fissure often shows up as
low-intensity strips on CT images. Taking this into account, we
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Fig. 1. Demonstration of pulmonary fissures segmentation using the proposed method in six different subjects. From top to bottom row, the original image slice,
blending segmentation and 3D fissure surfaces are sequentially given. The segmented fissures are rendered in green. Several typical local abnormalities including
orientational deviations (A and B), thickened fissures (C and D) and step deformations (E and F) are marked with red crosses, which are further highlighted using
red arrows on the 3D surfaces. The red dashed rectangle region of Fig. 1(c) will be used later in Fig. 3 for stick derivatives description.

Fig. 2. Decompose a rectangle neighborhood into sticks. Here,
and the remaining sticks can be obtained by mirroring or rotating the

listed ones.

propose to simultaneously probe the fissure profile and its close
neighborhood using three parallel and slightly gapped sticks, see
the triple-stick kernel overlaying fissure image region in Fig. 3.
Here, the central sticks correspond to the single-stick kernels in
Fig. 2. This is also the principle which human observers utilize
to infer the presence of fissures especially for weak and noisy
objects.
To give a mathematical expression, we use , and to

indicate the mean intensity respectively along the middle (red),
left (green) and right (blue) sticks of the kernel, see Fig. 3. The
mean values of intensity are calculated with ,
where is the intensity of the th pixel along each stick. Then,
two nonlinear derivatives perpendicular to the sticks can be de-
fined as

(1)

and

(2)

Fig. 3. Analyzing the performance of the stick derivatives on various pul-
monary tissues. Here, we use the thin, thick and broad lines to depict the
curvilinear structures with width increasing from single-pixel to larger than

. At the top-left, a triple-stick kernel with being the left stick and
the right one is overlayed on a small fissure region from Fig. 1, and the top red
arrows denote its detection locations along various structures. The responses
of derivative operators and line strength measures are listed on the second
and third rows, where H, M and L represent a high, medium and low value,
respectively.

where denotes the spacing between adjacent sticks, is the
orientation angle and the spatial location in the lung. With a
spacing involved in the template, the derivative operators are
less sensitive to partial volume effect and allow the fissures with
varying width or blurred boundaries to be equally well detected.
The main difference between and lies in their
performance on step edges. The former is particularly designed
to enhance the step-shaped abnormal fissures (see Figs. 1E and
1F), while the latter tends to suppress them.
Although the above derivative operators are originally de-

fined on a triple stick kernel, their computation can be simplified
by introducing a spatial shifting scheme, i.e., the and can
be approximated with the middle stick average at displaced
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positions. More clearly, using to denote the 2D coordi-
nates in the cross-section, we have

(3)

and

(4)

Here, the shifting coordinate is chosen depending on the orien-
tation of the middle stick, and a range of is
used for conciseness. In other words, we only need to shift the
first coordinate for roughly vertical sticks and the second one
for approximately horizontal sticks.
To illustrate the performance of and , several

idealized shapes representing different pulmonary tissues are
given in Fig. 3. For both operators, the thin, broken and thick
lines corresponding to normal fissures with different widths will
get a high response; the broad line, which indicates an axial pro-
file of large vessels, will be neglected with a low response. How-
ever, a difference will occur on the step-edge used to depict an
over-thickened fissure: the will get a full response, but
the has a null response. As for the blob-shaped interfer-
ences such as the transversal profile of vessels, both derivatives
will neither give a full response nor a zero response, i.e., obtain
a medium value.
To further suppress the undesired blob shape, we introduce

a second measure equal to the intensity standard deviation
along the middle stick, i.e.,

(5)

Here, indicates an expected value operator and the intensity
of the jth pixel along themiddle stick. The utilization of intensity
variance to detect line edges was inspired by our previous work
[31]. Like the effect of Hessian values in shape description [32],
[33], and also reflect the local contrast along the elliptical
axes while used for geometric representation. Accordingly, two
2D line strength measures, and , can be formulated as

(6)

Here, is a positive coefficient to adjust the sensitivity to axial
intensity inhomogeneity. Obviously, the blob structure will get
a low response for both and due to its large intensity
variation along the stick. On the contrary, all the line structures
will obtain a high response if using a suitable parameter (e.g.,

), see Fig. 3 for details.
2) Multi-Direction Integration: As depicted in Fig. 2, an
rectangular neighborhood can be decomposed into

sticks. Correspondingly, there exist possible orien-
tations for the triple stick templates. We choose the template
with the maximum response of or as the optimal
kernel. Thus, the multiple directional information can be inte-
grated with

(7)

