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Abstract. In this paper we propose a method to solve nonrigid image
registration through a learning approach, instead of via iterative opti-
mization of a predefined dissimilarity metric. We design a Convolutional
Neural Network (CNN) architecture that, in contrast to all other work,
directly estimates the displacement vector field (DVF) from a pair of
input images. The proposed RegNet is trained using a large set of arti-
ficially generated DVFs, does not explicitly define a dissimilarity met-
ric, and integrates image content at multiple scales to equip the net-
work with contextual information. At testing time nonrigid registration
is performed in a single shot, in contrast to current iterative methods.
We tested RegNet on 3D chest CT follow-up data. The results show that
the accuracy of RegNet is on par with a conventional B-spline registra-
tion, for anatomy within the capture range. Training RegNet with arti-
ficially generated DVFs is therefore a promising approach for obtaining
good results on real clinical data, thereby greatly simplifying the train-
ing problem. Deformable image registration can therefore be successfully
casted as a learning problem.

Keywords: Image registration · Convolutional neural networks · Multi-
scale analysis · Chest CT

1 Introduction

Deformable image registration (DIR) is the task of finding the spatial relation-
ship between two or more images, and is abundantly used in medical image
analysis. Typically, image registration is solved by iteratively optimizing a pre-
defined handcrafted intensity-based dissimilarity metric over the transformation
parameters. The metric represents a model of the intensities encountered in the
image data. Problems may occur when part of the data does not fit the model,
which are typically dealt with by making modifications to the dissimilarity met-
ric. Instead, in this paper we take another approach, where we do not handcraft
such a model, but use a machine learning approach to automatically determine
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what constitutes an accurate registration, i.e. without explicitly defining a dis-
similarity metric. The proposed method is based on regression using Convolu-
tional Neural Networks (CNNs), that directly learns a displacement vector field
(DVF) from a pair of input images.

The idea of learning registration has shown to be promising [1]. Several CNN
regression techniques have been proposed in the context of image registration.
Miao et al. [2] applied CNN regression for rigid 2D-3D registration. Liao et al. [3]
used CNN regression to model a sequence of motion actions for 3D registration.
Their method is iterative (not one shot), and limited to rigid-body transforma-
tions. For nonrigid approaches, Yang et al. [4] predicted the initial momentum
of a 3D LDDMM registration. Eppenhof et al. [5] trained a CNN to predict the
local registration error, without performing a full registration. Related work has
been done in the field of optical flow [6].

In contrast, we propose an end-to-end method that directly predicts the 3D
nonrigid DVF given a fixed and a moving image, without requiring a dissimilarity
metric like conventional methods. The proposed architecture, called RegNet,
analyzes 3D input patches at multiple scales to equip the CNN with contextual
information. Training is based on a wide variety of artificial displacements acting
as the target value in the loss function, while testing is performed on registration
of baseline and follow-up CT images of a patient. At testing time the registration
is performed in a single shot, in contrast to current iterative methods. To the
best of our knowledge this is the first method that solves nonrigid 3D image
registration with CNNs end-to-end, i.e. directly predicting DVFs.

2 Methods

2.1 Network Architecture

The proposed CNN architecture RegNet takes patches from a pair of 3D images
(the fixed image IF and the moving image IM ) as input. The output of RegNet
is a vector of three elements, which is the displacement of the central voxel
of the patch. A full DVF is generated by sliding over the input images. The
DVF is defined as the displacement u(x), mapping points from the fixed image
domain to that of the moving image. The transformation is defined as T (x) =
x + u(x).

For each image we extract patches at original resolution of size 29× 29× 29
voxels. To improve the receptive field of the network, we additionally extract
patches of 54 × 54× 54 voxels, which are downsampled to 27× 27× 27 voxels. In
this way local as well as more global information is incorporated, allowing better
discrimination between anatomical locations and to add contextual information.
The downsampling makes sure there is limited effect on memory consumption
and computational overhead. Similar multi-scale approaches has been shown
effective for segmentation [7]. We thus have four 3D patches as inputs.

We start with three convolutional layers for each input patch separately (late-
fusion) instead of stacking them as channels (early-fusion). The fixed and moving
patches of each resolution are then merged by concatenation. This is followed
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by 2 and 6 convolutional layers for the original resolution and the downsampled
patch, respectively. Max pooling is used on the pipeline of the original resolu-
tion, ensuring spatial correspondence of the activation of the two pipelines before
merging; for every 2 shift of the receptive field of the original resolution only 1
shift should be performed in the low resolution [7]. The two resolution pipelines
are then also concatenated, followed by 4 convolutional layers and two fully con-
nected layers. All convolutional layers use 3× 3× 3 kernels, batch normalization
and ReLu activation. The network architecture is visualized in Fig. 1.

Fig. 1. RegNet design.

