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1
Introduction

1.1 Medical image registration

Medical imaging has become an indispensable tool in health care for diagnosis,
treatment planning and therapy monitoring. In many cases, medical images are
acquired at different stages of the diagnosis and treatment chain. However, medical
imaging data is often very heterogenous, in that it can be acquired at different
time points (to monitor disease course), or at different imaging devices (providing
complementary information). In many cases, the anatomical structures in the images
may move or deform due to internal movement (e.g. breathing, bladder filling or
cardiac motion) or external function differences between imaging modalities. Also,
in studies across multiple subjects, the anatomical structures of different subjects
may also differ a lot due to inter-individual differences. The main goal of medical
image registration is to find the spatial connection between heterogeneous images or
populations.

With the increasing use of medical imaging in routine clinical care, medical image
registration is an important driver for the development of innovative image analysis
technologies. Application examples are CT screening for lung cancer, atlas-based
segmentation and image-guided interventions [1, 2, 3]. For instance, in CT screening
for lung cancer, follow-up CT scans of the same subject are compared against a

(a) Fixed image (b) Moving image (c) Registered moving image

Figure 1.1: Example of deformable image registration on lung CT images.
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(a) CT image (b) MRI image (c) Registered image

Figure 1.2: Example of CT-MRI registration for target-volume delineation of brain
tumors.

baseline CT scan, and a comparison is performed to assess the tumor changes. Even
though lung CT scans are acquired at more or less standardized respiration stages,
the deformations of the lung can be large. It is essential to register the CT scans to
investigate the tumor development in the lung with respect to normal tissues. Figure
1.1 shows an example of deformable image registration to register a follow-up lung
CT scan to a baseline CT scan. Besides mono-modal image registration, multi-modal
image registration is also used frequently. For example, it can be used to delineate the
target volume of brain tumors for the same patient. An example is shown in Figure
1.2. As CT imaging and MR imaging have different resolution and different tissue
contrast properties, image registration could integrate these sources of information
and provide a better observation of the tumor size change.

In image-guided interventions, for instance image-guided radiation therapy, a
planning CT scan is acquired, based on which a treatment plan is generated. The total
dose in the treatment plan is usually delivered in daily fractions. The treatment, in
particular proton therapy, is sensitive to daily changes in patient setup, the location
and shape of the tumor and target volume, and changes in tissue density along the
proton beam path. These changes can be captured with the acquisition of a daily
CT scan as shown in Figure 1.3. The induced uncertainties by these changes could
dramatically distort the dose distribution compared to the planned dose distribution
[4, 5, 6, 7, 8]. To achieve highest possible accuracy, the planned dose distribution
need therefore be adjusted for the deformations of the tumors over the course of the
treatment, which can be computed by image registration.

The procedure of online adaptive image-guided radiation therapy requires a fast,
online image registration to automatically and efficiently re-contour the target and
organs-at-risk (OARs) of repeat CT scans by establishing the spatial correspondence
with the planning CT scan. Image registration then enables the use of small margins
and high robustness without losing dose coverage. It is of high practical importance
that image registration can be performed on the fly, so that treatment adaptation can
be applied before new intra-fraction motions occur in the patient [9]. Nowadays, the
registration computing time is quite long (usually several minutes), and it is difficult
for image registration to obtain the optimal solution within a few seconds due to the

2
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(a) Planning CT image (b) Daily CT image

Figure 1.3: Example of organ motion in the planned dose distribution for IMPT of
prostate cancer. The prostate and rectum are delineated and represented as a yellow
and red solid line, respectively. The shape change of the prostate can be observed.

complicated cost functions, transformation models and optimization methods.
It would therefore be highly desirable to accelerate the procedure of image

registration, to enable its use in real-time interventions.

1.2 The image registration framework and acceleration approaches

Many approaches can be applied for image registration, such as feature-based image
registration and intensity-based image registration. As intensity-based image registra-
tion is widely used and most algorithms are developed based on it, we focus on this
type of problem in this thesis.

The procedure of intensity-based image registration can be formulated as a para-
metric optimization problem to minimize the dissimilarity between a d-dimensional
fixed image IF and moving image IM :

µ̂= argmin
µ

C (IF , IM ◦Tµ), (1.1)

in which Tµ(x) is a coordinate transformation parameterized by µ. Often used dissimi-
larity measures C for intensity-based image registration include mutual information
(MI), normalized correlation (NC) and the mean squared intensity difference (MSD)
[1, 2, 3]. To account for rotations, translation, global scaling, shrinking and local
deformations that occur in medical images, different transformation models are
adopted including the translation transform, affine transform and B-spline transform.
In particular, complex local deformation models require more degrees of freedom
for the transformation models, and are thus more computationally expensive. Multi-
resolution strategies on both the image data and the transformation model, allow for
a fast and robust image registration [10].

To solve this registration optimization problem, the following iterative scheme is
commonly used:

µk+1 =µk −γk dk , (1.2)

3



where k is the iteration number, γk is the step size at iteration k, and dk is the search
direction in the parameter space. For fast registration methods the search direction dk

as well as the estimation of the step size γk need to be performed with high efficiency.
Gradient descent directions are widely used for the search direction dk . Gradient-

type search directions include steep gradient descent, conjugate gradient descent,
Newton gradient descent and their stochastic variations. Because of the exponential
growth of data and parameter spaces in the past twenty years, the computational
burden eventually became a bottleneck to find the optimal solution. Stochastic
variations of these methods are therefore commonly used with its commendable
properties: efficient implementation, little computational burden per iteration and
overall less computation cost. These type of methods approximate the deterministic
gradient by subsampling the fixed image. However, the inherent drawbacks of
stochastic gradient methods are its slow convergence rate and unstable oscillations
even if sufficient iterations are provided.

To improve the convergence rate, there are two common approaches. One can use
the second order gradient to capture the curvature information of the cost function. A
different option is the use of a preconditioning scheme to transform an ill-conditioned
cost function to a well-conditioned one at the very beginning of the optimization. Both
are well-known for deterministic gradient type methods. For stochastic type gradient
methods, the noise in the curvature calculation or the preconditioner estimation may
amplify the errors, resulting in a slow convergence rate or a failed registration. Besides
this, the calculation of the Hessian or the preconditioner should also be fast, otherwise
the gain in the convergence will be lost. New schemes of fast calculation of the Hessian
or the preconditioner for stochastic type gradient methods are therefore needed.

Besides the acceleration schemes in the calculation of the search direction dk , the
selection of the step size γk is also important. There are two classes of methods to
determine the step size γk : exact and inexact methods. An exact way could be the
conjugate gradient method to determine the step size. An example of an inexact
approximation uses for instance a line search method to find the step size that satisfies
the Wolfe conditions [11]. However, both schemes are developed for deterministic
optimization methods and could not guarantee the convergence of stochastic type
methods. For stochastic methods such as stochastic gradient descent, the step size
is also an important condition to ensure the convergence, which should meet the
following constraints [12, 13, 14, 15],

∞∑
k=1

γk =∞,
∞∑

k=1
γ2

k <∞. (1.3)

A common choice for the step size that satisfies this constraint is a monotonically
non-increasing sequence. Consider the following decay function for the stochastic
methods:

γk = a

(A+k)α
, (1.4)

with a > 0, A ≥ 1, 0 < α ≤ 1, where α = 1 gives a theoretically optimal rate of
convergence [16].

As we can see, in Equation (1.4) the selection of a is important. In medical
image registration, this selection is case-specific for different transformation models

4
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Figure 1.4: An example of runtime in seconds of ASGD for the mutual information
measure and a B-spline transformation model. The blue line is the pure registration
time and the red line the estimation time of the step size. R0 until R3 are the four
resolution levels. The number of transformation parameters for these four resolutions
is around 103, 104, 105 and 106, respectively. It can be seen that the estimation time
for the step size becomes even larger than the registration time.

and different similarity measures. To select a good step size, the magnitude of a
should be not too large, otherwise the estimated optimal value of cost function will
be "bouncing", and not too small, otherwise the convergence will be slow [17, 18].
Choosing a suitable step size therefore is difficult to perform manually. Klein et
al. [15] proposed a method to automatically estimate the step size for adaptive
stochastic gradient descent (ASGD) by considering the distribution of transformations.
This method works for few parameters within a reasonable time, but for a large
number of transformation parameters, i.e. in the order of 105 or higher, the runtime
is unacceptable and the time used in estimating the step size will dominate the
optimization procedure. An example to illustrate this limitation is given in Figure
1.4. This limitation disqualifies ASGD for real-time image registration tasks. A fast
alternative is therefore needed for real-time registration problems.

1.3 Outline of the thesis

The aim of this thesis is to develop novel optimization strategies for fast image registra-
tion. In particular, we address the following specific aims: 1) to investigate strategies
to determine the step-size and search direction to accelerate image registration; 2)
to develop new stochastic schemes for second order gradient optimization methods;
3) to investigate a new time-efficient preconditioner for preconditioned gradient
descent optimization; 4) to validate these novel fast image registration techniques in
the context of online adaptive image-guided radiation therapy. The thesis is further
structured as follows:

Chapter 2 The Adaptive Stochastic Gradient Descent (ASGD) method has been
proposed to automatically choose the optimization step size, but it comes at a
high computational cost, depending on the number of transformation param-
eters. In Chapter 2, we propose a new computationally efficient method (fast

5



ASGD) to automatically determine the step size for gradient descent methods,
by considering the observed distribution of the voxel displacements between
iterations. A relation between the step size and the expectation and variance
of the observed distribution is derived. While ASGD has quadratic complexity
with respect to the transformation parameters, the fast ASGD method only has
linear complexity. Extensive validation has been performed on different datasets
with different modalities, inter/intra subjects, different similarity measures and
transformation models. To perform a large scale experiment on 3D MR brain
data, we have developed efficient and reusable tools to exploit an international
high performance computing facility. This method is already integrated in an
open source deformable image registration package elastix.

Chapter 3 ASGD not only outperforms deterministic gradient descent methods but
also quasi-Newton method in terms of runtime. ASGD, however, only exploits
first-order information of the cost function. In this chapter, we explore a
stochastic quasi-Newton method (s-LBFGS) for non-rigid image registration.
It uses the classical limited memory BFGS method in combination with noisy
estimates of the gradient. Curvature information of the cost function is estimated
once every L iterations and then used for the next L iterations in combination
with a stochastic gradient. The method is validated on follow-up data of 3D chest
CT scans (19 patients), using a B-spline transformation model and a mutual
information metric.

Chapter 4 In case of ill-conditioned problems, ASGD only exhibits sublinear con-
vergence properties. In Chapter 4, we propose an efficient preconditioner
estimation method to improve the convergence rate of ASGD. Based on the
observed distribution of voxel displacements in the registration, we estimate the
diagonal entries of a preconditioning matrix, thus rescaling the optimization
cost function. This makes the preconditioner suitable for stochastic as well as
for deterministic optimization. It is efficient to compute and can be used for
mono-modal as well as multi-modal cost functions, in combination with different
transformation models like the rigid, affine and B-spline models.

Chapter 5 In Chapter 5, we have investigated the performance of the method de-
veloped in Chapter 2, for fast and robust contour propagation in the context
of online-adaptive IMPT for prostate cancer. The planning CT scan and 7-10
repeat CT scans of 18 prostate cancer patients were used in this study. Automatic
contour propagation of repeat CT scans was performed and compared with
manual delineations in terms of geometric accuracy and runtime. Dosimetric
accuracy was quantified by generating IMPT plans using the propagated contours
expanded with a 2-mm (prostate) and 3.5-mm margin (seminal vesicles and
lymph nodes) and calculating coverage based on the manual delineation. A
coverage of V95% ≥ 98% was considered clinically acceptable.

Chapter 6 In Chapter 6, the overall achievements of this thesis are summarized and
discussed.

6
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2
Fast Automatic Step Size Estimation for
Gradient Descent Optimization of Image

Registration

This chapter was adapted from:

Y. Qiao, B. van Lew, B.P.F. Lelieveldt and M. Staring. Fast Automatic Step Size
Estimation for Gradient Descent Optimization of Image Registration, IEEE Trans-
actions on Medical Imaging, Volume 35, Issue 2, Pages 539−549, 2016.
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Abstract

Fast automatic image registration is an important prerequisite for image guided
clinical procedures. However, due to the large number of voxels in an image and the
complexity of registration algorithms, this process is often very slow. Among many
classical optimization strategies, stochastic gradient descent is a powerful method to
iteratively solve the registration problem. This procedure relies on a proper selection
of the optimization step size, which is important for the optimization procedure to
converge. This step size selection is difficult to perform manually, since it depends on
the input data, similarity measure and transformation model. The Adaptive Stochastic
Gradient Descent (ASGD) method has been proposed to automatically choose the
step size, but it comes at a high computational cost, dependent on the number of
transformation parameters.
In this chapter, we propose a new computationally efficient method (fast ASGD) to
automatically determine the step size for gradient descent methods, by considering
the observed distribution of the voxel displacements between iterations. A relation
between the step size and the expectation and variance of the observed distribution
is derived. While ASGD has quadratic complexity with respect to the transformation
parameters, the fast ASGD method only has linear complexity. Extensive validation has
been performed on different datasets with different modalities, inter/intra subjects,
different similarity measures and transformation models. To perform a large scale
experiment on 3D MR brain data, we have developed efficient and reusable tools to
exploit an international high performance computing facility. For all experiments, we
obtained similar accuracy as ASGD. Moreover, the estimation time of the fast ASGD
method is reduced to a very small value, from 40 seconds to less than 1 second when
the number of parameters is 105, almost 40 times faster. Depending on the registration
settings, the total registration time is reduced by a factor of 2.5-7x for the experiments
in this chapter.
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2.1 Introduction
Image registration aims to align two or more images and is an important technique in
the field of medical image analysis. It has been used in clinical procedures including
radiotherapy and image-guide surgery, and other general image analysis tasks, such
as automatic segmentation [19, 2, 3, 20]. However, due to the large number of
image voxels, the large amount of transformation parameters and general algorithm
complexity, this process is often very slow [13]. This renders the technique impractical
in time-critical clinical situations, such as intra-operative procedures.

To accelerate image registration, multiple methods have been developed targeting
the transformation model, the interpolation scheme or the optimizer. Several studies
investigate the use of state-of-the-art processing techniques exploiting multi-threading
on the CPU or also the GPU [21, 22]. Others focus on the optimization scheme that is
used for solving image registration problems [23, 24, 25]. Methods include gradient
descent [26, 27], Levenberg-Marquardt [28, 29], quasi-Newton [30, 31], conjugate
gradient descent [25], evolution strategies [32], particle swarm methods [33, 34], and
stochastic gradient descent methods [35, 15]. Among these schemes, the stochastic
gradient descent method is a powerful method for large scale optimization problems
and has a superb performance in terms of computation time, with similar accuracy
as deterministic first order methods [25]. Deterministic second order methods gave
slightly better accuracy in that study, but at heavily increased computational cost. It
may therefore be considered for cases where a high level of accuracy is required, in a
setting where real-time performance is not needed.

In this study, we build on the stochastic gradient descent technique to solve the
optimization problem of image registration [27]:

µ̂= argmin
µ

C (IF , IM ◦Tµ), (2.1)

in which IF (x) is the d-dimensional fixed image, IM (x) is the d-dimensional moving
image, T (x ,µ) is a parameterized coordinate transformation, and C the cost function
to measure the dissimilarity between the fixed and moving image. To solve this
problem, the stochastic gradient descent method adopts iterative updates to obtain
the optimal parameters using the following form:

µk+1 =µk −γk g̃k , (2.2)

where k is the iteration number, γk the step size at iteration k, g̃k = gk + εk the
stochastic gradient of the cost function, with the true gradient gk = ∂C /∂µk and the
approximation error εk . The stochastic gradient can be efficiently calculated using
a subset of voxels from the fixed image [15] or using simultaneous perturbation
approximation [36]. As shown previously [25], stochastic gradient descent has
superior performance in terms of computation time compared to deterministic gradient
descent and deterministic second order methods such as quasi-Newton, although the
latter frequently obtains somewhat lower objective values. Similar to second order
methods, stochastic gradient descent is less prone to get stuck in small local minima
compared to deterministic gradient descent [37, 38]. Almost-sure convergence of
the stochastic gradient descent method is guaranteed (meaning that it will converge
to the local minimum "with probability 1"), provided that the step size sequence

9



is a non-increasing and non-zero sequence with
∑∞

k=1γk =∞ and
∑∞

k=1γ
2
k <∞ [12].

A suitable step size sequence is very important, because a poorly chosen step size
will cause problems of estimated value "bouncing" if this step size is too large, or
slow convergence if it is too small [17, 18]. Therefore, an exact and automatically
estimated step size, independent of problem settings, is essential for the gradient-based
optimization of image registration. Note that for deterministic quasi-Newton methods
the step size is commonly chosen using an (in)exact line search.