Here, indicates the discrete angle of the th stick around its
rectangular neighborhood. Because we are only interested in
bright objects, only non-negative response values are consid-
ered. Like the vesselness function in [33], and are
equal to a 2D fissure likelihood with their optimal kernel ori-
enting along the fissure profile.
A similar method called the tram-line filter has been pre-

sented early by Hunter et al. [34] for retinal vessel segmenta-
tion. Our DoS method differs from their filter in that we in-
herit a shape description idea from previous curviline filters
[35], which makes it possible to distinguish between various
pulmonary structures.
3) Max-min Cascaded Filtering: From the literature, most

existing fissure filters only handle normal line or plane shaped
fissures. However, as shown in Fig. 1, a typical abnormality
is that the fissure profiles might take a step shape due to
asymmetric intensity across lobes or appear as a thickened
band arising from adjacent condensed vascular tissues (e.g.,
Fig. 1C. In our previous implementation [29], only the
derivative was utilized in fissure likelihood calculation, which
unfortunately takes a low response on these abnormalities and
will finally result in a missed detection.
To handle this problem, we combined the and

of (7) in a cascaded way. The basic principle is that the step-
like or thickened fissure can be first transferred into a standard
thin curvilinear structure by applying the transformation.
Then, with a subsequent operation on the result of the

filter, both normal and abnormal fissures can be equally
well enhanced. Accordingly, the combined filter is written as

(8)

with being the cascading operator, which means the
is applied after the filtering. Due to the effect of ,
the step-shaped deformation as marked in Fig. 1F can now be
treated like a normal fissure. But the thickened fissure with a
width larger than is handled more like two parallel step-
edges, where the responds simultaneously to both its lat-
eral sides, see Fig. 1C for example. For normal fissure profiles,
the operator actually works like a twice iteration of our pre-
vious filter [29], as and take similar perfor-
mance in the cases. Since the has an inherent property on
suppressing broad objects, it is guaranteed that the filtered struc-
tures will take approximately homogeneous thickness (less than

) and thus benefit the morphology analysis in post-processing
segmentation. Here, we do not force a direction consistency be-
tween and kernels, because some local orientation
deviations could be self-corrected through the cascading itera-
tion.
4) Multiple Cross-Sections Integration: In clinical CT scans,

many complex factors exist, such as anisotropic resolution, in-
homogeneous intensity, largely varying shape and orientation,
which make it difficult to completely detect the 3D fissure sur-
face only from a single plane. For instance, in Figs. 1A and 1B,
the fissure patches marked with red crosses take a vague band
appearance due to their orientation running approximately along
the cross-sections. Since the profiles deviate largely from a stan-
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Fig. 4. Applying the cascaded filter with parameters , , and to the LOLA11–12 scan along the Sagittal, Coronal and Axial cross-
sections, respectively. Here, (a) indicates a sagittal slice (No. 347) of the original volume image, (b) and (c) are its results respectively from the Wiemker [19]
and Klinder filters [27]. The responses from the three different orientations and their shape-tuned accumulation are sequentially given in (d)-(g). The red
circles mark the missed fissure regions in the 2D filtered images. (a) Original image (b) Wiemker filter (c) Klinder filter (d) (e) (f) (g) .

dard curvilinear shape, they are suppressed by the filter if
applied to the current plane.
Considering these complex factors, we propose to merge the
responses from multiple cross-sections in different direc-

tions. The idea is to compensate local discontinuity or deforma-
tion by consulting line detection from other cutting planes based
on an implicit 3D co-planar assumption. For example, a fissure
patch might happen to be broken along the axial cross-section,
but its well-developed profiles in the sagittal and coronal planes
still make it a detectable object.
Although there are many choices to achieve multi-section in-

tegration, we adopt a 3D shape-tuned fissureness function, i.e.,

(9)

Here, , and indicate the responses from the axial,
sagittal and coronal cross-sections, respectively, and all have
nonnegative values. Sorting the three responses in

, their ratio can work as a shape description term.
Generally, the 3D fissure patches will respond strongly to at least
two measures across the three orthogonal planes. In contrast,
the interference structures like pulmonary vessels usually pro-
duce at most one single large value due to their unidirectional
property. Based on this, the ratio will take a high value
close to 1 on the planar fissures and typically tends to zero for

undesired tube clutters. Correspondingly, the accumulation of
the three can be considered a structure strength. Therefore,
Eq. (9) is essentially a shape-tuned structure likelihood for 3D
fissures discrimination.
As an example, a sagittal slice from a pulmonary CT scan