Optimization is done using Adam, with a decaying learning rate starting at
0.001 and a decay factor of 1.25 in each epoch, which improved the convergence
rate in our experiments. The loss function is defined as the mean residual distance
between target and estimated DVF: MAE = 1

n

∑n
i=1 |DVF′

i −DVFi|, with DVF′

the prediction of RegNet and DVF the target defined in Sect. 2.2.

2.2 Training

To train our network, synthetic DVFs are generated with varying spatial fre-
quency and amplitude, aiming to represent the range of displacements that can
be seen in real images: (1) Creating a vector field with the size of the input
image (which will act as the moving image) and initializing it with zero vectors;
(2) Randomly selecting P points in the DVF and randomly assigning three val-
ues to the displacement vector in the range [−θ,+θ]; (3) Smoothing the DVF
with a Gaussian kernel with a standard deviation of σ. Low, medium and high
frequency deformations are generated using the settings σ = 35, P = 80, θ = 8;
σ = 25, P = 100, θ = 8; and σ = 20, P = 100, θ = 8, respectively. Transformed
images are generated by applying the DVF to the input image, using cubic
B-spline interpolation, resulting in the fixed image. To allow more accurate sim-
ulation of real images, Gaussian noise with a standard deviation of 5 is finally
added to the images. Examples are available in Fig. 2.
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(a) Low frequency (b) Medium frequency (c) High frequency

Fig. 2. Heat maps of the magnitude of DVFs used for training RegNet.

It is possible to generate plenty of deformations for a single moving image,
but a drawback of this approach is that the moving image is identical in each pair
of input images, as only the fixed image is generated randomly. We therefore also
generate deformed versions of the moving image, based on which new deformed
images are created. The new moving images are generated using low frequency
deformations only, to avoid over-stretching (leading to a blurred appearance).
We use the settings σ = 35, P = 100, θ = 8 and Gaussian noise with a standard
deviation of 3 in this step.

3 Experiments and Results

3.1 Materials

We use data from the SPREAD study [8], which contains 19 pairs of 3D chest
CT images. The dimension of the images is about 446 × 315 × 129 with an
average voxel size of 0.781×0.781×2.5 mm. Patients are between 49 and 78 years
old and for each patient a baseline image and a 30 months follow-up image
are available. For each pair, 100 well-distributed corresponding landmarks were
previously selected semi-automatically at distinctive locations [9]. All images
were resampled to a voxel size of 1 × 1 × 1 mm.

RegNet is written in Theano [10] and Lasagne, artificial DVFs are created
using SimpleITK. Conventional registrations are performed using elastix.

3.2 Experimental Setup and Evaluation

The set of 19 image pairs is divided in a training set of 10 pairs, a validation
set of 2 pairs, and a test set of 7 pairs. 2100 patches per image are randomly
extracted from the lung regions of the training images, using both the baseline
and follow-up images as input for training. For each image in the database we
create 6 different DVFs (3 for a single moving image and 3 other after deforming
that moving image, see Sect. 2.2), resulting in 252, 000 training examples. In
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addition, we applied data augmentation, flipping all patches in the x, y and z
direction and adding Gaussian noise with a standard deviation of 5. In total
we have approximately 1 million patches available for training. The network is
trained for 15 epochs. The validation set was used to monitor overfitting during
training, and to compare with the single-scale and the early-fusion design.

The test set was used in two ways. We first evaluate the ability of the trained
network to register artificially deformed image pairs, which is how RegNet was
trained. This was evaluated using the MAE measure. Second, we apply RegNet
for registration of the real baseline and follow-up CT images, without artifi-
cial deformations. This experiment is evaluated using the set of corresponding
landmarks, where we report their mean Euclidean distance after registration:
TRE = 1

n

∑n
i=1 ‖DVF′

i(xF ) +xF −xM‖2, with xF and xM the landmark loca-
tions. An initial affine registration is performed before applying RegNet, similar
to conventional approaches. We use an intensity-based method (normalized cor-
relation), using 5 resolutions of 1000 iterations each. RegNet is compared with
two conventional B-spline registrations with a final grid spacing of 10 mm: a
version using a single resolution of 2000 iterations, and one using 3 resolutions
of 500 iterations each. As the capture range of our network is certainly less than
half the patch width, we additionally present the TRE of only those points that
are within 8 mm distance after the affine registration (TRE′).