Methods that aim to solve the problem of step size estimation can be categorized in
three groups: manual, semi-automatic, and automatic methods. In 1952, Robbins and
Monro [12] proposed to manually select a suitable step size sequence. Several methods
were proposed afterwards to improve the convergence of the Robbins-Monro method,
which focused on the construction of the step size sequence, but still required manual
selection of the initial step size. Examples include Kesten’s rule [39], Gaivoronski’s rule
[40], and the adaptive two-point step size gradient method [41]. An overview of these
methods can be found here [42, 43]. These manual selection methods, however, are
difficult to use in the practice, because different applications require different settings.
Especially for image registration, different fixed or moving images, different similarity
measures or transformation models require a different step size. For example, it has
been reported that the step size can differ several orders of magnitude between cost
functions [15]. Moreover, manual selection is time-consuming.

Spall [36] used a step size following a rule-of-thumb that the step size times the
magnitude of the gradient is approximately equal to the smallest desired change of µ in
the early iterations. The estimation is based on a preliminary registration, after which
the step size is manually estimated and used in subsequent registrations. This manual
procedure is not adaptive to the specific images, depends on the parameterization µ,
and requires setting an nonintuitive ’desired change’ in µ.

For the semi-automatic selection, Suri [17] and Brennan [18] proposed to use a
step size with the same scale as the magnitude of µ observed in the first few iterations
of a preliminary simulation experiment, in which a latent difference of the step size
between the preliminary experiment and the current one is inevitable. Bhagalia
also used a training method to estimate the step size of stochastic gradient descent
optimization for image registration [44]. First, a pseudo ground truth was obtained
using deterministic gradient descent. Then, after several attempts, the optimal step
size was chosen to find the optimal warp estimates which had the smallest error values
compared with the pseudo ground truth warp obtained in the first step. This method
is complex and time-consuming as it requires training data, and moreover generalizes
training results to new cases.

The Adaptive Stochastic Gradient Descent method (ASGD) [15] proposed by Klein
et al. automatically estimates the step size. ASGD estimates the distribution of the
gradients and the distribution of voxel displacements, and finally calculates the initial
step size based on the voxel displacements. This method works for few parameters
within reasonable time, but for a large number of transformation parameters, i.e. in
the order of 105 or higher, the run time is unacceptable and the time used in estimating
the step size will dominate the optimization [45]. This disqualifies ASGD for real-time
image registration tasks.

In this chapter, we propose a new computationally efficient method, fast ASGD
(hereafter FASGD), to automatically select the optimization step size for gradient
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descent optimization, by deriving a relation with the observed voxel displacement.
This chapter extends a conference chapter [45] with detailed methodology and exten-
sive validation, using many different datasets of different modality and anatomical
structure. Furthermore, we have developed tools to perform extensive validation of
our method by interfacing with a large international computing facility. In Section 2.2,
the method to calculate the step size is introduced. The dataset description is given in
Section 2.3. The experimental setup to evaluate the performance of the new method
is presented in Section 2.4. In Section 2.5, the experimental results are given. Finally,
Section 2.6 and 2.7 conclude the chapter.

2.2 Method
A commonly used choice for the step size estimation in gradient descent is to use a
monotonically non-increasing sequence. In this chapter we use the following decaying
function, which can adaptively tune the step size according to the direction and
magnitude of consecutive gradients, and has been used frequently in the stochastic
optimization literature [12, 16, 13, 35, 43, 40, 14, 42, 15]:

γk = a

(A+ tk )α
, (2.3)

with a > 0, A ≥ 1, 0 < α ≤ 1, where α = 1 gives a theoretically optimal rate of
convergence [16], and is used throughout this chapter. The iteration number is
denoted by k, and tk = max(0, tk−1 + f (−g̃ T

k−1g̃k−2)). The function f is a sigmoid
function with f (0) = 0:

f (x) = fmax − fmin

1− ( fmax/ fmin)e−x/ω
+ fmin, (2.4)

in which fmax determines the maximum gain at each iteration, fmin determines the
maximal step backward in time, and ω affects the shape of the sigmoid function [15].
A reasonable choice for the maximum of the sigmoid function is fmax = 1, which implies
that the maximum step forward in time equals that of the Robbins-Monro method
[15]. It has been proven that convergence is guaranteed as long as tk ≥ 0 [14, 15].
Specifically, from Assumption A4 [14] and Assumption B5 [15], asymptotic normality
and convergence can be assured when fmax > − fmin and ω > 0. In [15] (Equation

(59)) ω= ζ
√

V ar (εT
k εk−1) was used, which requires the estimation of the distribution

of the approximation error for the gradients, which is time consuming. Moreover, a
parameter ζ is introduced which was empirically set to 10%. Setting ω= 10−8 avoids a
costly computation, and still guarantees the conditions required for convergence. For
the minimum of the sigmoid function we choose fmin =−0.8 in this chapter, fulfilling
the convergence criteria.

In the step size sequence {γk }, all parameters need to be selected before the
optimization procedure. The parameter α controls the decay rate; the theoretically
optimal value is 1 [10, 15]. The parameter A provides a starting point, which has
most influence at the beginning of the optimization. From experience [10, 15], A = 20
provides a reasonable value for most situations. The parameter a in the numerator
determines the overall scale of the step size sequence, which is important but difficult to
select, since it is dependent on IF , IM , C and Tµ. The step size can differ substantially
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between resolutions (Figure 4 [15]) and for different cost functions (Table 2 [15]).
This means that the problem of estimating the step size sequence is mainly determined
by a. In this work, we therefore focus on automatically selecting the parameter a in a
less time-consuming manner.

2.2.1 Maximum voxel displacement

The intuition of the proposed step size selection method is that the voxel displacements
should start with a reasonable value and gradually diminish to zero. The incremental
displacement of a voxel x j in a fixed image domain ΩF between iteration k and k +1
for an iterative optimization scheme is defined as

dk (x j ) = T
(
x j ,µk+1

)−T
(
x j ,µk

)
,∀x j ∈ΩF . (2.5)

To ensure that the incremental displacement between each iteration is neither too
big nor too small, we need to constrain the voxel’s incremental displacement dk

into a reasonable range. We assume that the magnitude of the voxel’s incremental
displacement dk follows some distribution, which has expectation E ||dk || and variance
V ar ||dk ||, in which ‖ · ‖ is the `2 norm. For a translation transform, the voxel
displacements are all equal, so the variance is zero; for non-rigid registration, the
voxel displacements vary spatially, so the variance is larger than zero. To calculate
the magnitude of the incremental displacement ||dk ||, we use the first-order Taylor
expansion to make an approximation of dk around µk :

dk ≈ ∂T

∂µ

(
x j ,µk

) · (µk+1 −µk
)= J j

(
µk+1 −µk

)
, (2.6)

in which J j = ∂T
∂µ

(
x j ,µk

)
is the Jacobian matrix of size d×|µ|. Defining Mk (x j ) = J (x j )gk

and combining with the update rule µk+1 =µk −γk gk , dk can be rewritten as:

dk (x j ) ≈−γk J (x j )gk =−γk Mk (x j ). (2.7)

For a maximum allowed voxel displacement, Klein [15] introduced a user-defined
parameter δ, which has a physical meaning with the same unit as the image dimensions,
usually in mm. This implies that the maximum voxel displacement for each voxel
between two iterations should be not larger than δ: i.e ‖dk (x j )‖ ≤ δ,∀x j ∈ΩF . We can
use a weakened form for this assumption:

P (‖dk (x j )‖ > δ) < ρ, (2.8)

where ρ is a small probability value often 0.05. According to the Vysochanskij Petunin
inequality [46], for a random variable X with unimodal distribution, mean µ and
finite, non-zero variance σ2, if λ>p

(8/3), the following theorem holds:

P (|X −µ| ≥λσ) ≤ 4

9λ2 . (2.9)

This can be rewritten as:

P (µ−2σ≤ x ≤µ+2σ) ≈ 0.95. (2.10)
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Based on this boundary, we can approximate Equation (2.8) with the following
expression:

E
∥∥dk (x j )

∥∥+2
√

V ar
∥∥dk (x j )

∥∥≤ δ. (2.11)

This is slightly different from the squares used in Equation (42) in [15], which avoids
taking square roots for performance reasons. In this chapter we are interested in the
incremental displacements, not its square. Combining with Equation (2.7), we obtain
the relationship between step size and maximum voxel displacement as follows:

γk

(
E

∥∥Mk (x j )
∥∥+2

√
V ar

∥∥Mk (x j )
∥∥)

≤ δ. (2.12)

2.2.2 Maximum step size for deterministic gradient descent

From the step size function γ(k) = a/(k + A)α, it is easy to find the maximum step size
γmax = γ(0) = a/Aα, and the maximum value of a, amax = γmax Aα. This means that
the largest step size is taken at the beginning of the optimization procedure for each
resolution. Using Equation (2.12), we obtain the following equation of amax:

amax = δAα

E‖M0(x j )‖+2
√

V ar‖M0(x j )‖ . (2.13)

For a given δ, the value of a can be estimated from the initial distribution of M0 at the
beginning of each resolution.

2.2.3 Noise compensation for stochastic gradient descent

The stochastic gradient descent method combines fast convergence with a reasonable
accuracy [25]. Fast estimates of the gradient are obtained using a small subset of the
fixed image voxels, randomly chosen in each iteration. This procedure introduces noise
to the gradient estimate, thereby influencing the convergence rate. This in turn means
that the optimal step size for stochastic gradient descent will be different compared
to deterministic gradient descent. When the approximation error ε= g − g̃ increases,
the search direction g̃ is more unpredictable, thus a smaller and more careful step
size is required. Similar to [15] we assume that ε is a zero mean Gaussian variable
with small variance, and we adopt the ratio between the expectation of the exact and
approximated gradient to modify the step size amax as follows:

η= E‖g‖2

E‖g̃‖2 = E‖g‖2

E‖g‖2 +E‖ε‖2 . (2.14)

2.2.4 Summary and implementation details

2.2.4.1 The calculation of amax for exact gradient descent

The cost function used in voxel-based image registration usually takes the following
form:

C (µ) = 1

|ΩF |
∑

x j ∈ΩF

Ψ
(
IF (x j ), IM (T (x j ,µ))

)
, (2.15)
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in which Ψ is a similarity measure, ΩF is a discrete set of voxel coordinates from the
fixed image and |ΩF | is the cardinality of this set. The gradient g of this cost function
is:

g = ∂C

∂µ
= 1

|ΩF |
∑

x j ∈ΩF

∂T ′

∂µ

∂IM

∂x

∂Ψ

∂IM
. (2.16)

The reliable estimate of amax relies on the calculation of the exact gradient. We
obtain a trade-off between the accuracy of computing g with its computation time,
by randomly selecting a sufficiently large number of samples from the fixed image.
Specifically, to compute (2.16) we use a subset Ω1

F ⊂ΩF of size N1 equal to the number
of transformation parameters P = |µ|.

Then, J j = ∂T
∂µ

(
x j ,µk

)
is computed at each voxel coordinate x j ∈Ω1

F . The expecta-
tion and variance of ‖M0(x j )‖ can be calculated using the following expressions:

E‖M0(x j )‖ = 1

N1

∑
x j ∈Ω1

F

‖M0(x j )‖, (2.17)

V ar‖M0(x j )‖ = 1
N1−1

∑
x j ∈Ω1

F

(‖M0(x j )‖−E‖M0(x j )‖)2 . (2.18)

2.2.4.2 The calculation of η

The above analysis reveals that the noise compensation factor η also influences
the initial step size. This factor requires computation of the exact gradient g and
the approximate gradient g̃ . Because the computation of the exact gradient using
all voxels is too slow, uniform sampling is used, where the number of samples is
determined empirically as N2 = min(100000, |ΩF |). To obtain the stochastic gradient g̃ ,
we perturb µ by adding Gaussian noise and recompute the gradient, as detailed in
[15].

2.2.4.3 The final formula

The noise compensated step size is obtained using the following formula:

a = η δAα

E‖M0(x j )‖+2
√

V ar‖M0(x j )‖ . (2.19)

In summary, the gradient g is first calculated using Equation (2.16), and then the
magnitude M0(x j ) is computed at each voxel x j , finally amax is obtained. In step 2,
the noise compensation η is calculated through the perturbation process. Finally, a is
obtained through Equation (2.19).

2.2.5 Performance of proposed method

In this section, we compare the time complexity of the fast ASGD method with the
ASGD method. Here we only give the final formula of the ASGD method, for more
details see reference [15]. The ASGD method uses the following equation:

amax= δAα

σ
min

x j ∈Ω1
F

[
Tr (J j C J ′j )+2

p
2‖J j C J ′j ‖F

]− 1
2
, (2.20)
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where σ is a scalar constant related to the distribution of the exact gradient g [15],
C = 1

|Ω1
F |2

∑
j J ′j J j is the covariance of the Jacobian, and ‖ · ‖F denotes the Frobenius

norm.
From Equation (2.13), the time complexity of FASGD is dominated by three terms:

the Jacobian J (x j ) with size d×P , the gradient g of size P , and the number of voxels N1

from which the expectation and variance of M0 are calculated. The matrix computation
M0(x j ) = J (x j )g requires d×P multiplications and additions for each of the N1 voxels x j ,
and therefore the time complexity of the proposed method is O (d N1P ). The dominant
terms in Equation (2.20) are the Jacobian (size d ×P) and its covariance matrix C
(size P ×P). Calculating J j C J ′j from right to left requires d ×P 2 multiplications and
additions for C J ′j and an additional d 2 ×P operations for the multiplication with the
left-most matrix J j . Taking into account the number of voxels N1, the time complexity
of the original ASGD method is therefore O (N1×(d×P 2+d 2×P )) =O (d N1P 2), as P À d .
This means that FASGD has a linear time complexity with respect to the dimension of
µ, while ASGD is quadratic in P .

For the B-spline transformation model, the size of the non-zero part of the Jacobian
is much smaller than the full Jacobian, i.e. only d ×P2, where P2 is determined by the
B-spline order used in this model. For a cubic B-spline transformation model, each
voxel is influenced by 4d control points, so P2 = 42 = 16 in 2D and P2 = 43 = 64 in 3D. For
the fast ASGD method the time complexity reduces to O (d N1P2) for the cubic B-spline
model. However, as the total number of operations for the calculation of J j C J ′j is still
d ×P2 ×P , the time complexity of ASGD is O (d N1P2P ). Since P À N1 ≥ P2 > d , the
dominant term of FASGD becomes the number of samples N1, while for ASGD it is still
a potentially very large number P .

2.3 Data sets

In this section we describe the data sets that were used to evaluate the proposed
method. Data sets were chosen to represent a broad category of use cases, i.e.
mono-modal and multi-modal, intra-patient as well as inter-patient, from different
anatomical sites, and having rigid as well as nonrigid underlying deformations. The
overview of all data sets is presented in Table 2.1.

2.3.1 RIRE brain data – multi-modality rigid registration

The Retrospective Image Registration Evaluation (RIRE) project provides multi-modality
brain scans with a ground truth for rigid registration evaluation [47]. These brain scans
were obtained from 9 patients, where we selected CT scans and MR T1 scans. Fiducial
markers were implanted in each patient, and served as a ground truth. These markers
were manually erased from the images and replaced with a simulated background
pattern.

In our experiments, we registered the T1 MR image (moving image) to the CT
image (fixed image) using rigid registration. At the website of RIRE, eight corner
points of both CT and MR T1 images are provided to evaluate the registration accuracy.

2.3.2 SPREAD lung data – intra-subject nonrigid registration

During the SPREAD study [48], 3D lung CT images of 19 patients were scanned
without contrast media using a Toshiba Aquilion 4 scanner with scan parameters: 135
kVp; 20 mAs per rotation; rotation time 0.5 s; collimation: 4 × 5 mm. Images were
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reconstructed with a standardized protocol optimized for lung densitometry, including
a soft FC12 kernel, using a slice thickness of 5 mm and an increment of 2.5 mm, with
an inplane resolution of around 0.7 × 0.7 mm. The patient group, aging from 49 to
78 with 36%-87% predicted FEV1 had moderate to severe COPD at GOLD stage II and
III, without α1 antitrypsin deficiency.

One hundred anatomical corresponding points from each lung CT image were
semi-automatically extracted as a ground truth using Murphy’s method [49]. The
algorithm automatically finds 100 evenly distributed points in the baseline, only at
characteristic locations. Subsequently, corresponding points in the follow-up scan are
predicted by the algorithm and shown in a graphical user interface for inspection and
possible correction. More details can be found in [50].