and its filtered results are illustrated in Fig. 4. For the 2D re-
sponses, different kinds of openings (false negatives) marked
with red circles can be seen in Figs. 4(d)–4(f), which means
none of the single cross-section filters can obtain a complete
result. But the image in Fig. 4(g) combines them into a
more complete fissure detection. Not only the fissure profiles
have been well enhanced, but also the vascular clutters and blob
interferences (see the green circles in Fig. 4(a)) are saliently sup-
pressed. For comparison, the responses from a Wiemker Hes-
sian filter [19] and a Klinder filter [27] are given in Figs. 4(b) and
4(c), which will be elaborated later in Section IV. Here, both
filters cannot discriminate between fissures and vessel profiles,
and obvious over-detections are seen in Fig. 4(c). Although the
Klinder filter appears to detect a majority of the fissure profiles,
the dense adhering clutters simultaneously increase the diffi-
culty of subsequent segmentation.
In contrast to other template matching methods [16], [18], no

explicit 3D model is involved in our filter. But the curvi-
linear shape constraint across multiple sections can be consid-
ered a realistic simplification of a 3D co-planar assumption and
its obvious merit is a decrease of computational burden. In this
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Fig. 5. Demonstration of post-processing segmentation. Here, a direct bina-
rization of the image is given in (a). Figures (b) and (c) depict the two
single-threshold segmentations of fissures using different thresholds
and 20. The proposed multi-threshold merging result with , 5, 10, 20,
40 and 60 is visualized in (d), and (e) is the interlobar boundary reference.

way, the inherent 3D surface constraint of fissures has been di-
vided into two parts with the 3D connectivity analysis being
migrated towards the subsequent post-processing stage.

B. A Post-Processing Pipeline for Segmentation

Although the proposed DoS filter can efficiently enhance pul-
monary fissures in CT images, a remaining problem is that still
some undesired structures are simultaneously enhanced, making
a simple threshold segmentation unfeasible. This is especially
important when those residual clutters are connected to fissures.
To demonstrate this, a binarization of the filter response
using a global threshold is given in Fig. 5(a): the intensive inter-
feres partially occlude the fissures and make them indiscernible.
As a solution, a relatively simple post-processing pipeline is

presented. Ascribing to the lateral suppression effect of op-
erators, the pulmonary structures have generally been thinned to
a width less than in the filtered image, and the residual clut-
ters are only sparsely linked to the fissure surface at a few loca-
tions, see Fig. 5(a). From this observation, we propose to isolate
the fissure patches from adhering clutters by directly breaking
their connective branch-point or junction regions. Moreover,
considering the inhomogeneity of intensity, a multi-threshold
merging framework is introduced to overlap the isolated fis-
sures from different binarizations for more complete segmenta-
tion. Before the post-processing segmentation, we utilize a lung
mask to eliminate unrelated interferences from neighboring tis-
sues like ribs.
The whole post-processing pipeline consists of five steps

(schematically shown in Fig. 6), and the detailed algorithms
are given as follows:
1) In Step 1, a group of global thresholds is

used to binarize the image. As shown in Fig. 6 there is
no single threshold that yields the complete fissure without
over-segmentation. A relatively low threshold will ex-
tract the complete fissure, but simultaneously lead to more
noise. On the contrary, a high threshold might miss
some weak parts of the fissure (see the gap in ), but less
clutter is selected. We therefore adopt a multi-threshold
framework to accommodate for local intensity variation.

2) We proceed to remove all the branch points from each of
the binarized results. To ensure a complete deletion of 3D
junctions, without breaking the global connectivity of fis-
sure patches, we apply branch removal in 2D sections on
each of the three orthogonal directions successively. As the
fissure patches are essentially 3D plate-like structures, the

removal of local 2D junction regions will seldom affect
their connectivity in 3D. Pulmonary vessels and bronchi,
however, frequently dominate in a single direction, and are
therefore split into small fragments. In detail, we first em-
ploy a 2Dmorphological skeletonization to extract the cen-
terlines of elongated structures on each binarized 2D sec-
tion. Subsequently, using a set of 8-neighborhood look-up
tables to represent the possible branching patterns, all the
branch points along the centerlines can be found with a
simplematch algorithm [36]. A circular region around each
branch point with radius is then removed from the bina-
rized results from step 1.

3) After removal of the branch point regions, the fissure
patches become mostly separated from other structures.
To prevent these structures from relinking to the fissures
in a later step, we remove small components (see the green
short-lines in the dashed rectangle) from each of the 3D
junction-removed images, using a volume threshold
(e.g., 100 voxels for a left or right lung) throughout this
paper. Subsequently, these purified images are merged
into a single binary image using an OR logical operation.
Because junctions and small noisy structures were elimi-
nated beforehand, the isolation of fissure patches is kept
after the merging step.

4) A 3D connected component analysis is used to automat-
ically select the fissure patches as the largest (e.g., 20)
objects, thereby sifting out smaller structures. In Fig. 6, the
selected fissure patches are drawn in black and clutters in
red lines. Instead of component volume more elaborate se-
lection measures may be devised for this step, but we will
show that the volume selection criterion yields satisfactory
results.