3.3 Results

All quantitative results are given in Table 1. The results on the validation set
show that multi-scale late-fusion RegNet performs better than either single-
scale or early-fusion RegNet. It can be seen that the regression accuracy on
the validation set (MAE) is about 1 mm, showing that RegNet was successfully
trained. The results in the x any y direction are slightly better than that in
the z direction, which can be attributed to the relatively large slice thickness of

Table 1. Quantitative results

Evaluation Method Data Measure Measurex Measurey Measurez

MAE RegNet 1Scale Validation 1.70 ± 1.81 0.56 ± 0.78 0.53 ± 0.71 0.61 ± 0.88

RegNet Early Validation 1.26 ± 1.22 0.41 ± 0.51 0.39 ± 0.48 0.45 ± 0.60

RegNet Validation 1.17 ± 1.10 0.36 ± 0.56 0.38 ± 0.44 0.43 ± 0.49

RegNet Test 1.19 ± 1.17 0.36 ± 0.59 0.40 ± 0.50 0.43 ± 0.51

TRE Affine Test 8.08 ± 7.18 4.21 ± 4.40 3.92 ± 5.64 3.80 ± 4.25

B-spline 1R Test 5.48 ± 7.56 2.47 ± 4.01 2.64 ± 5.71 2.92 ± 4.12

B-spline 3R Test 2.19 ± 6.22 0.67 ± 1.97 1.04 ± 5.07 1.45 ± 3.21

RegNet Test 4.39 ± 7.54 2.19 ± 4.53 1.79 ± 4.83 2.35 ± 4.33

TRE′ Affine Test 5.39 ± 2.25 2.80 ± 2.04 2.70 ± 1.92 2.73 ± 1.93

B-spline 1R Test 2.59 ± 2.28 1.02 ± 1.44 1.09 ± 1.47 1.72 ± 1.56

B-spline 3R Test 1.28 ± 0.94 0.41 ± 0.51 0.42 ± 0.43 1.00 ± 0.86

RegNet Test 1.66 ± 1.26 0.58 ± 0.62 0.64 ± 0.77 1.19 ± 1.10
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our data. The MAE results on the test set confirm that RegNet can successfully
register artificially deformed images with a sub-voxel accuracy.

For the test set we have 685 corresponding landmarks available to compute
the TRE. For TRE′, 503 landmarks are within 8 mm after affine registration.
The results for affine, the two B-spline settings and RegNet are listed in Table 1
and illustrated in Figs. 3 and 4. It can be seen that the multi-resolution B-spline
method overall gives the best performance (TRE results), but RegNet is better
than a single resolution B-spline. When we focus on the points within the capture
range of RegNet (TRE′ results) it can be seen that RegNet performs better than
the single resolution B-spline method, and performs similar to multi-resolution
B-spline. For those landmarks a residual error of 1.7 mm is obtained, which is
sub-voxel with respect to the original resolution. Again, the accuracy in the x
and y direction is slightly better than that in the z direction. Figure 3b shows
a scatter plot of all landmarks after registration with RegNet. RegNet gives
accurate registrations until ∼8mm, which is to be expected due to the patch
size and the fact that RegNet was trained up to θ = 8 mm deformations only.
Figures 4b–d show scatter plots of the landmarks within 8 mm, for the three
directions separately. Example registration results are given in Fig. 5. Inference
time for an image of size 3003 is about 14 s on a Tesla K40.

(a) box-plot (b) Scatter plot for RegNet

Fig. 3. Residual landmark distances, for all landmarks.

(a) box-plot (b) x direction (c) y direction (d) z direction

Fig. 4. Residual landmark distances, for the landmarks in the capture range. (b)–(d)
show scatter plots of RegNet against the ground truth.
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(a) Fixed (b) Affine (c) B-spline 3R (d) RegNet

(e) Affine (f) B-spline 3R (g) RegNet

Fig. 5. Example results (top row) and difference images (bottom row).

4 Discussion and Conclusion

We presented a convolutional neural network (RegNet) for 3D nonrigid image
registration. RegNet can be successfully applied to real world data, after training
on artificially generated displacement vector fields. Tests on artificially deformed
images as well as with intra-patient chest CT data, showed that RegNet achieved
sub-voxel registration performance, for landmarks within the capture range. This
was better than the performance of a conventional single resolution B-spline
registration method, and close to that of a multi-resolution B-spline. When con-
sidering all landmarks, the multi-resolution B-spline method still outperformed
RegNet. In the training phase of RegNet no use was made of (manually anno-
tated) corresponding points, or segmentations for guidance, which are hard to
obtain in large quantities. Synthetic DVFs on the other hand can easily be gen-
erated in bulk, which greatly simplifies the training process.

In our current design the registration capture range is related to the size of the
patches that are shown to the network, and the results show good performance
until 8 mm, but deteriorate after that. The capture range may be enlarged by
the use of larger patches or the addition of more scales to the network. It is also
possible to extend RegNet to a multi-resolution approach, working from even
further downsampled (and smoothed) images than in the current multi-scale
approach, successively upsampling until the original resolution.

For future work, we will perform a sensitivity analysis of a number of impor-
tant parameters of RegNet, like the patch size and its relation to the several
parameters that define the training DVFs (e.g. the maximum magnitude θ).
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We will also train RegNet in other applications besides chest CT, to test the
generalizability of the architecture.

In conclusion, the proposed neural network achieves promising results for
the nonrigid registration of image pairs, using an end-to-end approach. Infor-
mation at multiple scales is integrated in the CNN. After training, deformable
registration is performed in one shot.
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