2.3.3 Hammers brain data – inter-subject nonrigid registration

We use the brain data set developed by Hammers et al. [51], which contains MR
images of 30 healthy adult subjects. The median age of all subjects was 31 years
(range 20 ∼ 54), and 25 of the 30 subjects were strongly right handed as determined
by routine pre-scanning screening. MRI scans were obtained on a 1.5 Tesla GE Sigma
Echospeed scanner. A coronal T1 weighted 3D volume was acquired using an inversion
recovery prepared fast spoiled gradient recall sequence (GE), TE/TR/NEX 4.2 msec
(fat and water in phase)/15.5 msec/1, time of inversion (TI) 450 msec, flip angle
20Âř, to obtain 124 slices of 1.5 mm thickness with a field of view of 18×24 cm with a
192×256 matrix [52]. This covers the whole brain with voxel sizes of 0.94×0.94×1.5
mm3. Images were resliced to create isotropic voxels of 0.94×0.94×0.94 mm3, using
windowed sinc interpolation.

Each image is manually segmented into 83 regions of interest, which serve as
a ground truth. All structures were delineated by one investigator on each MRI in
turn before the next structure was commenced, then a separate neuroanatomically
trained operator evaluated each structure to ensure that consensus was reached for
the difficult cases. In our experiment, we performed inter-subject registration between
all patients. Each MR image was treated as a fixed image as well as a moving image, so
the total number of registrations for 30 patients was 870 for each particular parameter
setting.

2.3.4 Ultrasound data – 4D nonrigid registration

We used the 4D abdominal ultrasound dataset provided by Vijayan et al. [53], which
contains 9 scans from three healthy volunteers at three different positions and angles.
Each scan was taken over several breathing cycles (12 seconds per cycle). These scans
were performed on a GE Healthcare vivid E9 scanner by a skilled physician using an
active matrix 4D volume phased array probe.

The ground truth is 22 well-defined anatomical landmarks, first indicated in the
first time frame by the physician who acquired the data, and then manually annotated
in all 96 time frames by engineers using VV software [54].

2.4 Experiment setup

In this section, the general experimental setup and the evaluation measurements are
presented and more details about the experimental environment are given.
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2.4.1 Experimental setup

The experiments focus on the properties of the fast ASGD method in terms of
registration accuracy, registration runtime and convergence of the algorithm. We
will compare the proposed method with two variants of the original ASGD method.
While for FASGD fmin and ω are fixed, the ASGD method automatically estimates them.
For a fair comparison, a variant of the ASGD method is included in the comparison,
that sets these parameters to the same value as FASGD: fmin =−0.8 and ω= 10−8. In
summary, three methods are compared in all the experiments: the original ASGD
method that automatically estimates all parameters (ASGD), the ASGD method with
default settings only estimating a (ASGD′) and the fast ASGD method (FASGD). The
fast ASGD method has been implemented using the C++ language in the open
source image registration toolbox elastix [10], where the ASGD method is already
integrated.

To thoroughly evaluate FASGD, a variety of imaging problems including different
modalities and different similarity measures are considered in the experiments. Specifi-
cally, the experiments were performed using four different datasets, rigid and nonrigid
transformation models, inter/intra subjects, four different dissimilarity measures and
three imaging modalities. The experiments are grouped by the experimental aim:
registration accuracy in Section 2.5.1, registration time in Section 2.5.2 and algorithm
convergence in Section 2.5.3. The RIRE brain data is used for the evaluation of rigid
registration. The SPREAD lung CT data is especially used to verify the performance of
FASGD on four different dissimilarity measures, including the mean squared intensity
difference (MSD) [2], normalized correlation (NC) [2], mutual information (MI) [27]
and normalized mutual information (NMI) [55]. The Hammers brain data is intended
to verify inter-subject registration performance. The ultrasound data is specific for
4-dimensional medical image registration, which is more complex. An overview of the
experimental settings is given in Table 2.1.

For the evaluation of the registration accuracy, the experiments on the RIRE
brain data, the SPREAD lung CT data and the ultrasound abdominal data, were
performed on a local workstation with 24 GB memory, Linux Ubuntu 12.04.2 LTS
64 bit operation system and an Intel Xeon E5620 CPU with 8 cores running at 2.4
GHz. To see the influence of the parameters A and δ on the registration accuracy,
we perform an extremely large scale experiment on the Hammers brain data using
the Life Science Grid (lsgrid) [56], which is a High Performance Computing (HPC)
facility. We tested all combinations of the following settings: A ∈ {1.25,2.5, . . . ,160,320},
δ ∈ {0.03125,0.0625, . . . ,128,256} (in mm) and k ∈ {250,2000}. This amounts to 252
combinations of registration settings and a total of 657,720 registrations, see Table 2.1.
Each registration requires about 15 minutes of computation time, which totals about
164,000 core hours of computation, i.e ∼19 years, making the use of an HPC resource
essential. With the lsgrid the run time of the Hammers experiment is reduced to 2-3
days. More details about the lsgrid are given in the Appendix.

For a fair comparison, all timing experiments were carried out on the local
workstation. Timings are reported for all the registrations, except for the Hammers
data set, where we only report timings from a subset. From Equation (2.19), we
know that the runtime is independent of the parameters A and δ. Therefore, for the
Hammers data, we used A = 20 and δ equal to the voxel size. We randomly selected
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100 out of the 870 registrations, as a sufficiently accurate approximation.
The convergence of the algorithms is evaluated in terms of the step size, the

Euclidean distance error and the cost function value, as a function of the iteration
number.

All experiments were done using the following routine: (1) Perform a linear
registration between fixed and moving image to get a coarse transformation T0, using
a rigid transformation for the RIRE brain data, an affine transformation for the SPREAD
lung CT data, a similarity transformation rigid plus isotropic scaling for the Hammers
brain data, and no initial transformation for the 4D ultrasound data; (2) Perform a
non-linear cubic B-spline based registration [57] for all datasets except the RIRE data
to get the transformation T1. For the ultrasound data, the B-spline transformation
model proposed by Metz et al. [58] is used, which registers all 3D image sequences
in a group-wise strategy to find the optimal transformation that is both spatially and
temporally smooth. A more detailed explanation of the registration methodology is in
[53]; (3) Transform the landmarks or moving image segmentations using T1 ◦T0; (4)
Evaluate the results using the evaluation measures defined in Section 2.4.2.

For each experiment, a three level multi-resolution strategy was used. The Gaussian
smoothing filter had a standard deviation of 2, 1 and 0.5 mm for each resolution. For
the B-spline transformation model, the grid size of the B-spline control point mesh
is halved in each resolution to increase the transformation accuracy [57]. We used
K = 500 iterations and 5000 samples, except for the ultrasound experiment where we
used 2000 iterations and 2000 samples according to Vijayan [53]. We set A = 20 and δ

equal to the voxel size (the mean length of the voxel edges).

2.4.2 Evaluation measures

Two evaluation measures were used to verify the registration accuracy: the Euclidean
distance and the mean overlap. The Euclidean distance measure is given by:

ED = 1

n

n∑
i=1

‖T (p i
F )−p i

M‖, (2.21)

in which p i
F and p i

M are coordinates from the fixed and moving image, respectively.
For the RIRE brain data, 8 corner points and for the SPREAD data 100 corresponding
points are used to evaluate the performance. For the 4D ultrasound image, we adopt
the following measure from [53]:

ED =
(

1

τ−1

∑
t
‖pt −Tt (q)‖2

) 1
2

, (2.22)

in which pt = 1/J
∑

j pt j and pt j is a landmark at time t placed by observer j , q =
1/τ

∑
t St (pt ) is the mean of landmarks after inverse transformation.

The mean overlap of two segmentations from the images is calculated by the Dice
Similarity Coefficient (DSC) [13]:

DSC = 1

R

∑
r

2|Mr ∩Fr |
|Mr |+ |Fr |

, (2.23)

in which r is a labelled region and R = 83 the total number of regions for the Hammers
data.
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Figure 2.1: Euclidean distance error in mm for the RIRE brain data performed using
MI.

To assess the registration accuracy, a Wilcoxon signed rank test (p = 0.05) for the
registration results was performed. For the SPREAD data, we first obtained the mean
distance error of 100 points for each patient and then performed the Wilcoxon signed
rank test to these mean errors.

Registration smoothness is assessed for the SPREAD experiment by measuring the
determinant of the spatial Jacobian of the transformation, J = |∂T /∂x | [59]. Because
the fluctuation of J should be relatively small for smooth transformations, we use the
standard deviation of J to represent smoothness.

The computation time is determined by the number of parameters and the number
of voxels sampled from the fixed image. For a small number of parameters the
estimation time can be ignored, and therefore we only provide the comparison for the
B-spline transformation. Both the parameter estimation time and pure registration
time were measured, for each resolution.

2.5 Results

2.5.1 Accuracy results

In this section, we compare the registration accuracy between ASGD, ASGD′ and
FASGD.

2.5.1.1 RIRE brain data

The results shown in Figure 2.1 present the Euclidean distance error of the eight corner
points from the brain images. The median Euclidean distance before registration is
21.7 mm. The result of the FASGD method is very similar to the ASGD method: median
accuracy is 1.6, 1.6 and 1.7 mm for ASGD, ASGD′ and FASGD, respectively. The p
value of the Wilcoxon signed rank test of FASGD compared with ASGD and ASGD′ is
0.36 and 0.30, respectively, indicating no statistical difference.

2.5.1.2 SPREAD lung CT data

Table 2.2 shows the median of the mean Euclidean distance error of the 100 corre-
sponding points of 19 patients for four different similarity measures. Compared with
ASGD, FASGD has a significant difference for MSD, MI and NMI, but the median error
difference is smaller than 0.03 mm.
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Initial ASGD ASGD′ FASGD
MSD 3.62 1.09 1.10 × 1.12 † ‡
NC 3.56 1.50 1.51 † 1.55××
MI 3.17 1.65 1.65 † 1.66 † ‡
NMI 3.17 1.66 1.65 × 1.68 † ‡

Table 2.2: The median Euclidean distance error (mm) for the SPREAD lung CT data.
The symbols † and ‡ indicate a statistically significant difference with ASGD and ASGD′,
respectively. × denotes no significant difference.
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Figure 2.2: The difference of Euclidean distance error in mm compared to ASGD
for the SPREAD lung CT data. The two numbers on the top of each box denote the
number of the landmark errors larger (left) and smaller (right) than 2 and -2 mm,
respectively. All those landmarks, except one for NMI, belong to the same patient.

To compare FASGD and ASGD′ with ASGD we define the Euclidean landmark error
difference as ∆EDi = EDFASGD

i −EDASGD
i , for each landmark i , and similarly for ASGD′.

This difference is shown as a box plot in Figure 2.2. Negative numbers mean that
FASGD is better than ASGD, and vice versa. It can be seen that both ASGD′ and FASGD
provide results similar to ASGD, for all tested cost functions. The spread of the ∆ED
box plot for ASGD′ is smaller than that of FASGD, as this method is almost identical to
ASGD.
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Figure 2.3: Box plots of the standard deviation of the Jacobian determinant J for the
four similarity measures.

Smoothness of the resulting transformations is given in Figure 2.3 for all similarity
measures. FASGD generates somewhat smoother transformations over ASGD and
ASGD′ for the MSD, MI and NMI measures.

2.5.1.3 Hammers brain data

In this experiment, FASGD is compared with ASGD and ASGD′ in a large scale
intersubject experiments on brain MR data, for a range of values of A, δ and the
number of iterations K .

Figure 2.4 shows the overlap results of the 83 brain regions. Each square represents
the median DSC result of 870 brain image registration pairs for a certain parameter
combination of A, δ and K . These results show that the original ASGD method has a
slightly higher DSC than FASGD with the same parameter setting, but the median DSC
difference is smaller than 0.01. Note that the dark black color indicates DSC values
between 0 and 0.5, i.e. anything between registration failure and low performance.
The ASGD and ASGD′ methods fail for δ≥ 32 mm, while FASGD fails for δ≥ 256 mm.

2.5.1.4 Ultrasound Abdomen data

The results shown in Figure 2.5 present the Euclidean distance of 22 landmarks from
ultrasound images after nonrigid registration. The median Euclidean distance before
registration is 3.6 mm. The result of FASGD is very similar to the original method. The
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Figure 2.4: Median dice overlap after registration of the Hammers brain data, as a
function of A and δ. A high DSC indicates better registration accuracy. Note that in
this large scale experiment, each square represents 870 registrations, requiring about
870×15 minutes of computation, i.e. almost 200 core hours.
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Figure 2.5: Euclidean distance in mm of the registration results for Ultrasound data
performed using MI.

p value of the Wilcoxon signed rank test of FASGD compared with ASGD and ASGD′ is
0.485 and 0.465, respectively, indicating no statistical difference.

2.5.2 Runtime results

In this section the runtime of the three methods, ASGD, ASGD′ and FASGD is compared.
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Figure 2.6: Runtime of SPREAD lung CT data in seconds. The black, green and red
bar indicate estimation time, pure registration time and total time elapsed in each
resolution, respectively. R1, R2, R3 indicate a three level multi-resolution strategy
from low resolution to high resolution.

2.5.2.1 SPREAD lung CT data

The runtime on SPREAD lung CT data is shown in Figure 2.6, in which the time used
in the estimations of the original method takes a large part of the total runtime per
resolution, while FASGD consumes only a small fraction of the total runtime. From
resolution 1 (R1) to resolution 3 (R3), the number of transformation parameters
P increases from 4×103 to 9×104. For both ASGD and ASGD′ the estimation time
increases from 3 seconds in R1 to 40 seconds in R3. However, FASGD maintains a
constant estimation time of no more than 1 second.

2.5.2.2 Hammers brain data

The runtime result of the Hammers brain data is shown in Figure 2.7. For this dataset,
P ≈ 1.5×105 in R3, i.e. larger than for the SPREAD data, resulting in larger estimation
times. For ASGD and ASGD′ the estimation time in the third resolution is almost 95
seconds, while for FASGD it is almost 2 orders of magnitude smaller (≤ 1s).
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Figure 2.7: Runtime of Hammers brain data experiment in seconds. The black, green
and red bar indicate estimation time, pure registration time and total time elapsed
in each resolution, respectively. R1, R2, R3 indicate a three level multi-resolution
strategy from low resolution to high resolution.
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Figure 2.8: Runtime of Ultrasound data experiment in seconds. The black, green and
red bar indicate estimation time, pure registration time and total time elapsed in each
resolution, respectively. R1, R2, R3 indicate a three level multi-resolution strategy
from low resolution to high resolution.

2.5.2.3 4D ultrasound data

The grid spacing of B-spline control points used in the 4D ultrasound data experiment
is 15× 15× 15× 1 and the image size is 227× 229× 227× 96, so the total number of
B-spline parameters for the third resolution R3 is around 8.7×105. From the timing
results in Figure 2.8, the original method takes almost 1400 seconds, i.e. around 23
minutes, while FASGD only takes 40 seconds.

Figure 2.9 presents the runtime of estimating amax and η for the ultrasound data.
The estimation of η takes a constant time during each resolution, so for small P the
estimation of η dominates the total estimation time.

2.5.3 Convergence

From each of the four experiments, we randomly selected one patient and analyzed
the step size sequence {γk }. The results are presented in Figure 2.10 and show that
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Figure 2.9: Runtime in seconds of FASGD for ultrasound experiment. The left bar
indicate estimation time of amax and the right bar is the estimation time of η. R1,
R2, R3 indicate a three level multi-resolution strategy from low resolution to high
resolution.

FASGD takes a larger step size than ASGD and ASGD′ for rigid registration and a
smaller step size for nonrigid registration, when using the same δ. In addition, the
original ASGD and ASGD′ take a very similar step size in all experiments even when
ASGD′ uses the default settings for fmin and ω.

Convergence results of the three methods are presented in Figure 2.11 for several
patients. Figure 2.11a and 2.11b present the Euclidean distance (mm) at each iteration
for three resolutions with respect to the iteration number. The cost function values are
shown in Figure 2.11c and 2.11d. The three methods behave similarly.

2.6 Discussion

All experiments in this chapter show that the fast ASGD method works well both
in rigid and nonrigid image registration, showing that the method can deal with
differently parameterized transformations. The method was thoroughly evaluated on
a variety of imaging problems, including different modalities such as CT, MRI and
ultrasound, intra and inter subject registration, and different anatomical sites such
as the brain, lung and abdomen. Various image registration settings were tested,
including four popular similarity measures. A very large scale experiment investigated
the sensitivity of the methods to the parameters A and δ.