5) To complete the post-processing we put the previously re-
moved branch points back, to fill the small holes resulting
from step 2. We only restore those branch points that be-
long to the finally selected patches. This is achieved by di-
lating the current result using a spherical structure element
with radius , and subsequently using this dilated image
as a mask to select branch points (blue solid circles) within
the mask.

To illustrate the merit of the multi-threshold merging
framework, two single-threshold segmentations also using the
branch-point removal and hole-filling strategy are shown in
Figs. 5(b) and 5(c), and the proposed multi-threshold result is
given in Fig. 5(d). Compared to the manual interlobar boundary
reference in Fig. 5(e), both single-threshold methods resulted
into incomplete detection but the missing parts appear to
vary in locations. With the complementarity among different
binarizations, the multi-threshold scheme resulted into more
complete segmentations. Recently, a similar multi-threshold
edge grouping framework was proposed by Papari and Petkov
[37] for 2D contour detection. Although partially inspired
by their idea, our method differs in some critical steps like
branch-point removal, and 3D shape guided clutter pruning.
Our main contribution on the post-processing is to achieve
clutter removal by employing the difference of shape and ge-
ometry between fissure and tube structures. This idea is applied
to pulmonary fissure segmentation probably for the first time.
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Fig. 6. Overall flowchart of the post-processing pipeline. Here, the black curves indicate the real fissures with the red ones being clutters, and the green short lines
denote noisy spurs. The green open circles represent the branch-points caused by adhering spurs and the blue open circles being typical junctions from clutters.
The dashed rectangle marks the removed junctions (solid circles) and small clutters (green short-lines).

Since our method was particularly designed to accommodate
some fissure abnormalities, it is necessary to check its perfor-
mance in experiments. As mentioned before, several typical de-
formations are illustrated in Fig. 1. Here, marks A and B indi-
cate two irregular fissure bands caused by orientation deviation
falling inside the section planes.Mark C andD denote two thick-
ened fissures usually arisen from dense vessel tissues. We use E
and F to depict the step deformations. Obviously, all these local
abnormalities have been well detected like normal fissures, as
seen in the blending images and 3D visualization of fissure sur-
faces. A special case is shown by mark C, where a double line
response occurs along the bright object because the thickened
fissure was actually detected as two parallel step-edges. How-
ever, apart from lobar fissures, there also exist other redundant
planar structures such as accessory fissures and borders of bullae
(see the false positive detection around E). Because our inten-
tion is to preserve the large planar structures, these interference
tissues cannot be expelled without further anatomy and global
shape constraints.

III. DATA AND REFERENCES

We used two datasets for evaluation: Dataset 1 from our
own department, which contains a complete 3D reference; and
Dataset 2 with a limited reference, which is publicly available.

A. Dataset 1

The first dataset contains 23 chest CT scans of Chronic Ob-
structive Pulmonary Disease (COPD) patients (i.e., the GLU-
COLD dataset) from a previous study [38]. The images were
acquired with a Toshiba Aquilion 16 CT scanner using the pa-
rameters: 120 kVp; 140 mAs per rotation; rotation time 0.4 s;
collimation: ; and pitch factor: 1.4375. Images were
reconstructed with a FC02 kernel (FOV of 295–400 mm; slice
thickness 0.5 mm; increment 0.5 mm). Scans were made during
breath hold at full inspiration without contrast media. The pa-
tient group had moderate to severe COPD (GOLD stage II and
III) without antitrypsin deficiency; aged 49–78, and FEV1

between 36% and 87% predicted. The GLUCOLD scans are
used with their left and right lungs being divided.
In previous work [39], we have utilized the GLUCOLD

dataset to verify a lobe segmentation algorithm, where ground
truth lobe segmentations were manually defined by one of the
authors (M.E.B.). With inspection and approval from a pulmo-
nologist (J.S.), the lobe references were gradually refined and
finally established. Specifically, the lobe boundary reference
was manually delineated slice by slice. If the fissure is invisible,
they inferred the boundary from the distribution of pulmonary
vessels and bronchi. Here, we adopt a morphological gradient
operator to automatically extract the interlobar boundaries from
the lobe references, which are directly used as ground truth for
validation of fissure segmentation.
A lungmask is first defined by combining previous lobe refer-

ences. Then, we adopt a model-based region growing algorithm
[40] to extract the large airway and vessel lumen, and a further
morphological dilation to cover its wall. Both lumen and wall
are removed from the final lung mask, which will be used to
confine the post-processing region as described in Section II-B.

B. Dataset 2
Dataset 2 was taken from the LObe and Lung Analysis 2011

(LOLA11) challenge [41], for which 55 volumetric chest CT
scans were acquired from different sites, using several different
scanners, scanning protocols, and reconstruction parameters.
Most scans contain various pathologic abnormalities, ranging
from mild to severe. The inplane resolution is between 0.53
mm and 0.78 mm whereas the slice thickness is between 0.3
mm and 1.5 mm.
The organizers of LOLA11 made a manual segmentation

available of the lung lobes on 9 coronal slices for each case
by two human observers. Both observers were instructed not
to draw a lobar border when they felt it was not possible [15].
Until now, only two groups submitted their lobe segmenta-
tion results to the challenge website (http://www.lola11.com)
without separate fissure segmentation [42], [15]. Because
fissure detection is different from lobe segmentation, we need



XIAO et al.: PULMONARY FISSURE DETECTION IN CT IMAGES USING A DERIVATIVE OF STICK FILTER 1495

specific and more accurate fissure references for evaluation,
especially concerning the determination of visibility and lo-
cation. Therefore, two co-authors (M.E.B. and J.S.) verified
the LOLA11 reference, and removed parts of the fissures that
were not visible on CT and added small visible parts that were
missed in the LOLA11 reference. This was subsequently used
as a ground truth in our experiments.
Here, the lung masks were constructed by firstly extracting

the lung parenchyma with a global threshold binarization, then
a morphological gap-closing operation was used to contain the
small vessels and possible fissure regions. For normal scans, the
above result is sufficient for non-lung interference elimination.
But manual editing is indispensable for pathological cases like
local high-intensity parenchyma and thickened fissures linking
to the lung boundary. Our co-authors (M.E.B. and J.S.) con-
ducted the final inspection and verification. Like the GLUCOLD
dataset, we also removed the large bronchi and large pulmonary
vessels from the lung masks using a region growing algorithm
[40].

IV. EXPERIMENTS AND EVALUATION
In this section, the proposed DoS filter and segmentation al-

gorithms are validated with the above-mentioned data sets and
their references/ground truths. A hybrid coding with Mevislab
[43], Matlab (MathWorks Inc.) and was used for algo-
rithms implementation and validation. The runtime of the DoS
filter for a typical size 3D image is around
810s on our computer, configured with a 2.67 GHz CPU, 24 GB
memory and a 64-bitWindows 7 operating system. For better re-
producibility, the source code (Matlab version) of our filter will
be open and publicly available on the Internet after the publi-
cation. We only considered the interlobar fissures (no accessory
fissures), and the oblique and horizontal fissures in the right lung
were treated as a single object.
As a comparison, a classical unsupervised filter of Wiemker

et al. [19] and an updating line enhancing filter of Klinder et al.
[27] were implemented for fissure enhancement with or without
our proposed post-processing pipeline for final segmentation.
The Wiemker filter is essentially a fissure likelihood function,
which utilizes the Hessian or structure tensor to form a geo-
metric representation of 3D planar shape and a Gaussian in-
tensity windowing term is further merged to select the bright
fissure objects. A single scale voxel is used for Hes-
sian derivatives and eigenvalues calculation in our experiments
following [21]. The Klinder line enhancing filter was presented
as an improvement of the Wiemker filter using a multiple hy-
potheses testing template model. We implemented the Klinder
filter using the same parameters as the original authors [27].

A. Evaluation Criteria
The quantitative evaluation was conducted mainly with Pre-

cision-Recall (PR) measures. Since we defined the references
only for the lobar fissures, correctly detected accessory fissures
would be counted as false positives. To minimize this influence,
we defined a Volume of Interest (VoI) with a 40 mm width band
around each reference, and the quantitative evaluation was con-
fined only to the VoI region. Then, the voxels of the binary
result inside the VoIs are classified as true positive or

Fig. 7. Quantitative evaluation of fissure filtering using the mean Precision-Re-
call curves in the LOLA11 dataset (55 subjects). The proposed DoS filter is
compared with the unsupervised filter of Wiemker (Wmk) [19] and the line en-
hancing filter of Klinder (Kd) [27]. DoS1/Wmk1/Kd1 and DoS2/Wmk2/Kd2
indicate the filters without and with a post-processing clutter removal, respec-
tively. The average AUCs and -scores along with their standard devia-
tions are given sequentially in the brackets of the legends.

false positive depending on their overlap with the refer-
ence. We used a 3 mm tolerance for determining the overlap,
i.e., those with a distance less than 3 mm from the reference are
considered and the rest being . Accordingly, the refer-
ence pixels are divided into and false negative using
the same overlapping criterion, where corresponds to those
located more than 3 mm from the binary result. Note the two
true positive measures and are not always equal. To
avoid the influence of unbalanced number of voxels,
and are defined as and

, respectively. Subsequently, the -score is derived from
these values as .
Note the -score is also known as the Sørensen-Dice coef-
ficient, which indicates a similarity between the segmentation
and reference. To distinguish the over- and under-segmenta-
tion errors, we particularly introduced a False Discovery Rate

and a False Negative Rate
as quantitative indices.