All experiments show that FASGD has similar accuracy as the ASGD method. For the
rigid registration on the RIRE data and the nonrigid 4D ultrasound experiment there
was no significant statistical difference. For the nonrigid SPREAD lung CT experiment
and the Hammers brain data we observed statistically significant differences, however,
these differences were very small: on average less than 0.03 mm on the SPREAD data
(less than 5% of the voxel size), and less than 0.01 Dice overlap on brain data. We
conclude that FASGD obtains a very similar registration accuracy as the original ASGD
method.

All results indicate that there is little difference between ASGD and ASGD′. Espe-
cially from Figure 2.10 it can be observed that both methods take very similar step size
during the optimization, as well as similar cost function value and Euclidean distance
error (Figure 2.11). This suggests that the default values of the parameters fmin and
ω are sufficiently accurate, and that indeed the parameter a is the most important
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Figure 2.10: An example of the step size decay using 500 iterations except Ultrasound
image data (2000 iterations) in last resolution from four experiments. The red line is
the original ASGD, the black line is ASGD′ and the green line is FASGD.

parameter to estimate.
From Figure 2.10 it can be observed that FASGD typically estimates smaller step

sizes than ASGD, for identical δ. This was also observed for the other patients. Figure
2.4 confirms this observation, as the accuracy plot for FASGD is somewhat shifted to
the right compared to the other two methods. This suggests that more similar step
sizes may be obtained when choosing δ about twice as large as for ASGD, i.e. to
increase the default from one voxel size to two.

The accuracy results for the Hammers experiment shown in Figure 2.4 present an
apparent accuracy increase when δ= 128 for FASGD. Remember that δ represents the
maximum allowed voxel displacement per iteration in mm, and that for the medical
data used in this chapter larger δ are unrealistic. Note that for ASGD the registrations
start failing when δ ≥ 32, and for FASGD when δ > 128. The temporary increase in
accuracy at δ= 128 for FASGD is due to an undesired decrease in η×δ. Note that ASGD
uses the exact same term, see Equation (2.20), but this does not result in increased
accuracy, since ASGD is already failing for δ= 128.

The time performance of the proposed method shown in Section 2.5.2 implies that
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Figure 2.11: Convergence plots for four different patients. Top row shows the
Euclidean distance error (mm) as a function of the iteration number. Bottom row
shows the cost function value (MSD). Each plot shows three resolutions.

FASGD has a large reduction in time consumption of the step size estimation. For
the SPREAD experiment the estimation time in the last resolution is reduced from 40
seconds to 1 second. This improvement is crucial for near real-time registration in
high dimensional image registration.

From Figure 2.9 it is observed that a new bottle neck in the step size estimation is
the estimation of the noise compensation parameter η. This is because in this work the
calculation of the gradient g is performed with a relatively high number of voxels from
the fixed image. Future work will include the investigation of accelerated methods
to estimate η and so further reduce the step size estimation time, especially for 4D
registration problems. A direct acceleration possibility is the use of parallelization,
for example by a GPU implementation, as the gradient computation consists of an
independent loop over the voxels.

The FASGD method provides a solution for step size selection for gradient descent
optimizers. For Newton-like optimizers this is typically solved by a line search strategy.
Note that such a strategy can not readily be adopted for stochastic optimization due

28



C
H

A
P

T
E

R
2

F
A

S
T

A
U

T
O

M
AT

IC
S

T
E

P
S

IZ
E

E
S

T
IM

AT
IO

N

to the stochastic approximation of the cost function [60]. Strengths of quasi-Newton
optimizers are their adaptability to problems where the parameters are scaled with
respect to each other, and the availability of stopping conditions. For FASGD as well
as other stochastic gradient descent optimization routines typically the number of
iterations is used to terminate the optimization. More sophisticated stopping conditions
from deterministic gradient descent methods cannot be readily adopted. For example,
due to the estimation noise, stopping conditions based on cost function values or
cost function gradients cannot be trusted. The alternative to compute exact objective
values every (few) iteration(s), is also not attractive due to the required computation
time. In the elastix implementation a stochastic gradient computation is in the order
of 50 ms, while exact metric value computation is at least in the order of seconds. A
feasible possibility would be to create a stopping condition based on a moving average
of the noisy objective values or gradients.

The use of the lsgrid for the Hammers data experiment was essential, and reduced
computation time from 19 years to about 2-3 days. It however did require a one-time
investment of time to develop the software supporting the registration jobs on the grid.
Typical issues we encountered was attempting to store the results from hundreds of
simultaneous executions, which proved incompatible with maximum transaction rate
supported by the lsgrid Storage Resource Management services. We were able to
solve this by pooling multiple results into a single storage operation. The infrastructure
we built therefore screens the software under execution from the complexities that are
encountered when running on the lsgrid. At the same time it is generic enough to
provide a configurable set of execution environments to support other experiments
not just the elastix workflow used in this work, and can therefore be re-used.

2.7 Conclusion

In this chapter, a new automatic method (FASGD) for estimating the optimization
step size parameter a, needed for gradient descent optimization methods, has been
presented for image registration. The parameter a is automatically estimated from
the magnitude of voxel displacements, randomly sampled from the fixed image. A
relation between the step size and the expectation and variance of the observed voxels
displacement is derived. The proposed method has a free parameter δ, defining the
maximally allowed incremental displacement between iterations. Unlike a, it can be
interpreted in terms of the voxel size (mm). In addition, it is mostly independent of
the application domain, i.e. setting it equal to the voxel size provided good results for
all applications evaluated in this chapter. Compared to the original ASGD method, the
time complexity of the FASGD method is reduced from quadratic to linear with respect
to the dimension of the transformation parameters P . For the B-spline transformation,
due to its compact support, the time complexity is further reduced, making the
proposed method independent of P . The FASGD method is publicly available via the
open source image registration toolbox elastix [10].

The FASGD method was evaluated on a large number of registration scenario’s
and shows a similar accuracy as the original ASGD method. It however improves the
time complexity of the step size estimation from 40 seconds to no more than 1 second,
when the number of parameters is ∼ 105: almost 40 times faster. Depending on the
registration settings, the total registration time is reduced by a factor of 2.5-7x for the
experiments in this chapter.
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Figure 2.12: Running the Hammers pipeline in the pilot job architecture used on the
lsgrid. Arrows represent the flow of information.

Appendix

The lsgrid infrastructure comprises distributed computing and storage resources
along with a central grid facility. In total there is potential for approximately 10000
job slots. Job scheduling is performed using gLite grid middleware [61] via the gLite
Workload Management System (WMS) [62], which was developed for the European
Grid Infrastructure [63].

While it is possible to use this directly to schedule registration pipeline jobs, in
practice these relatively short jobs are a poor fit to the standard queue lengths in
lsgrid. In addition, unforseen delays in the push scheduling mechanism result in
a considerable overhead [64]. These issues can be addressed by layering a pull
scheduling system based on pilot jobs onto the grid software infrastructure. Matching
jobs to Workload Nodes occurs once at pilot job startup after which job tokens are
pulled into the pilot job environment. The concept of Pilot Jobs was first pioneered
in the EGI grid within DIRAC [65], but we employed a light weight pilot job system
developed by SURFsara called PiCaS [66], [67].

The pilot job architecture shown in Figure. 2.12 was used to execute the Hammers
pipeline. PiCaS was extended with a wrapper job to perform standard elements of
the pipeline such as environment setup and data retrieval. The wrapper job and
the Hammers pipeline are coded using Python [68]. The job tokens contain the
registration parameters to be used and the storage locations for the fixed and moving
images. Ganga [69] is used to schedule and monitor pilot jobs which pull and execute
the job-tokens from the PiCaS database. The overall progress of the execution can be
checked by monitoring the status of the job tokens using the web browser to access
job-token views defined in database.

Execution of the Hammers pipeline using PiCaS on the lsgrid follows these steps:
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1. Initialize the Hammers jobs tokens. (a) Create the job tokens for each Hammers
pipeline run. Job tokens contain job parameters and the grid location of the
input data. (b) Upload the input data needed to specific locations in grid storage.
(c) Monitor execution progress by checking job token consumption in a browser.

2. Schedule the pilot jobs to commence grid execution. (a) Schedule pilot jobs with
the necessary job requirements using gLite WMS from inside Ganga. Additional
information is passed to the pilot job concerning the runtime environment
needed. (b) Monitor the progress of the pilot jobs using Ganga job monitoring.
(c) gLite WMS identifies clusters matching the job requirements and schedules
pilot jobs. Once the pilot is started the PiCaS Wrapper Job sets up the runtime
environment on the worker node.

3. Job tokens are consumed and executed by the running pilot jobs. (a) Retrieve a
job token from the PiCaS job tokens database and mark it as locked. (b) The
necessary data identified in the job token for each Hammers job is downloaded
by the PiCaS wrapper from grid storage and the Hammers pipeline is executed.
(c) Any results are uploaded to the grid storage location as specified in the job
token. (d) The job token is updated with the result: success or failure. In failure
cases log-files are appended to assist in debugging.

4. Job results can be immediately downloaded while the run is in progress.

All tools that were created are reusable for other large scale image processing with the
lsgrid.
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3
A Stochastic Quasi-Newton Method for

Non-rigid Image Registration

This chapter was adapted from:

Y. Qiao, Z. Sun, B.P.F. Lelieveldt and M. Staring. A Stochastic Quasi-Newton Method
for Non-rigid Image Registration, Medical Image Computing and Computer-Assisted
Intervention, Lecture Notes in Computer Science, Volume 9350, Pages 297−304, 2015.
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Abstract

Image registration is often very slow because of the high dimensionality of the images
and complexity of the algorithms. Adaptive stochastic gradient descent (ASGD)
outperforms deterministic gradient descent and even quasi-Newton in terms of speed.
This method, however, only exploits first-order information of the cost function.
In this chapter, we explore a stochastic quasi-Newton method (s-LBFGS) for non-rigid
image registration. It uses the classical limited memory BFGS method in combination
with noisy estimates of the gradient. Curvature information of the cost function is
estimated once every L iterations and then used for the next L iterations in combination
with a stochastic gradient. The method is validated on follow-up data of 3D chest CT
scans (19 patients), using a B-spline transformation model and a mutual information
metric. The experiments show that the proposed method is robust, efficient and fast.
s-LBFGS obtains a similar accuracy as ASGD and deterministic LBFGS. Compared to
ASGD the proposed method uses about 5 times fewer iterations to reach the same
metric value, resulting in an overall reduction in run time of a factor of two. Compared
to deterministic LBFGS, s-LBFGS is almost 500 times faster.
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3.1 Introduction

Image registration is important in the field of medical image analysis. However, this
process is often very slow because of the large number of voxels in the images and the
complexity of the registration algorithms [20, 25]. A powerful optimization method is
needed to shorten the time consumption during the registration process, which would
benefit time-critical intra-operative procedures relying on image guidance.

The stochastic gradient descent method is often used to iteratively find the optimum
[15]. This method is easy to implement and fast because at each iteration only a
subset of voxels from the fixed image is evaluated to obtain gradients. Although it
obtains a good accuracy, its convergence rate is poor since only first order derivatives
are used. A preconditioning matrix can be used to improve the convergence rate of
(stochastic) gradient descent, but this was only proposed in a mono-modal setting
[70]. The quasi-Newton method also has a better convergence rate than deterministic
gradient descent, but comes at a higher cost in computation time and large memory
consumption. Limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) takes an
advantage in the storage of only a few previous Hessian approximations, however,
the computation time is still very long as all voxels are needed for new Hessian
approximations [25].

Some approaches to create a stochastic version of the quasi-Newton method are
proposed in a mathematical setting, such as online LBFGS [71], careful quasi-Newton
stochastic gradient descent [72], regularized stochastic BFGS [73] and stochastic
LBFGS [74]. However, there is no application in the image registration field, and
applying the stochastic quasi-Newton method to non-rigid image registration is still
a challenge. All of the previous methods either used a manually selected constant
step size or a fixed decaying step size, which are not flexible when switching problem
settings or applications. Moreover, the uncertainty of gradient estimation introduced
by the stochastic gradient for Hessian approximation is still a problem. Although
Byrd [74] used the exact Hessian to compute curvature updates, which is still difficult
to calculate for high dimensional problems. For careful QN-SGD [72], the average
scheme may be useless in case of an extremely large or small scaling value for H0.
Mokhtari [73] used a regularized term like Schraudolph [71] did to compensate the
gradient difference y from the parameter difference s and introduced a new variable
δ, which is not only complex, but also needs to store all previous curvature pairs.

In this chapter, we propose a stochastic quasi-Newton method specifically for non-
rigid image registration inspired by Byrd et al. [74]. Different from Byrd’s method,
the proposed method employs only gradients and avoids computing second order
derivatives of the cost function to capture the curvature. Secondly, we employ an
automatic and adaptive scheme for optimization step size estimation instead of a fixed
manual scheme. Finally, we propose a restarting mechanism where the optimal step
size is recomputed when a new Hessian approximation becomes available, i.e. every L
iterations. The proposed method and some variations are validated using 3D lung CT
follow-up data using manually annotated corresponding points for evaluation.

3.2 Methods

Non-rigid image registration aims to align images following a continuous deformation
strategy. The optimal transformation parameters are the solution that minimizes the
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dissimilarity between fixed IF and moving image IM :

µ̂= argmin
µ

C (IF , IM ◦Tµ), (3.1)

in which Tµ(x) is a coordinate transformation parameterized by µ.

3.2.1 Deterministic quasi-Newton

The deterministic quasi-Newton method employs the following iterative form:

µk+1 =µk −γk B−1
k gk , (3.2)

where Bk is a symmetric positive definite approximation of the Hessian matrix ∇2C (µk ).
Quasi-Newton methods update the inverse matrix Hk = B−1

k directly using only first
order derivatives, and have a super-linear rate of convergence. Among many methods
to construct the series {Hk }, Broyden-Fletcher-Goldfarb-Shanno (BFGS) tends to be
efficient and robust in many applications. It uses the following update rule for Hk :

Hk+1 =V T
k HkVk +ρk sk sT

k , (3.3)

in which

ρk = 1

y T
k sk

, Vk = I −ρk yk sT
k , sk =µk+1 −µk , yk = gk+1 −gk . (3.4)

Since the cost of storing and manipulating the inverse Hessian approximation Hk is
prohibitive when the number of the parameters is large, a frequently used alternative
is to only store the latest M curvature pairs {sk , yk } in memory: limited memory BFGS
(LBFGS). The matrix Hk is not calculated explicitly, and the product Hk gk is obtained
based on a 2-rank BFGS update, which uses a two loop recursion [74]. The initial
inverse Hessian approximation usually takes the following form, which we also use in
this chapter:

H 0
k = θk I , θk = sT

k−1 yk−1

y T
k−1 yk−1

. (3.5)

3.2.2 Stochastic quasi-Newton

A large part of the computation time of quasi-Newton methods is in the computation of
the curvature pairs {sk , yk }. The pairs are computed deterministically using all samples
from the fixed image. A straightforward way to obtain a stochastic version of the
quasi-Newton method is to construct the curvature pairs using stochastic gradients,
using only a small number of samples at each iteration. This however introduces too
much noise in the curvature estimation, caused by the fact that stochastic gradients
are inherently noisy and for each iteration are also evaluated on different subsets of
image voxels, both of which may yield a poor Hessian approximation. This leads to
instability in the optimization.

To cope with this problem, Byrd et al. [74] proposed a scheme to eliminate the
noise by averaging the optimization parameters for a regular interval of L iterations
and obtain the curvature through a direct Hessian calculation on a random subset S2.
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This is combined with a series of L iterations performing LBFGS using the thus obtained
inverse Hessian estimate together with stochastic gradients (using a small random
subset S1). Inspired by this scheme, we propose a method suitable for medical image
registration and avoiding manual tuning the step size. First, more samples are used
for the curvature pair update than for the stochastic gradient evaluation. Second, the
curvature information is obtained using a gradient difference instead of second order
derivatives evaluated at an identical subset of samples, i.e. yt = g (µ̄I ;S2)−g (µ̄J ;S2)
and the curvature condition y T s > 0 is checked to ensure positive definiteness of
the LBFGS update [74]. Finally, the initial step size at the beginning of each L
iterations is automatically determined, with or without restarting. Restarting is a
recent development [75] showing improved rate of convergence, which in this chapter
we apply to the step size selection.

Instead of manual constant step size selection as in [74], we employ an automatic
method. A commonly used function for the step size which fulfils the convergence
conditions [76] is γk = ηa/(tk + A)α, with A ≥ 1, a > 0, 0 ≤ η ≤ 1 and 0 ≤ α ≤ 1. The
step size factor a and the noise compensation factor η are automatically determined
through the statistical distribution of voxel displacements [45], while A = 20 according
to [15] and α= 1 is theoretically optimal [15]. Different strategies for the artificial
time parameter tk are tested: a constant step size tk = 0, a regularly decaying step size
tk = k, and an adaptive step size tk = f (·). Here, f is a sigmoid function with argument
of the inner product of the gradients g̃ T

k · g̃k−1 for gradient descent. For s-LBFGS, it
can be derived that the search direction is needed as argument, i.e. d T

k ·dk−1 with
dk = B−1

k gk .
An overview of the proposed s-LBFGS method is given in Algorithm 1.