Note that the VoI based evaluation is a realistic scheme to
circumvent the interference of unrelated planar tissues such as
accessory fissures locating far away from the object. Although
false positive responses outside the VoI region are simultane-
ously ignored, they actually have rare influence on typical ap-
plications like lobe segmentation.

B. Evaluation of Fissure Enhancement

The performance of the DoS fissure filtering was evaluated
together with the Wiemker method [19] and Klinder filter [27]
using the Precision-Recall curve. In the validations, we used a
fixed parameter configuration , , for
the DoS filtering. We first binarized the filtered images with dif-
ferent global thresholds gradually changing from minimum to
maximum intensity, then the indices can be calculated without
or with clutter removal, see Section IV-A for the criteria. The
clutter removal was realized using the same branch-point de-
tection and connected component analysis algorithms as our
post-processing pipeline.
In Fig. 7, the PR curves from the LOLA11 data are presented,

where the area under the PR curve (AUC) and the maximum
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Fig. 8. Segmentation validation on the GLUCOLD dataset (23 subjects). Here, the boxplots are calculated with left and right lungs being separated. The -score,
FDR and FNR indices from the DoS (d), Wiemker (w) and Klinder (k) filtering segmentations are given sequentially in (a) and (b). The medians of boxplots are
successively 0.885, 0.853, 0.687, 0.0738, 0.0711, 0.0659, 0.165, 0.234, 0.456 in (a); and 0.856, 0.841, 0.709, 0.0691, 0.0604, 0.0448, 0.204, 0.244, 0.437 in (b).
(a) Left lung (b) Right lung.

-score indices are given in the legends. Without clutters
removal all the filters obtained very low indices, mainly as-
cribing to dense residual of interferences in the filtered images.
The clutter removal largely improved the performance with
the PR curves (DoS2, Wmk2 and Kd2) located entirely above
their corresponding curves (DoS1, Wmk1 and Kd1) without
post-processing. Generally the DoS filter outperformed the
Wiemker and Klinder filters with higher max -scores, al-
though its AUC index is slightly lower after the clutter removal.
Note the -score is the index directly linking to final
optimal segmentation. Therefore, the tendency of PR curves at
the top right corner is of more significant value in performance
evaluation.

C. Validation of Fissure Segmentation
The segmentation performance was validated separately on

the GLUCOLD and LOLA11 data sets. We first enhanced CT
scans using the DoS, Wiemker or Klinder filter, then the multi-
threshold postprocessing pipeline was applied to obtain final
segmentations. A fixed set of thresholds 1, 5, 10, 20, 40 and
60 was used for post-processing of DoS filtered images, and the
intensity of the Wiemker and Klinder filtered images was scaled
to before applying the same multiple threshold binariza-
tions.
1) Dataset 1: Because the GLUCOLD data set contain

fissure references for left and right lungs separately, the
boxplots of -score, FDR and FNR indices are separately
calculated and illustrated. It can be found with the left lungs
in Fig. 8(a) that the proposed DoS scheme obtained a higher
median value and narrower interquartile range (IQR) of the
-scores than the Wiemker and Klinder schemes, and the dif-

ference between methods is more obvious in the FNR boxplots.
For the right lungs in Fig. 8(b), the advantage of our proposed
method appears comparable but the IQRs from the Wiemker
and Klinder methods are slightly smaller compared to the
left lung. In comparison, the higher FNR values indicate that
more references were undetected in the Wiemker and Klinder
methods.
We selected several examples of fissure segmentation re-

spectively corresponding to high FDR, FNR and values for
visual inspection, see Fig. 9. The extracted fissures are rendered
in green, the references in yellow and their overlapped region in
purple. In Figs. 9(a) and 9(d), the residual non-overlapped green
patches, which are considered an over-segmentation, might

originate from accessory fissures or adhering clutters, resulting
in a higher FDR. Because the interlobar boundary references
contain invisible boundaries inferred from indirect informa-
tion, the undetected large yellow regions in Figs. 9(b) and
9(e) might not definitely be visible fissures, but are all counted
under-segmentations in our evaluation and thus raise the FNR
indices to some extent. Two successful segmentations are
shown in Figs. 9(c) and 9(f), where the predominantly purple
areas indicate a high consistency between the segmentation
and reference. As shown in the second row of Fig. 9, the main
shortcoming of Wiemker filtering method is that the under-seg-
mentations appear more serious than the DoS filter, which just
verified its higher FNR indices in Fig. 8. Generally, the Klinder
filter performed worse than the other two filters with more
weak fissures being lost.
2) Dataset 2: Because the LOLA11 references were only

defined on a few coronal slices for each scan, the computation of
quantitative indices is also limited to these sparse slices. Using
the same criteria in Section IV-A, we obtained the indices for
the DoS, Wiemker and Klinder filters based segmentations (see
Fig. 10). The boxplots reveal a decrease in performance with
lower -score, higher FDR and FNR for all the three filtering
methods comparing to GLUCOLD data. But the decline of the
Wiemker scheme is especially salient with a median -score of
0.687 and a median FNR of 0.451. The Klinder filter performed
the worst from the overall indices.
The deteriorated performance in the LOLA11 data comes

from more complex factors like serious pathology, thick slice
spacing, heavy imaging noise and different scanning protocols.
Although the DoS filtering scheme also failed on a few ex-
tremely challenging cases (see the outliers of F1d in Fig. 10),
its general performance is acceptable with a median F1-score of
0.833 and a median FDR of 0.102. The slightly increasing FNRs
indicate that the fissures are more easily missed in the LOLA11
data.
For visual inspection, six scans corresponding to high ,

FDR and FNR values among the DoS filtering segmentations
are chosen for demonstration. We adopt the same rendering
color map as in Fig. 9 (green: detected fissures, yellow: manual
references, and purple: overlap regions). In Figs. 11(a) and
11(b), the dense planar clutters are considered the main sources
of false responses and consequently raise the FDRs as an
over-segmentation error. The obvious yellow stripes indicate
a large missing area of interlobar references in Figs. 11(c) and
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Fig. 9. Demonstration of fissure segmentation in the GLUCOLD data set. The upper row shows the results of the proposed method. Examples corresponding to
high FDR (over-segmentation), FNR (under-segmentation) and F1-score indices are sequentially illustrated in (a)-(c) for the Left lungs and in (d)-(f) for the right
lungs. For comparison, the second row gives the Wiemker filtering segmentations and the third row being the Klinder filtering segmentations. The segmented
fissures are rendered in green color, the manual reference in yellow color and the purple color indicates the overlapping regions.

Fig. 10. Segmentation validation with the LOLA11 data set including 55
scans. The box-plots of indices corresponding to the DoS(d), Wiemker(w) and
Klinder(k) filtering based segmentations are drawn next to each other in terms
of F1-score, FDR and FNR, respectively. Here, the median values of boxplots
are successively 0.833, 0.687, 0.582, 0.102, 0.087, 0.087, 0.242, 0.451 and
0.566.

11(d), and thus resulted in high FNRs. Two examples with
high -score values are given in Figs. 11(e) and 11(f), where
the predominantly purple stripes indicate that the references
are almost completely detected. As the references are slightly
dilated for better visualization, the yellow and purple blending
stripes are caused by small dislocation between the reference
and segmentation. For comparison, the segmentations from the
Wiemker filtering scheme are illustrated on the second row.
Except the comparable results in Figs. 11(g) and 11(l), the
Wiemker scheme resulted in very serious under-segmentations.
The third row corresponds to the Klinder filter based segmen-
tation, where a majority of results appear worse than the above
filters except Fig. 11(n) is comparable to our segmentation.

D. Parameter Configuration

For the DoS filter, there are three parameters including the
spacing width , stick length and interference suppression co-
efficient , that need be configured. Beforehand, we empirically
fixed the spacing width to according to the appearance
of fissures in the clinical images.
The parameter should be chosen to suppress undesirable

blob interferences while accommodating local fissure disconti-
nuity. To verify its influence on fissure segmentation, we com-
puted the -score boxplots of LOLA11 segmentations from
our proposed method using different and a fixed .
It can be seen in Fig. 12(a) that the -score median values are
stable over a large range of with the maximum
locating at . This means the proposed method is not
sensitive to this parameter configuration, and is an op-
timal choice according to the experiments.
The stick length is another important parameter. We cal-

culated the -score boxplots from the LOLA11 data experi-
ments by varying the parameter with a fixed . As
observed in Fig. 12(b), the difference among boxplots is small
for . The maximum of -score medians appears
at , which corresponds to the configuration used in our
paper. Because the computation complexity of DoS filtering is

, a larger will saliently increase the computation time.
Therefore, a small might be a good choice for time crit-
ical applications.
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Fig. 11. Demonstration of fissure segmentation in the LOLA11 data. The upper row shows the results of the proposed method. Examples of high FDR (a-b), FNR
(c-d) and F1-score (e-f) indices are sequentially illustrated, corresponding respectively to case 27, 39, 26, 14, 22 and 41 from left to right. For comparison, the
second row gives the Wiemker filtering segmentations and the third row being the Klinder filtering segmentations. Here, the segmentation results are rendered in
green, the references in yellow and their overlapping regions in purple.