3.3 Experiment

The proposed method was integrated in the open source software package elastix

[10]. The experiments were performed on a workstation with 8 cores running at 2.4
GHz and 24 GB memory, with an Ubuntu Linux OS.

3D lung CT scans of 19 patients acquired during the SPREAD study [77] were used
to test the performance. Each patient had a baseline and a follow-up scan with an
image size around 450×300×150 and the voxel size around 0.7×0.7×2.5 mm. For each
image, one hunred anatomical corresponding points were chosen semi-automatically
using Murphy’s method in consensus by two experts, to obtain a ground truth.

To evaluate the method, each follow-up image was registered to the baseline image
using mutual information and a B-spline transformation model. The maximum number
of iterations for each resolution was 500. A three-level multi-resolution framework
was employed using a Gaussian smoothing filter with standard deviations of 2, 1 and
0.5 mm for each resolution. The grid spacing of the B-spline control points was halved
between each resolution resulting in a final grid spacing of 10 mm in each direction.
After initial testing, we chose the update frequency L = 10,20,40 for each resolution,
respectively, the memory M = 5 from [25, 74], the number of samples for stochastic
gradient computation |S1| = 5000, and the number of samples for the curvature pair
update |S2| = 50000.

To measure the registration accuracy, the anatomical points from each baseline
image were transformed using the obtained transformation parameters and then
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Algorithm 1 Stochastic LBFGS (s-LBFGS) with and without restarting

Require: initial parameters µ0, memory size M , update frequency L, iteration number
K

1: Set t = 0, µ̄J =µ0,µ̄I = 0
2: Automatically estimate the initial step size λ0 . According to [45]
3: for k = 1,2,3, . . . ,K do
4: Compute g̃k (µk ;S1) . stochastic gradient
5: µ̄I = µ̄I +µk . Update the mean parameters
6: if k <= 2L then . ASGD update
7: Update the step size λk . According to [45]
8: µk+1 =µk −λk g̃k

9: else . s-LBFGS update
10: Compute dk = Ht g̃k . s-LBFGS search direction, see [74] and (3.2)
11: if mod (k,L) = 0 and restarting then
12: Automatically estimate the initial step size λ′

0
13: Reset λk =λ′

0

14: Update the step size λk . According to [45] but using d T
k ·dk−1

15: µk+1 =µk −λk dk

16: if mod (k,L) = 0 then . Curvature pairs update
17: µ̄I = µ̄I /L . Update the mean parameters
18: st = µ̄I − µ̄J , yt = g (µ̄I ;S2)−g (µ̄J ;S2) . New curvature pair
19: µ̄J = µ̄I ,µ̄I = 0, t = t +1

20: return µK

compared to the corresponding points of the follow-up image. We used the Euclidean
distance between the corresponding points pF ∈ ΩF and pM ∈ ΩM to measure the
accuracy using the following equation:

ED = 1

n

n∑
i=1

‖T (p i
F )−p i

M‖. (3.6)

For 19 patients, we first obtained the mean distance error of 100 points for each patient
then performed Wilcoxon signed rank test to these mean errors. For convergence
testing we computed the cost function value after each iteration deterministically, i.e.
based on full sampling. The registration time in the first resolution is presented to
compare the algorithm speeds.

3.4 Results

To gain insight in the proposed method, we investigated some aspects that influence
registration performance. The restarting scheme (Restart) was compared with a
scheme without restarting. We evaluated different step size selection strategies all
based on automatic initial step size selection [45]: a constant scheme (Constant,
tk = 0), a regularly decaying scheme (Decaying, tk = k), and the proposed adaptive
scheme (Adaptive, tk = f (·)). The proposed method is further compared with the
ASGD method [15] and with deterministic LBFGS [25].

38



C
H

A
P

T
E

R
3

S
T

O
C

H
A

S
T

IC
Q

U
A

S
I-N

E
W

T
O

N

Adaptive
AdaptiveLBFGSASGD

Constant
Constant

Decaying
Decaying

RestartRestartRestart

## +++++++

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
u
cl
id
ea
n
d
is
ta
n
ce

(m
m
)

1

Figure 3.1: Euclidean distance error in mm. The symbols # and + indicate a statistically
significant difference with ASGD and LBFGS, respectively.

Time at k = 500 Iterations I Time (s) at k = I Speed-up
ASGD 27.2±0.7 500 - -
LBFGS 26838±9965 21±1 8081±1580 0.004±0.0005
s-LBFGS-NR 74.3±4.8 190±93 30.6±13.9 1.0±0.4
s-LBFGS 75.8±1.0 107±17 18.1±2.6 1.5±0.2

Table 3.1: Run time in the first resolution. I indicates how many iterations are needed
to reach the same metric value as ASGD after 500 iterations. s-LBFGS and s-LBFGS-NR
are with and without restarting, both using adaptive step sizes. The speed-up is
relative to ASGD.

From Fig. 3.1 we can see that all methods have very similar final registration error,
for LBFGS regularization may improve the results [59]. Fig. 3.2 shows the convergence
plots of the methods for several patients. Comparing the three step size strategies
in Fig. 3.2a and 3.2b, the regularly decaying method has suboptimal convergence,
while the constant and the adaptive scheme behave similarly. The restarting scheme
shows a substantial improvement in convergence rate, therefore in Fig. 3.2c∼3.2f we
only show the result of restarting scheme with adaptive step size (s-LBFGS). Some
small spikes are visible in Fig. 3.2b and Fig. 3.2f, which we attribute to noise in the
curvature pair estimation: an experiment using 1.5 million samples for the curvature
estimation yielded smooth results (not shown). In terms of iterations, s-LBFGS always
obtains faster convergence than ASGD, but slower than LBFGS. The registration time
of ASGD, LBFGS and s-LBFGS is shown in Table 3.1. The LBFGS method is very costly,
as expected. To obtain the same metric value as ASGD at iteration 500, the proposed
method always takes fewer iterations resulting in an average speedup of two, while
the proposed method without restarting requires more iterations and therefore more
time.
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(b) Patient 2
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Figure 3.2: Convergence plots, showing the negated mutual information metric against
the iteration number.

3.5 Conclusion

In this chapter, we present for the first time a stochastic quasi-Newton optimization
method (s-LBFGS) for non-rigid image registration. It uses the classical limited
memory BFGS method in combination with noisy estimates of the gradient. Curvature
information of the cost function is estimated robustly once every L iterations and
then used for the next L iterations in combination with stochastic gradients. A novel
restarting procedure, automatically selecting the optimization step size, is shown to
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be beneficial for accelerated convergence.
The new optimization routine is validated on follow-up data of 3D chest CT scans

(19 patients). Compared to ASGD the proposed method uses about 5 times fewer
iterations to reach the same metric value, resulting in an overall reduction in runtime
of a factor of two. Compared to deterministic LBFGS, s-LBFGS is almost 500 times
faster. Future work will focus on developing a stopping condition for stochastic second
order procedures, on a more robust estimation of the initial approximation of H0 more
resilient against noise, on alterative quasi-Newton schemes such as the symmetric
rank-one update [78], and more extensive validation.
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4
An efficient preconditioner for stochastic
gradient descent optimization of image

registration

This chapter was adapted from:

Y. Qiao, B.P.F. Lelieveldt and M. Staring. An efficient preconditioner for stochastic
gradient descent optimization of image registration, submitted
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Abstract

Stochastic gradient descent (SGD) is commonly used to solve (parametric) image
registration problems. In case of ill-conditioned problems, SGD however only
exhibits sublinear convergence properties. In this chapter we propose an efficient
preconditioner estimation method to improve the convergence rate of SGD. Based
on the observed distribution of voxel displacements in the registration, we estimate
the diagonal entries of a preconditioning matrix, thus rescaling the optimization cost
function. The preconditioner is suitable for stochastic and not only deterministic
optimization. It is efficient to compute and employ, and can be used for mono-modal
as well as multi-modal cost functions, in combination with different transformation
models like the rigid, affine and B-spline model. Experiments on different clinical data
sets show that the proposed method indeed improves the convergence rate compared
to SGD with speedups around 5 in all tested settings, while retaining the same level of
registration accuracy.
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4.1 Introduction
Image registration is widely used in medical image analysis and has ample application,
e.g. in radiation therapy and segmentation [19, 2, 3]. This procedure can be used to
align images from different modalities or different time points following a continuous
deformation strategy. The strategy can be formulated as a (parametric) optimization
problem to minimize the dissimilarity between a d-dimensional fixed image IF and
moving image IM :

µ̂= argmin
µ

C (IF , IM ◦Tµ(x)), (4.1)

in which Tµ(x) is a coordinate transformation parameterized by µ. An iterative scheme
is typically used to solve this problem:

µk+1 =µk −γk dk , (4.2)

where k is the iteration number, γk is the step size at iteration k, and dk is a
search direction in the parameter space. Commonly used methods to determine
the search direction dk are of first order (gradient descent) or second order (Newton
or quasi-Newton) descent type. Gradient descent, however, only achieves a sublinear
convergence rate for nonconvex problems or a linear convergence rate for convex
problems [79, 25]. Especially for badly scaled cost functions these methods converge
slowly. Second order derivative methods such as the quasi-Newton method converge
faster, however, the computation of the Hessian matrix update is very time consuming,
especially when the number of image voxels and transformation parameters are large
[80]. To overcome these shortcomings, preconditioning techniques were proposed
to turn a badly scaled cost function into a properly scaled cost function, considering
the curvature of the cost function [79, 81, 82, 83]. The construction of these
preconditioners can however be computationally expensive in themselves, which
can easily mitigate the positive effect of faster convergence.

Two major groups of preconditioning techniques are widely used in iterative
optimization. One, sometimes named variable preconditioning, uses the update rule:

µk+1 =µk −γk Pk gk . (4.3)

The preconditioner Pk is updated at each iteration (or at least regularly) to adapt to the
local shape of the cost function [84, 85, 86, 87, 88, 89, 90]. This group of methods is
typically used in machine learning to solve a linear system [91, 92, 85, 87, 93, 94], but
is also popular in image registration [95, 96, 25, 97]. Popular preconditioners, such as
Newton or quasi-Newton methods [82, 89], indeed exhibit superior convergence rate
compared to the standard gradient descent methods. These improvements, however,
come at a cost of the estimation of the inverse Hessian, which alleviates some of the
advantages and can even lead to a net deceleration. Zikic et al. [89] proposed a
diagonal preconditioner for Demons registration. They applied the preconditioner
before the dense gradient of the energy function using the inverse of the gradient
magnitude. Besides its extra computation efforts at each iteration, its performance
mainly depends on the choice of parameter ρ. This parameter is problem specific
for different dissimilarity measures, different modalities and different transformation
models, which may limit its practicality.
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Another group of preconditioning techniques, sometimes called traditional pre-
conditioning, use a static P , i.e. the preconditioner P is only calculated once before
the start of the optimization [83, 79, 85]. The Krylov subspace method, sparse
approximate inverse and Jacobi preconditioning techniques are often used [83]. Klein
et al. proposed a preconditioner construction method only suitable for mono-modal
image registration [70], which approximates the Hessian matrix of the cost function
based on an assumption that the intensity difference between moving image and
fixed image is zero after a perfect registration. This method is additionally very time-
consuming when the number of transformation parameters and image size increase:
the required matrix decomposition of the Hessian matrix takes more than 3 hours for
∼105 parameters.

As image registration is time crucial for several clinical applications, for example
online adaptive radiation therapy [98], it is advantageous to find an efficient way
to obtain a search direction dk and its preconditioner P . For registration problems
with large degrees of freedom and of large images, it is not very efficient to calculate
the search direction in a deterministic way [25] (i.e. using all voxels to compute
the gradient). Klein et al. proposed a stochastic gradient descent method for image
registration, which approximates the gradient by only using a random subset of the
image samples [15]. This approximation is much more efficient to compute, thereby
outperforming deterministic gradient descent and even quasi-Newton methods [25].
For ill-conditioned problems, however, SGD does not provide a solution and would
still suffer from a deteriorated convergence rate.

In this chapter, we consider the preconditioned stochastic gradient descent method
(PSGD) that calculates the preconditioner only once. Based on a connection between
the incremental displacement of a voxel and the gradient change between iterations,
we propose an efficient method to construct a diagonal preconditioner for stochastic
gradient descent methods. The chapter is organized as follows. The background
and proposed method are given in Section 4.2 and Section 4.3. The dataset used to
evaluate the proposed method is described in Section 4.4. This is followed by the
experimental setup in Section 4.5 and the results in Section 4.6. The discussion and
conclusion are given in Section 4.7 and Section 4.8.

4.2 Background

4.2.1 Preconditioned stochastic gradient descent

The preconditioned stochastic gradient descent method is established as:

µk+1 =µk −γk P g̃k , (4.4)

where γk is the step size, g̃k is a stochastic gradient evaluated on a random subset
of the image samples Ωs

F and P is a positive definite NP ×NP matrix, with NP the
number of parameters that model the transformation, i.e. |µ|. When P = I , PSGD will
be reduced to the standard SGD method.

The convergence of PSGD is guaranteed when (1) P is positive definite; and (2)
the step size sequence is a non-increasing and non-zero sequence with

∑∞
k=1γk =∞

and
∑∞

k=1γ
2
k <∞ [99, 86, 85]. The step size sequence used here is defined as follows
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[70]:
γk = η

(tk +1)/A+1
,

tk = max(0, tk−1 + sigmoid(−g̃ T
k−1P g̃k−2)),

(4.5)

in which η is a noise compensation factor and A controls the decay speed of the
step size sequence and is typically set to 20. The noise introduced by the stochastic
procedure will influence the convergence rate, so inspired from [70, 100] we use the
following compensation factor:

η= E‖g T P g‖
E‖g̃ T P g̃‖ = E‖g T P g‖

E‖g T P g‖+E‖εT Pε‖ , (4.6)

in which g is the exact gradient evaluated on all voxels in the image, ε the random
noise added to the exact gradient and E‖ ·‖ is the expectation of the norm.

4.2.2 Related work

There are two related methods to estimate a preconditioner:

1. Hessian-type preconditioner (PSGD-H). The theoretical optimal choice for the
preconditioner is the inverse Hessian at the optimal parameter µ̂. However, it is
impossible to obtain the exact inverse Hessian beforehand because µ̂ is unknown
[70]. Based on the assumption that the moving image is the same as the fixed
image after successful registration: F ≈ M(T (x ;µ̂)), and the assumption that the
deformation is small: ∂T /∂µ≈ I , Klein et al. proposed a method to approximate
the Hessian-type preconditioner [70]. This method requires an implementation
to calculate a Hessian matrix and a decomposition to construct the preconditioner.
This method is only suitable for mono-modal image registration. Moreover, the
computation time of this preconditioner is very long when solving large scale
problems, which defeats the improvements in the convergence.

2. Jacobi-type preconditioner (PSGD-J). For rigid and affine registration problems,
Klein et al. [70] assumed that the rotation parameters were scaled by the average
voxel displacement caused by a small perturbation of the rotation angle, and
proposed a method to construct a diagonal Jacobi-type preconditioner for PSGD.
The elements pi of the diagonal preconditioner P are calculated as follows:

pi =
(∫
ΩF

∥∥∥∥ ∂T

∂θi
(x ;µ0)

∥∥∥∥2

dx/
∫
ΩF

dx

)− 1
2

. (4.7)

This method can be used for multi-modal image registration, however, it was
proposed for rigid and affine registration only.

4.3 Method

4.3.1 Preliminaries

The aim of the preconditioner P is to scale the parameter space to make ill-posed
cost functions easier to optimize. The ideal preconditioner should take care of the
relative scaling between the parameters. Construction of a suitable preconditioner is a
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challenge for a given problem. First, different transformation models and different
dissimilarity measures result in different characteristic of the cost function, making the
determination of a preconditioner problem-specific. Second, the computation of the
preconditioner should be efficient performance-wise, otherwise the overhead of the
preconditioner computation will defeat the advantage in runtime reductions obtained
from the improvements of the convergence rate.

To find a suitable approximation of P in a computationally efficient way, and robust
for different cost functions, a diagonal preconditioner P = diag(p), with p = (p1, . . . , pN ),
is preferred. In this chapter, we propose a novel way to construct this diagonal
preconditioner, which is suitable for both stochastic and deterministic optimization
and can be used for mono-modal as well as multi-modal cost functions, in combination
with different transformation models like the rigid, affine and B-spline model.

The intuition of the proposed preconditioner is that a gradient change will result
in incremental voxel displacements, which is inspired by [15, 100]. In the following
we will derive the i -th entry pi of the preconditioner corresponding to the i -th entry
of the transformation parameters µ, such that the displacement induced by a change
in that parameter is equal to a predefined value δ. The incremental displacement of a
voxel x j in the fixed image domain ΩF between iteration k and k +1 for an iterative
optimization scheme is defined as:

dk (x j ) = T
(
x j ,µk+1

)−T
(
x j ,µk

)
, ∀x j ∈ΩF . (4.8)

We approximate the incremental displacement dk using the first-order Taylor expansion
around µk :

dk (x j ) ≈ ∂T

∂µ

(
x j ,µk

) · (µk+1 −µk
)

= J (x j ) · (µk+1 −µk
)

,

(4.9)

in which J (x j ) = ∂T
∂µ

(
x j ,µk

)
is the Jacobian matrix of size d×NP . Using the optimization

scheme (4.4), we obtain µk+1 −µk =−γk P gk , and we can rewrite dk+1 as:

dk (x j ) ≈−γk J (x j )P gk . (4.10)

4.3.2 Diagonal preconditioner estimation

From Equation (4.10), we notice that the preconditioner matrix P can be estimated
prior to registration, i.e. at iteration k = 0. After choosing γ0 = 1, we obtain d1(x j ) ≈
−J (x j )diag(p)g0. In the remainder of the chapter, we use the notation d and g for
simplification.

The Jacobi-type preconditioner from Equation (4.7) can be rewritten to:

pi =
(
E‖J i (x j )‖2

)−1/2
, (4.11)

where J i (x j ) denotes the i -th column of the Jacobian matrix. Inspired by Equation
(4.11) we inspect the displacement ‖d i‖ that is induced by a change 4µi in the i -th
transformation parameter, i.e. the displacement generated by g i only:

‖d i (x j )‖ ≈
∥∥∥−J i (x j )pi g i

∥∥∥= pi

∥∥∥−J i (x j )g i
∥∥∥ , (4.12)
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Algorithm 2 Proposed preconditioner estimation

Require: Ns the number of samples, δ the maximum allowed voxel displacement, τ
the regularization factor, κmax the maximum condition number

1: Compute the gradient g of size NP

2: Randomly take Ns samples {x j } from the fixed image
3: p = I , t = 0, z = 0, y = 0 . initialization
4: for j = 1,2, . . . , Ns do . loop over the samples x j

5: Calculate the Jacobian J (x j )
6: for i = 1,2, . . . , NP do . loop over the parameters
7: si = ‖J i (x j )g i‖
8: Regularize si with τ using Section 4.3.3
9: zi = zi + si . update for the mean

10: yi = yi + s2
i . update for the variance

11: ti = ti +1 . increase counter
12: for i = 1,2, . . . , NP do . loop over the parameters
13: qi = zi /ti +2

√
(yi /ti )− (zi /ti )2

14: pi = δ/qi

15: Constrain the condition number of pi using κmax (see Section 4.3.4)
16: Return p

in which ‖ · ‖ used in this chapter is the `1 norm. In medical image registration,
we expect a continuous and homogenous transformation and moreover assume that
the voxel displacement d i is to be not larger than δ: i.e ‖d i (x j )‖ ≤ δ, ∀x j ∈ΩF .
Based on the distribution of the voxel displacements, there is a weakened form
for this assumption: P (‖d i (x j )‖ > δ) < ρ, where ρ is a small probability value often
0.05. According to the Vysochanskij-Petunin inequality [46], we have the following
expression:

E‖d i (x j )‖+2
√

V ar‖d i (x j )‖ ≤ δ, ∀x j ∈ΩF . (4.13)

Combined with Equation (4.12), we obtain the relationship between the i -th entry pi

of the preconditioner and the maximum voxel displacement as follows:

pi

(
E

∥∥si (x j )
∥∥+2

√
V ar

∥∥si (x j )
∥∥)

≤ δ, (4.14)

where si (x j )=‖− J i (x j )g i‖. The i -th entry of the preconditioner is then defined as:

pi = δ

E
∥∥si (x j )

∥∥+2
√

V ar
∥∥si (x j )

∥∥ . (4.15)

Finally, the full preconditioner P is obtained by repeating the above procedure for
each pi . The procedure is sketched in Algorithm 2.

4.3.3 Regularization

The assumption used to approximate a preconditioner, that all transformation parame-
ters should independently induce a maximum voxel displacement δ, may be too strict
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or too sensitive to noise in the measurements. For the B-spline transformation, fore
example, this assumption forces all regions to have a displacement δ, even regions that
do not require registration. Noise could come from an insufficient number of samples
x j used for the estimation, or from inexact evaluation of the gradient. This could
result in differences in the estimated entries of the preconditioner that are expected
to have similar value. For the B-spline transformation model one would expect that
nearby control points would be scaled similarly, without sudden sharp transitions. For
the affine transformation on the other hand, one would expect that scalings related to
translation parameters are more similar than those related to rotational parameters.

We therefore propose to optionally regularize the procedure from Section 4.3.2,
such that the i -th entry pi of the preconditioner is not treated completely independent,
but also takes into account the estimates of the related parameters. Related parameters
are those jointly affected by a voxel x j (for an affine transformation these are all
parameters; for the B-spline only parameters in the compact support region of x j ),
and secondly by their similarity in Jacobian contribution (for the affine transformation,
intuitively rotations and translations are to be treated separately). The proposed
regularization procedure is as follows:

si (x j ) = τ · si (x j )+ (1−τ) · 1∑
ωm

∑
m 6=i

sm(x j ) ·ωm︸ ︷︷ ︸
regularization term

, (4.16)

where ωm weighs the contributions of similar parameters and τ balances the contribu-
tion of entry i with the contributions of the other parameters. The weights ωm are
calculated using a Gaussian function:

ωm = exp

(
− (‖J i (x j )‖−‖J m(x j )‖)2

2σ2

)
, (4.17)

in which σ is chosen as min(‖J i (x j )‖−‖J m(x j )‖)/max(‖J i (x j )‖−‖J m(x j )‖), ∀m 6= i .
While for the B-spline transformation model such a choice would also be valid,

a simplification is possible. For the B-spline model the displacement of a voxel is
only determined by the control points in its support region. Furthermore, we expect
the influence on the displacement to be almost equal for each control point in the
support region. We therefore assume for the B-spline model that the weights ωm = 1,
simplifying Equation (4.16) to si (x j ) = τ× si (x j )+ (1−τ) · ‖∑

(J i (x j )g i )‖.
4.3.4 Condition number

Even if the resulting preconditioner is symmetric and positive definite, it could be
ill-conditioned, especially for nonrigid image registration problems. The convergence
rate of the algorithm can be measured by the so-called condition number:

κ=λmax/λmin, (4.18)

where λmax and λmin are the largest and smallest eigenvalue of P , respectively. It is
common to constrain the eigenvalues, such that the condition number will be closer
to 1 [70, 88]. We introduce a user-defined maximum condition number κmax for this
purpose.
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Define a diagonal eigenvalue matrix Λ= di ag (λ1, . . . ,λNp ) for the preconditioner
P . In this study, as our preconditioner P is diagonal, the entries of P are equal to
the eigenvalues of Λ: pi = λi ,∀i . To constrain the eigenvalues, we replace small
eigenvalues of P that make κ> κmax using the following equation:

pi =
{
λmax/κmax, if λmax/λi > κmax,

λi , otherwise.
(4.19)

The thus constrained matrix constitutes then the finally proposed static preconditioner.
Combined with Equation (4) this defines the Fast Preconditioned Stochastic Gradient
Descent method (FPSGD).

4.4 Data sets

The proposed FPSGD method is tested on mono-modal as well as multi-modal data.
An overview of the used data sets is presented in Table 4.1.

4.4.1 Mono-modal lung data: SPREAD

3D lung Computed Tomography (CT) images of 19 patients were acquired during the
SPREAD study [77]. A follow-up scan was acquired for each patient after the baseline
scan with image sizes around 450× 300× 150 and voxel sizes around 0.7× 0.7× 2.5
mm. The ground truth consists of 100 anatomical corresponding points, which
were semi-automatically extracted using Murphy’s method [49]. The algorithm first
automatically selects 100 evenly distributed landmarks at characteristic locations in
the baseline image, and then predicts the corresponding points in the follow-up image.
The corresponding points are then inspected and corrected by two experts using a
graphical user interface [50].

4.4.2 Multi-modal brain data: RIRE and BrainWeb

Two multi-modal datasets are used to evaluate the performance of the proposed
method.

4.4.2.1 RIRE brain data

This brain dataset was acquired during the Retrospective Image Registration Evaluation
(RIRE) project. CT scans and Magnetic Resonance Imaging (MRI-T1) are available for
9 patients. The CT images have sizes of 512×512×50 with voxel sizes of 0.45×0.45×3
mm, while the MRI-T1 image is of size 256×256×50 with voxel sizes of 0.85×0.85×3
mm. Fiducial markers were implanted in each patient and served as a ground truth
[47]. These markers were manually erased from the images and replaced with a
simulated background pattern.

4.4.2.2 BrainWeb simulated brain data

T1 and T2 weighted 3D brain MR images were created using the Simulated Brain
Database from BrainWeb [101]. To generate brain image pairs, default settings
provided by BrainWeb were used with 3% noise and 20% intensity non-uniformity.
The brain images are of sizes 181×217×181 and a voxel spacing of 1 mm isotropically.
A mask of the brain was extracted from the T1 image by FSL-BET [102] and the
same mask was used for the T2 image. 100 randomly generated displacement vector
fields (DVFs) serve as the ground truth deformation fields. The DVFs are isotropically
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generated in three dimensions within the brain mask and the maximum magnitude of
DVFs is chosen as 8 and 15 mm. These DVFs are then smoothed by a Gaussian filter
with a standard deviation between 10 and 30 mm.

4.5 Experiments
In this section, experimental settings are given to test the performance of the proposed
method. The proposed FPSGD method is compared with the following methods:

1. Fast adaptive stochastic gradient descent (FASGD) [100], which is a state-of-the-
art first order stochastic optimization method that does not use preconditioning.
For rigid and affine registration, the diagonal of the preconditioner P is chosen
as 1 for the translational parameters and 1/100000 for the others. This reflects
that the parameters µ corresponding to rotation have in general a much smaller
range than parameters corresponding to translation.

2. Jacobi-type preconditioner (PSGD-J) [70], where a diagonal preconditioner is
chosen according to Equation (4.7). This method was only proposed for rigid
and affine registration.

3. Hessian-type preconditioner (PSGD-H) [70], see Section 4.2.2. This precondi-
tioner is only suitable for mono-modal registration, and therefore only imple-
mented for the mean squared intensity difference (MSD) dissimilarity measure.

All these methods, including the proposed method, were implemented in C++ and
are available as open source software via the elastix package [10]. All experiments
were performed on a workstation with an Ubuntu Linux OS, which has 8 cores running
at 2.4 GHz and 24 GB of memory. Detailed settings are presented in Section 4.5.3 and
4.5.4, and an overview of the experimental setup is given in Table 4.1.

4.5.1 Experimental setup

To validate the generality of the proposed preconditioner, the experiments are per-
formed on mono-modal as well as multi-modal image registration. For each group,
different transformation models are used, namely the rigid, affine and B-spline trans-
formation models [10]. For rigid and affine image registration, only one resolution of
500 iterations is used, to be able to more easily compare convergence properties. For
B-spline image registration, a three-level multi-resolution framework is used on the
SPREAD data with a standard deviation of the Gaussian smoothing filter of 2, 1 and
0.5 mm, and 500 iterations for each resolution. For the BrainWeb data, we used only
one resolution of 1000 iterations.

The number of samples used for computing g̃ was the same for all methods and
set to 5000 [100]. Different methods used different number of samples for the
preconditioner estimation. For FPSGD 50000 samples were used at each resolution.
For PSGD-H the number of samples were 100000, 100000 and 500000 for the three
resolutions, respectively. For PSGD-J, 1000 samples were used. To estimate the step
size of FASGD, the number of samples was chosen equal to the number of transfor-
mation parameters ‖µ‖ at each resolution, for instance in the SPREAD experiment
around 4000, 15000 and 90000 samples for the three resolutions, respectively. The
user pre-defined value δ for FASGD and FPSGD is chosen as the mean length of the
voxel size. A = 20 is used for all tested methods.
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In Section 4.3, we introduced two free parameters of the proposed FPSGD method:
the regularization factor τ and the maximum condition number κmax. To assess the
influence of these two parameters on the results, we first vary the regularization
factor τ while using a fixed κmax, and then vice versa. The regularization factor τ was
selected between 0 and 1, using increments of 0.2, so there were 6 variations. For
these tests, κmax = 2 was chosen for the B-spline registration, while for rigid and affine
registration no restriction is needed on the condition number, i.e. κmax =∞. In the
second group of tests, a fixed τ= 0.6 was chosen and κmax ∈ {1,2,4,8,16} were tested
for the B-spline registrations of the SPREAD data and the BrainWeb data. The results
are reported in Section 4.6.1.

4.5.2 Convergence and runtime performance

The performance of the tested methods is first evaluated in terms of the convergence
rate and the resulting speed-up in runtime. To measure the convergence rate, the
dissimilarity measure (MSD or MI) was calculated at each 5th iteration. This calculation
was performed deterministically using all samples from the fixed image. FASGD is
chosen as the baseline method and we compare the exact cost function value of all
other methods against the exact cost function value of FASGD at its final solution
µ̂ref. For each method, we counted the number of iterations I required to obtain a
cost function value that is equal to or smaller than that of the baseline method using
C (µk ) ≤C (µ̂ref) for the first time.

To assess runtime performance, several computations are timed and recorded: the
time test it takes to estimate the preconditioner P and the time titer each iteration takes.
When I equals the number of iterations needed for reaching the same cost function
value as FASGD, then the pure registration time is defined as tpure = titer · I . The total
registration time is then ttotal = test+ tpure. The time test consists of the time to estimate
the preconditioner and/or the step size γ0 for the different methods, i.e. for FASGD
test is the estimation time of the step size, for PSGD-J and PSGD-H both are included
and for FPSGD test is the estimation time of the preconditioner.

4.5.3 Mono-modal image registration: SPREAD

In this experiment we compare the proposed method compared to all three alternative
methods: FASGD, PSGD-H and PSGD-J. The baseline and follow-up image were
treated as fixed image and moving image, respectively. The Euclidean distance of
the 100 corresponding points is computed to evaluate the registration accuracy using
ED = 1

100

∑100
i=1 ‖Tµ̂(p i

F )− p i
M‖, with pF and pM the corresponding points, and T the

transformation at iteration I . A Wilcoxon signed-rank test on the registration accuracy
is used to evaluate statistical differences of these methods compared to FASGD method.

We use the mean squared intensity difference (MSD) as a dissimilarity measure,
and test for affine as well as B-spline transformations.

4.5.4 Multi-modal image registration: RIRE and BrainWeb

For multi-modal image registration, real clinical brain data is used for rigid registration
and simulated brain data is used for nonrigid registration. These datasets are used
to compare the performance of FPSGD with FASGD and PSGD-J, as PSGD-H is not
suitable for multi-modal registration.
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4.5.4.1 RIRE brain data

We registered the MR T1 image (moving image) to the CT image (fixed image) using
the rigid transformation model and mutual information (MI) dissimilarity measure.
The registration accuracy is evaluated using ED = 1

8

∑8
i=1 ‖Tµ̂(p i

F )−p i
M‖, with pF and

pM the corner points defined by RIRE and annotated in the fixed and moving image,
respectively.

4.5.4.2 BrainWeb simulated brain data

Pairwise B-spline registration was performed using these randomly generated DVFs
as the initial transformation Tinit. The registration accuracy is evaluated using the
average residual deformation inside the brain mask ΩF [103]:

Resi dual (Tinit,Tµ̂)= 1

|ΩF |
∑

xi∈ΩF

‖Tµ̂(Tinit(xi )−xi )‖. (4.20)

The statistical differences of FASGD and PSGD-J compared to FASGD method were
evaluated using a Wilcoxon signed-rank test on the registration accuracy.

4.6 Results

4.6.1 Parameter sensitivity analysis

4.6.1.1 Selection of the regularization factor τ

For all datasets we varied the parameter τ. The results can be found in Table 4.2,
Table 4.3, Table 4.4, and Table 4.5. It can be seen that the regularization factor
τ= 1.0 (no regularization) gave the worst performance for rigid and affine registration
on all datasets. For B-spline registration τ= 1.0 did work for the SPREAD data, but
failed again on the BrainWeb data. Setting the regularization factor τ= 0.0 is another
extreme meaning that the regularization term completely determines the estimation of
the preconditioner. From the results in the tables, it can be seen that the convergence
rate is much slower than for other choices of τ, even though the registration accuracy
is almost similar.