Fig. 12. Box plots of our fissure segmentation with different parameters using
the LOLA11 data. The medians of the boxplots are 0.830, 0.833, 0.830 for

in (a), and 0.824, 0.833, 0.830 for in (b).
(a) Sensitivity of the parameter (b) Stick length .

There are also several parameters in the post-processing
pipeline. In this paper, a fixed set of binarizing thresholds
(1, 5, 10, 20, 40, 60) were chosen for both GLUCOLD and
LOLA11 data. The volume threshold for branch-points
removal is empirically selected to 100 voxels. For the final
interlobar fissure segmentation, we introduced a volume sorting
scheme to pick out the biggest surface patches from the
multi-threshold merging output. A parameter is
adopted for the LOLA11 data containing two lungs, and

for the single left or right lungs of GLUCOLD data.

V. DISCUSSION AND CONCLUSION
We proposed a derivative of stick filter and a post-processing

segmentation pipeline for pulmonary fissures detection in tho-

racic CT images. The principle of our filter originated from an
observation that the 3D surface shape of fissures can be sim-
plified to an equivalent co-linear constraint across multiple sec-
tion planes. An obvious merit is that typical abnormalities in-
cluding thickened fissure, step deformation and orientation de-
viations are well preserved with a distinct nonlinear deriva-
tives combination and shape description. In the post-processing
stage, the 3D continuity of the fissure surface is further exploited
to separate adhering clutters by introducing a branch-point re-
moval algorithm. Our additional contribution is to develop a
multi-threshold merging framework to improve completeness
of fissure detection.
The presented algorithms have been quantitatively evaluated

on two large data sets containing 23 scans of COPD and 55 scans
of different pathological human lungs. Both visual inspection
and Precision-Recall curve analysis showed that the DoS fil-
tering method gives superior results compared to two existing
methods. In the fissure enhancement experiment, the DoS filter
obtained an average -score that was 14% larger than the
Wiemker filter and 25% larger than the Klinder filter. For the fis-
sure segmentation validation, the median -score values from
the proposed method are 0.885, 0.856 and 0.833 for the single
left lung and right lung from the GLUCOLD data, and both
lungs from LOLA11 data, respectively. Generally, the good per-
formance of our method is mainly ascribed to a lower FNR
index, which means the completeness of fissure detection has
been improved with the DoS filter. As far as we know, this is
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the first validation of fissure detection using complete 3D refer-
ences on such large data set.
An inherent limitation with our DoS filter comes from its

interference suppression term formulated on intensity variance
along the stick. Although this term can help to discriminate
most objects from blob clutters, some seriously weak and noisy
fissures, appearing as sparse and slightly bright point-cloud
with a large intensity variance, are incorrectly suppressed and
thus cause an undetection in subsequent segmentation. This
phenomenon was mainly seen in the thick-slice (z-spacing

) and low-dose scans, e.g., LOLA11–06 and 07 data.
Although these extremely weak fissures are still perceptually
visible to our human observers, the computerized recognition
of point-clouds like curvilinear structures remains an open
issue [44]. In the post-processing stage, we adopted a simple
volume sorting scheme for clutter removal. Because accessory
fissures and planar clutters might have similar volumes as
the lobar fissures, they are inevitable to be left over in the
segmentation. This is considered an intrinsic drawback of
direct fissure information based algorithms. In the validation,
we adopted an interlobar boundary reference rather than the
popular visible fissure reference used in previous work. The
reason is that the judgement of visibility on weak fissures is
actually quite inconsistent among different observers and might
cause a large interobserver variability according to our testing.
Correspondingly, our conservative definition of references will
result in a biased increase of False Negative counts but provide
a more objective standard for comparison, since the biases are
equivalent to different algorithms.
As mentioned by previous authors [23], pulmonary fissure

detection and lobe segmentation are two different tasks in spite
of their close connection. Because the interlobar fissures often
appear incomplete, we cannot expect to obtain a full lobe seg-
mentation merely from the fissure detection. This fact is clearly
illustrated in Fig. 9 with lobe fissures overlaying on their inter-
lobar boundary reference. However, a direct application of our
fissure detection algorithms could be quantitative estimation of
fissure integrity [4], which corresponds to the ratio of visible
fissures along the interlobar boundary.
In this paper, only the magnitude of DoS filter responses was

utilized for line shape detection. But their directional field might
provide more stable and continuous information along fissure
profiles. It will be our future work to improve the performance
by merging both magnitude and directional field responses. Ad-
ditionally, our future work will introduce some prediction and
verification mechanisms to improve the cloud-point objects de-
tection on basis of the DoS filter. To achieve further lobe divi-
sion, we will also pursue to automate lobar fissure selection by
integrating pulmonary airway and artery tree locations.
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