The experimental results on the different datasets show that there is no statistical
difference between the different choices of τ (0.0 < τ < 1.0) regarding the accuracy.
However, the convergence rate is improved when taking a larger value of τ. We
therefore conclude that a regularization factor τ between 0.6 and 0.8 gives the best
results. In the remainder of the chapter we use τ= 0.6.

4.6.1.2 Influence of the condition number κmax

The maximum condition number κmax is especially important for non-rigid registration.
Table 4.6 presents the registration accuracy with respect to κmax for the SPREAD study.
As we can see, different κmax obtained the similar accuracy. However, less iterations
were needed for a larger κmax. From the convergence plot in Figure 4.1, it can be
observed that the optimization converged faster for κmax ≥ 2. However, for κmax ≥ 8,
the plot exhibits more oscillating behavior, suggesting a less stable optimization.

For the BrainWeb data in Table 4.7, we again see that registration accuracy is
similar for different κmax. In Figure 4.2, all choices of κmax converged faster than
FASGD, while for κmax ≥ 2 the convergence rate does not improve further. From Table
4.7 and Figure 4.2, we can see that κmax = 2 or 4 gave the best results, which is
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Table 4.6: The influence of κmax on B-spline registration for the SPREAD study. We
used the MI dissimilarity measure, 3 resolutions, 500 iterations, and τ= 0.6.

Optimizer
Resolution 1 Resolution 2 Resolution 3

p-valueIterations I Iterations I Iterations I ED (mm)
avg ± std avg ± std avg ± std avg ± std

FASGD 496 ± 0 496 ± 0 489 ± 14 1.67 ± 1.68 -
FPSGD κmax = 1 440 ± 72 426 ± 82 481 ± 44 1.71 ± 1.70 0.001
FPSGD κmax = 2 294 ± 85 292 ± 66 378 ± 120 1.66 ± 1.64 0.968
FPSGD κmax = 4 180 ± 87 226 ± 50 241 ± 74 1.58 ± 1.56 0.003
FPSGD κmax = 8 149 ± 86 224 ± 68 202 ± 73 1.52 ± 1.49 0.000
FPSGD κmax = 16 153 ± 89 222 ± 68 200 ± 74 1.51 ± 1.49 0.001
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Figure 4.1: Convergence plots for three different patients in the experiments of
different κmax for the SPREAD dataset, showing the cost function value (MSD) against
the iteration number for different κmax using τ= 0.6.

consistent with the results in [70]. In the remainder of the chapter we set κmax = 4 for
B-spline registration (and κmax =∞ for rigid and affine registration).

4.6.2 Results of mono-modal image registration

4.6.2.1 Affine registration

The overall results of the experiments on affine registration for the SPREAD lung
CT data are given in Table 4.3. It shows that the proposed FPSGD method took less
iterations to obtain the same cost function value C (µ̂ref) than FASGD and PSGD-J. The
speed-up in terms of number of iterations of FPSGD is about 10. The improvements
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Table 4.7: The influence of κmax on B-spline registration for the BrainWeb study. We
used the MI dissimilarity measure, 1 resolution, 500 iterations, and τ= 0.6.

Optimizer
Iterations I Speed-up Residuals

p-value
avg ± std avg ± std avg ± std

FASGD 996 ± 0 1.0 ± 0.0 2.48 ± 1.43 -
FPSGD κmax = 1 333 ± 151 3.5 ± 1.3 2.48 ± 1.43 0.561
FPSGD κmax = 2 230 ± 85 4.8 ± 1.5 2.49 ± 1.42 0.080
FPSGD κmax = 4 211 ± 115 5.4 ± 1.6 2.50 ± 1.39 0.031
FPSGD κmax = 8 208 ± 118 5.6 ± 1.9 2.50 ± 1.37 0.017
FPSGD κmax = 16 220 ± 128 5.3 ± 1.8 2.53 ± 1.37 0.001
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Figure 4.2: Convergence plots for three different patients for the BrainWeb dataset,
showing the cost function value (negative MI dissimilarity measure) against the
iteration number, using τ= 0.6.

of FPSGD compared to FASGD and PSGD-J in the convergence rate are also shown
in Figure 4.5a and Figure 4.5b. These methods have the same runtime per iteration
(∼3.5 ms). PSGD-H required less iterations than the proposed FPSGD method. The
computation of the preconditioner however took somewhat longer, resulting in an
overall decrease in performance. For the affine consistently use transformation
the runtime per iteration is similar for PSGD-H and FPSGD (∼2 ms and ∼1 ms,
respectively). The overall speed-up in terms of runtime is about 5 for FPSGD, compared
to 0.5 for PSGD-H.

It can be seen from Table 4.2 that the Euclidean distance error of all methods is
around 5 mm. The p-value of the Wilcoxon signed-rank test of PSGD-J and PSGD-H
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Figure 4.3: Euclidean distance error in mm for the different methods with the SPREAD
lung CT data. The experiments were performed using MSD dissimilarity measure and
affine transformation model. For FPSGD, τ= 0.6 and κmax =∞ are used.

compared to FASGD is smaller than 0.05, indicating a statistically significant difference.
Although significant, the differences are very small, i.e. less than 0.5 mm. The
Wilcoxon signed-rank tests of FPSGD (all settings of τ) compared to FASGD show
no statistical difference (p > 0.05). A boxplot of the Euclidean distance error of 100
corresponding points is given in Figure 4.3, using τ= 0.6 for FPSGD.

4.6.2.2 B-spline registration

The overall results of the experiments on B-spline registration for the SPREAD lung CT
data are given in Table 4.3. For all three resolutions, the proposed method took less
iterations to obtain the same cost function value as FASGD. Although the proposed
method took somewhat longer to estimate the preconditioner compared to FASGD,
less iterations were required, resulting in an overall improvement of runtime. For
FPSGD (τ= 0.6), the overall speed-up is of a factor of 2. The number of iterations used
for PSGD-H to obtain the same cost function value is less than both FASGD and FPSGD,
which can also be observed from the convergence plots in Figure 4.5c and Figure 4.5d.
However, the overhead of computing the preconditioner increased substantially for
the PSGD-H method: around 104 seconds for ∼105 parameters in resolution 3, while
the FPSGD method required ∼2s.

The ED errors in Table 4.3 are evaluated at the end of resolution 3. All three
methods FASGD, PSGD-H and FPSGD obtained a mean ED error around 1.65 mm,
which is within one voxel. The p-value of the Wilcoxon signed-rank test of PSGD-H and
FPSGD compared to FASGD is 0.445 and 0.968, respectively, indicating no statistical
difference. Figure 4.4 presents the boxplot of the Euclidean distance error for the
different methods, where for FPSGD we used τ= 0.6 and κmax = 4.

4.6.3 Results of multi-modal image registration

4.6.3.1 RIRE brain data

Table 4.4 presents the runtime differences and the mean Euclidean distance error of
the RIRE experiments for all methods. We can observe that much less iterations are
required for PSGD-J and FPSGD compared to FASGD. The speed-up in iterations is
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Figure 4.4: Euclidean distance error in mm for the different methods with the SPREAD
lung CT data. The experiments were performed using MSD dissimilarity measure and
B-spline transformation model. For FPSGD, τ= 0.6 and κmax = 4 are used.
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Figure 4.5: Convergence plots of four cases in the experiments of the SPREAD lung
CT data, showing the cost function value (MSD) against the iteration number. For
B-spline registration of FPSGD, τ= 0.6 and κmax = 4 are used.
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Figure 4.6: Euclidean distance error in mm for different methods with the RIRE brain
data. The experiments were performed using MI dissimilarity measure and rigid
transformation model. For FPSGD, τ= 0.6 and κmax =∞ are used.
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Figure 4.7: Convergence plots of two patients of the RIRE brain dataset, showing
the cost function value (negative mutual information measure) against the iteration
number. For FPSGD, τ= 0.6 and κmax =∞ are used.

a factor of 10. It can also be seen that the speedup in runtime is around 5 for the
FPSGD method. The convergence plots in Figure 4.7 show substantial improvement in
convergence rate for FPSGD.

The boxplots of the Euclidean distance error for the RIRE data are shown in Figure
4.6. The median Euclidean distance of 9 patients before registration is 21.7 mm. As
we can see, the FASGD method that manually chooses a scaling factor is inferior to the
other two methods. From Table 4.4, it can be seen that the Wilcoxon signed-rank tests
between FASGD and FPSGD with different τ show significant statistical differences
(p < 0.05), except for τ= 1.0.

4.6.3.2 BrainWeb simulated brain data

The results of the BrainWeb experiment are shown in Table 4.5, Figure 4.8 and Figure
4.9. The number of iterations for FPSGD (τ= 0.6) to obtain the same cost function
value (MI) as FASGD is around 200, resulting in a runtime speed-up of about a factor
of 5, as can be seen in Table 4.5. These improvements can also be observed from the
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Figure 4.8: Residuals in mm for the different methods with the BrainWeb simulated
brain data. The experiments were performed using MI dissimilarity measure and
B-spline transformation model. The parameter settings of FPSGD are τ = 0.6 and
κmax = 4.

convergence plots in Figure 4.9.
The mean residuals of the different methods show a similar result. The Wilcoxon

signed-rank test between FASGD and FPSGD (τ= 0.6) shows a significant statistical
difference (p = 0.031). However, from Table 4.5, it can be seen that the difference is
very small (around 0.02). Increasing the regularization factors τ can achieve a faster
convergence rate, however, most registrations failed for τ= 1.0. The boxplots of the
residuals of both FASGD and FPSGD (τ= 0.6, κmax = 4) are shown in Figure 4.8.

4.7 Discussion

The experimental results show that the proposed FPSGD method works well in both
mono-modal as well as multi-modal image registration, in combination with different
transformation models and dissimilarity measures, showing that the proposed method
is generic for different registration problems. The proposed FPSGD method can be used
for different transformation models, unlike PSGD-J which was proposed only for rigid
and affine registration problems. Compared to FASGD which is not preconditioned, the
proposed FPSGD method not only obtains the same registration accuracy, moreover
improves the convergence. Without the computational burden of the Hessian matrix
calculation and decomposition, the proposed FPSGD method takes much less time than
PSGD-H to construct a preconditioner. Additionally, the proposed method requires
only a cost function gradient and a set of transformation Jacobians, while PSGD-H
also needs the implementation of the self-Hessian. Most importantly, the proposed
FPSGD method is more generic for different modalities and not limited to mono-modal
problems like PSGD-H.

Compared to FASGD, the main improvement of the proposed FPSGD method is in
the convergence rate, inducing a speedup in runtime of a factor of 2.0-6.0 depending on
the application. Specifically, the proposed FPSGD method used half a second to obtain
the same registration accuracy as FASGD for the affine registration on the SPREAD
lung CT with image sizes of 450×300×130, while FASGD took 2 seconds. The proposed
FPSGD method needs much less computation time for the preconditioner estimation
than PSGD-H: ∼2 seconds vs ∼104 seconds for ∼105 transformation parameters, see
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Figure 4.9: Convergence plots of the experiment of the BrainWeb simulated dataset,
showing the cost function value (negative MI dissimilarity measure) against the
iteration number. For FPSGD, τ= 0.6 and κmax = 4 are used.

Table 4.3. This large difference between different methods in the computation time of
preconditioner estimation can be attributed to the complexity of different methods.
For PSGD-H, the complexity is highly due to the Cholesky decomposition of O (N 3

p ),
i.e. depending on the number of transformation parameters, while for the FPSGD
method the complexity is only linear in the number of samples O (Np ). In addition, the
runtime per iteration for the PSGD-H method increased to ∼5 seconds for NP ≈ 105

transformation parameters, due to the multiplication of a full matrix P instead of only
a diagonal matrix for FPSGD (∼24 ms per iteration for MI dissimilarity measurement).
We therefore conclude that the proposed FPSGD method converges faster than the
FASGD method and is more time-efficient than the PSGD-H method.

There are two parameters that influence the performance of the proposed FPSGD
method: the regularization factor τ and the maximum condition number κmax. We
validated the influence of both parameters experimentally. We showed that the extreme
cases (τ = 0 and τ = 1) yielded suboptimal results, indicating that regularization of
the preconditioner is required. The proposed regularization method performs a
Gaussian smoothing, considering entries with a similar Jacobian response. This choice
reflects the observation that transformation parameters that have a similar effect
on the displacement, require similar preconditioning, and vice versa. For example,
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for the affine transformation rotation and translation require different scaling. The
experiments showed that the choice τ= 0.6 yielded good results for all applications.

For ill-conditioned problems, κmax serves as a safe guard to prevent extreme values
in the preconditioner. In the experiment on the SPREAD data, different κmax obtained
a similar registration accuracy, however, the convergence has some oscillations for
κmax > 4 in the second and third resolution in Figure 4.1. For the BrainWeb data, best
results were acquired with κmax = 4 and the convergence plots are also very stable.
Overall, the best choice of κmax is between 2 and 4 for nonrigid registration, while
κmax =∞ can be used for rigid and affine registration.

To further improve the proposed FPSGD method the following may be considered.
Firstly, the proposed preconditioning scheme detailed in Algorithm 2 is very suitable
for further acceleration on a Graphics Processing Unit (GPU). It could be easily applied
for the parallel computing of the gradient and the preconditioner [22], therefore
this will be beneficial when going to variable preconditioning. Secondly, our method
can be combined with the variable preconditioning techniques for difficult problems
where the curvature of the cost function changes iteratively. Instead of estimating the
preconditioner once at the beginning of each resolution, we may regularly update
it. A GPU implementation is then warranted to keep the runtime per iteration low.
Furthermore, a stopping condition other than the number of iterations will be required
to practically take advantage of the convergence improvements. An interesting option
suitable in a stochastic setting is a moving average of the noisy gradients over a few
iterations.

4.8 Conclusion
In this chapter, we proposed a generic preconditioner estimation method for the
stochastic gradient descent optimizers used in medical image registration. Based
on the observed distribution of the voxel displacements, this method automatically
constructs a diagonal preconditioner, avoiding the computationally complex calculation
of the Hessian matrix. All tested methods obtained a similar final registration accuracy
in all tested datasets. The proposed FPSGD optimizer, however, outperforms FASGD
and PSGD-J in terms of convergence rate, while yielding a similar computational
overhead. While a previous method (PSGD-H) even further reduces the required num-
ber of iterations, it comes at a substantial overhead in computing the preconditioner,
especially for high dimensional transformations. Additionally, PSGD-H can only be
used in mono-modal problems and requires the implementation of a Hessian matrix
computation.

We conclude that the proposed method can act as a generic preconditioner for
optimization in registration methods, yielding similar accuracy as gradient descent
routines while substantially improving the convergence rate.
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5
Evaluation of an open source registration

package for automatic contour propagation
in online adaptive intensity-modulated

proton therapy of prostate cancer

This chapter was adapted from:

Y. Qiao, T. Jagt, M. Hoogeman, B.P.F. Lelieveldt and M. Staring. Evaluation of an
open source registration package for automatic contour propagation in online
adaptive intensity-modulated proton therapy of prostate cancer, submitted

69



Abstract

Purpose: To investigate the performance of an open source deformable image
registration package, elastix, for fast and robust contour propagation in the context
of online-adaptive IMPT for prostate cancer.
Material and Methods: A planning and 7-10 repeat CT scans were available of
18 prostate cancer patients. Automatic contour propagation of repeat CT scans
was performed using elastix and compared with manual delineations in terms of
geometric accuracy and runtime. Dosimetric accuracy was quantified by generating
IMPT plans using the propagated contours expanded with a 2-mm (prostate) and
3.5-mm margin (seminal vesicles and lymph nodes) and calculating coverage based on
the manual delineation. A coverage of V95% ≥ 98% was considered clinically acceptable.
Results: Contour propagation runtime varied between 13 and 55 seconds for different
registration settings. For the fastest setting, 83 in 93 (89.2%), 73 in 93 (78.5%),
and 91 in 93 (97.9%) registrations yielded clinically acceptable dosimetric coverage
of the prostate, seminal vesicles, and lymph nodes, respectively. For the prostate,
seminal vesicles, and lymph nodes the Dice Similarity Coefficient (DSC) = 0.88±0.03,
0.66±0.16, 0.88±0.03 and the mean surface distance (MSD) = 1.4±0.3 mm, 1.8±0.8
mm, 1.5±0.4 mm, respectively.
Conclusions: With a dosimetric success rate of 78.5% to 97.9%, this software
may facilitate online adaptive IMPT of prostate cancer using a fast, free and open
implementation.
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5.1 Introduction

Intensity-modulated proton therapy (IMPT) for prostate cancer treatment has the
potential to deliver a highly localized dose distribution to the target volume. However,
IMPT is also sensitive to treatment-related uncertainties that may distort the planned
dose distribution. These include uncertainties in patient set-up, inter-fraction and
intra-fraction variations in the shape and position of the target volume and organs at
risk (OARs), and uncertainties in the range of the proton beams [4, 5, 6, 7, 8].

The uncertainties are usually accounted in the clinical-target-volume to planning-
target-volume (CTV-to-PTV) margin, while proton-therapy specific effects are ac-
counted for by including robustness in the optimization of the treatment plan. Both
come at a price in terms of sparing of OARs. Therefore, ideally, these uncertainties
should be tackled at each treatment fraction by re-optimizing the treatment plan,
based on a new CT scan-of-the-day. This requires new contours for the target and
OARs. Manual re-contouring, however, takes a substantial amount of time, which
would give rise to new shape and position uncertainties. Fast automatic methods are
therefore mandated.

Deformable image registration (DIR) provides an efficient way to automatically
re-contour the repeat CT scan by establishing the spatial correspondence with the
planning CT scan. The manual contours from the planning CT are then propagated to
the repeat CT, thereby compensating for anatomical changes that may have occurred
in the meantime. In combination with fast IMPT treatment replanning this enables the
use of small margins and limited amount of robustness without losing dose coverage.
The important step of DIR in an online-adaptive IMPT procedure (re-contouring, re-
planning, patient-specific QA), however, is currently rather time-consuming. In this
chapter we therefore developed and evaluated a fast and automatic DIR method, and
performed a dosimetric evaluation for IMPT.

Many DIR algorithms implemented in commercial or open source software pack-
ages could be used clinically [104]. Commercial software packages are, however,
frequently black boxes for users and have limited choices for parameter customization.
Open source packages are much more flexible and provide fully customizable algo-
rithms [105, 106, 10]. Moreover, they support the fundamental scientific principle of
reproducibility, sharing of knowledge and thereby promote opportunities for scientific
advancement [107, 108, 109].

The validation of DIR for radiation therapy has been performed in terms of
dosimetric coverage of the prostate [110, 111, 112] and other anatomical areas
[113, 114]. The relation between registration settings and geometric accuracy was
also investigated [115]. However, the time cost of image registration [105, 106] is also
important for online-adaptive IMPT. Kupelian et al. [116] found the prostate having a
shift larger than or equal to 5 mm within 30 seconds in 15% of the fractions. Therefore,
these shifts should be accounted for by DIR within this time span [117]. In 2009,
Godley et al. reported 9 minutes to register two CT images [118]. A recent clinical
practice report [98] mentioned an average rigid registration time of 79 seconds in
their treatment planning, while the computational complexity for DIR was not stated.
Another paper presented a matching time of 147 seconds for prostate cancer patients
[119], which included the acquisition time and the time for manually matching
fiducial markers. Although a graphics processing unit (GPU) and other computational
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techniques [106, 22, 120] can be used to accelerate image registration, this has
not yet led to real-time and robust algorithms. To our knowledge, the validation of
open source packages on registration accuracy in relation to runtime has not been
investigated so far for prostate cancer. In this chapter, we investigate the performance
of a DIR package, in terms of runtime, geometric and dosimetric performance in
IMPT. The presented package, elastix, is open source (Apache 2.0 license) and freely
available for commercial and clinical application, research and further development.

5.2 Materials and Methods

5.2.1 Patients and imaging

Eighteen patients treated for prostate cancer with IMPT at Haukeland University
Hospital in 2007 were included in this study. A planning CT and 7 to 10 repeat CTs
were acquired out-of-room for each patient using a Philips Brilliance Big Bore CT
scanner and anonymized with DicomWorks version: 2.2.1. Each CT scan contained
90 to 180 slices and were reconstructed with a slice thickness of 2-3 mm. Each slice
was of size 512 × 512 pixels and had an in-slice pixel resolution ranging from 0.84 ×
0.84 mm to 0.95 × 0.95 mm. Golden fiducial markers (2 to 3) were implanted in the
prostate for daily set-up to align the target with the treatment beams [121].

For each CT scan, the prostate, seminal vesicles, lymph nodes, bladder and rectum
were delineated by an expert, and independently reviewed by another expert [4]. The
original images and delineations are in DICOM-RT format and were converted to meta
image format and VTK meshes using MevisLab (http://www.mevislab.de/). Manual
delineations of the bowels and femoral heads were available for 11 patients, which
were included for dosimetric evaluation.

5.2.2 Image registration

In this study, DIR was performed using elastix [10] (http://elastix.isi.uu.nl).
All experiments were performed on a PC with 16 GB memory, Windows 7 operating
system and an Intel Xeon E5-1620 CPU with 4 cores (3.6 GHz), utilizing only the CPU,
without GPU acceleration.

The planning CT (moving image) was registered to the repeat CT scans (fixed
image), after which the manual delineations from the planning CT were propagated
based on the DIR results. Registrations were initialized based on the centers of gravity
of the bony anatomy (tissue with HU > 200) of the fixed and moving image. A mask of
the torso was generated automatically using in-house software Pulmo (commercialized
by Medis specials, Leiden, The Netherlands), to eliminate the influence of the couch
on image registration quality [50]. The registration procedure includes an affine
registration to tackle large movements of organs and is followed by a deformable
registration to compensate for local deformations. A fast recursive implementation of
B-spline transformation model was used [57, 122]. Mutual information was used as a
similarity measure [123]. For optimization we used an accelerated version of adaptive
stochastic gradient descent [100]. A three level multi-resolution scheme was chosen to
deal with local minima and to reduce calculation burden. Detailed parameter settings
are available at the elastix website. In the experiments we varied the number of
iterations between 100, 500, 1000 and 2000 iterations per resolution, and inspected
the influences on DIR quality and runtime.
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5.2.3 Evaluation measures

For quantitative evaluation of the automatic DIR method we considered runtime,
recontouring quality and dosimetric coverage. Runtime is measured by the system
clock, in seconds. The recontouring quality of the prostate, seminal vesicles, lymph
nodes, bladder and rectum is measured by comparing the automatically propagated
contour from the planning CT with the manual delineation of the repeat CT. We
consider the Dice Similarity Coefficient (DSC) [13]:

DSC = 1

R

∑ 2|M ∩F |
|M |+ |F | , (5.1)

where R is the total number of segmentations, F and M are the manually delin-
eated regions in the fixed image and the propagated regions in the moving image,
respectively.

Two types of symmetric surface distances are used, namely the mean surface dis-
tance (MSD) and the 95% percentile Hausdorff distance (95%HD). Let F = {a1, a2, . . . , an},
and M = {b1,b2, . . . ,bm} represent the mesh points from two surfaces, then we have
[124]:

MSD = 1

2

(
1

n

n∑
i=1

d(ai , M)+ 1

m

m∑
i=1

d(bi ,F )

)
, (5.2)

HD = max{max
i

{d(ai , M)},max
j

{d(bi ,F )}}, (5.3)

in which d(ai , M) = min j ‖b j −ai‖. Both distances are computed in 3D. The geometrical
success rate γ is defined as the percentage of registrations which have an MSD < 2mm
(slice thickness) for the prostate: γ= n{MSD < 2mm}/N , N = 159.

To measure the dosimetric impact of differences in manual delineations and
automatically delineations, IMPT plans were generated on each repeat CT for both sets
of delineations for the 11 patients where delineations of the femoral heads and bowels
are available. To evaluate the effect these different delineations have on the dose
distributions, both IMPT plans are evaluated on the manual contours, which therefore
acts as the ground truth. All IMPT plans were generated using Erasmus-iCycle, an
in-house developed treatment planning system [125, 126]. Erasmus-iCycle uses a
multi-criteria optimization to generate a clinically desirable Pareto optimal treatment
plan on the basis of a wishlist consisting of hard constraints and objectives. A small
margin is used (2 mm around the prostate and 3.5 mm around the seminal vesicles and
lymph nodes) to compensate for inevitable inaccuracies of the contour-propagation
and to account for intra-observer variations in the manual contouring. Note that the
margins are far from sufficient to account for shape and positions changes of the target
volume, for which clinically typically a margin of 7 mm is used [6, 127, 128]. Dose
was prescribed according to a simultaneously integrated boost scheme in which the
high-dose PTV (prostate + 2 mm margin) was assigned 74 Gy and the low-dose PTV
(seminal vesicles and lymph nodes + 3.5 mm margin) 55 Gy, to be delivered using
two laterally opposed beams. The optimization ensures that at least 98% of the target
volumes receive at least 95% of the prescribed dose (V95% ≥ 98%). To avoid overdose
the optimization ensures that less than 2% of the target volumes receive more than
107% of the highest prescribed dose (V107% ≤ 2%). For the recontouring to be clinically
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Table 5.1: Dice overlap of different organs for different registration settings.

Prostate Seminal vesicles Lymph nodes Rectum Bladder
Nr. it. mean ± std mean ± std mean ± std mean ± std mean ± std
Affine 0.85 ± 0.07 0.47 ± 0.25 0.90 ± 0.04 0.71 ± 0.08 0.78 ± 0.09
100 0.88 ± 0.03 0.66 ± 0.16 0.88 ± 0.03 0.77 ± 0.07 0.88 ± 0.09
500 0.88 ± 0.03 0.68 ± 0.14 0.88 ± 0.03 0.79 ± 0.06 0.89 ± 0.09

1000 0.88 ± 0.04 0.68 ± 0.13 0.87 ± 0.03 0.79 ± 0.06 0.89 ± 0.09
2000 0.87 ± 0.03 0.67 ± 0.13 0.87 ± 0.03 0.80 ± 0.06 0.89 ± 0.10

Table 5.2: Mean surface distance (mm) of different organs for different registration
settings.

Prostate Seminal vesicles Lymph nodes Rectum Bladder
Nr. it. mean ± std mean ± std mean ± std mean ± std mean ± std
Affine 1.64 ± 0.71 2.91 ± 1.65 1.27 ± 0.48 3.92 ± 1.48 4.42 ± 2.10
100 1.36 ± 0.30 1.75 ± 0.84 1.49 ± 0.44 3.16 ± 1.28 2.48 ± 1.77
500 1.40 ± 0.37 1.68 ± 0.79 1.57 ± 0.42 2.97 ± 1.22 2.06 ± 1.46

1000 1.42 ± 0.46 1.67 ± 0.74 1.59 ± 0.42 2.94 ± 1.22 1.99 ± 1.40
2000 1.44 ± 0.50 1.69 ± 0.74 1.61 ± 0.42 2.90 ± 1.20 1.92 ± 1.33

acceptable the automatically generated treatment plans should still fulfill these criteria.
The clinical success rate η is defined as the percentage of registrations for which the
prostate directly meets the dose treatment criteria: η= n{V95% ≥ 98%}/N , N = 93. A
second more conservative measure of clinical success is when all target volumes (the
prostate, seminal vesicles and lymph nodes) meet this dosimetric criterium.

5.3 Results

5.3.1 Image registration performance

Examples of automatically propagated contours using DIR are given in Figure 5.1.
Table 5.1 presents the overlap after DIR for different number of iterations. For the
prostate, we obtained a DSC of 0.88±0.03 for each patient and all settings, and a
similar overlap for the lymph nodes. The most difficult structures are the seminal
vesicles, which have small volume and only achieved an overlap of 0.66±0.16 for 100
iterations, and 0.67±0.13 for more than 500 iterations. For the OARs, we obtained a
DSC of 0.77±0.07 for the rectum and 0.88±0.09 for the bladder for 100 iterations, and
small improvements are observed when the number of iterations increased to at least
500. DSC scores generally improved from 100 to 500 iterations, but not after that.

The MSD results are shown in Table 5.2. The MSD of the target organs were
smaller than 1.8 mm which was within one voxel (0.9×0.9×2 mm). Note that for an
increasing number of iterations the MSD slightly increased for the prostate and lymph
nodes, likely due to the reduction in MSD of the bladder, rectum and seminal vesicles.
The geometrical success rate of the registrations was 96% (153 in 159) for 100 and
500 iterations and 95% (152 in 159) for the other settings, while this value was 77%
for affine registration. The 95%HD between the propagated and manual contour is
shown in Table 5.3, which shows a similar pattern as the MSD.
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Table 5.3: 95% percentile Hausdorff distance (mm) of different organs for different
registration settings.

Prostate Seminal vesicles Lymph nodes Rectum Bladder
Nr. it. mean ± std mean ± std mean ± std mean ± std mean ± std
Affine 3.89 ± 1.67 6.47 ± 3.28 3.12 ± 1.20 11.84 ± 5.70 12.43 ± 6.60
100 3.23 ± 0.98 4.38 ± 2.31 3.66 ± 0.98 10.53 ± 5.75 7.65 ± 6.59
500 3.46 ± 1.44 4.23 ± 2.20 3.93 ± 0.97 10.22 ± 5.82 6.34 ± 5.88

1000 3.51 ± 1.79 4.27 ± 2.26 4.02 ± 0.99 10.27 ± 5.93 6.13 ± 5.63
2000 3.58 ± 1.96 4.38 ± 2.45 4.10 ± 1.03 10.24 ± 5.96 5.93 ± 5.40

The total runtime in seconds for each registration setting was 13.5±1.7, 22.4±1.9,
33.0±2.3, and 54.3±3.1 seconds, for 100, 500, 1000, and 2000 iterations, respectively.
Figure 5.2 illustrates the registration accuracy with respect to the mean runtime for
different anatomical structures. Boxplots of the Dice overlap, mean surface distance
and 95% Hausdorff distance are shown for all registrations (N = 159).

5.3.2 Dosimetric validation

All treatment plans were evaluated by visual inspection of the dose distributions, the
DVHs of the target volumes and OARs, and the clinical constraints. For the prostate,
seminal vesicles and lymph nodes, we report the V95% and V107% of each treatment
plan that used the DIR-generated contours. For the rectum, we consider V45G y , V60G y ,
V75G y and Dmean , while for the bladder V45G y , V65G y and Dmean are used, where Dmean

means the average dose to the structure.
Figure 5.4 shows a boxplot depicting the difference in dosimetric parameters

between the automatically generated delineations (100 iterations setting) and the
manual delineations, in the treatment plan that was based on the automatically
generated delineations. For all dosimetric parameters the median of the differences
are close to 0. However, there are some scans for which larger differences occur for
especially the V95% of the seminal vesicles. Table 5.4 shows the percentage of scans for
which V95% ≥ 98% and V107% ≤ 2% for the treatment plans based on the automatically
contoured structures. Note that the success rate when using the manual delineations
is close to 100% for all organs. As one can see, DIR using 100 iterations obtained a
success rate of 89.2% for the prostate and 78.5% for the seminal vesicles, and these
numbers are improved to 89.2% and 88.2%, respectively for 500 iterations. The
conservative success rate based on all three target volumes increased from 68.8% to
77.4%, for 100 and 500 iterations, respectively. The 10 out of 93 cases that did not
directly meet our definition of clinical success had a V95% for the prostate between
90% and 97% with a mean of 95% for DIR using 100 iterations. More details are given
in the Discussion.

5.4 Discussion

The purpose of this study was to investigate if automatic recontouring for prostate
cancer IMPT would be possible, considering the clinical requirements for accuracy,
robustness and speed. The overall goal of online adaptive IMPT is to be able to treat
with a small margin to spare OARs. This can only be done by daily re-planning,
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Figure 5.1: An example of one failed case (left) and one successful case (right). The
bottom figures are dose volume histograms. The solid line represents the manual
contouring results while the dot line is the automatically propagated one with the
setting of 100 iterations. For the prostate, the MSD is 2.26 mm and 1.12 mm, while
V95% is 90.80% and 99.83%, respectively. For seminal vesicles, the MSD is 2.74 mm
and 1.00 mm, while V95% is 99.79% and 99.82%, respectively. For lymph nodes, the
MSD is 1.45 mm and 0.99 mm, while V95% both are 100%, respectively.

otherwise coverage loss or underdosage may occur, which is unacceptable. Such
daily re-planning warrants automatic recontouring, in this study by DIR. To quantify
the clinically more relevant dosimetric impact of such re-planning, we performed
a dosimetric validation. The chosen endpoint is therefore V95% ≥ 98% for each of
the target volumes. In general, the registration package elastix can automatically
re-contour repeat CT scans of the prostate with a desirable accuracy in 13 seconds.

Several aspects were important for registration performance: 1) A correct initializa-
tion of DIR was necessary. Alignment of bony anatomy, as used in this study, yielded
satisfactory results [4, 129], but exploitation of the implanted gold markers could also
be an option [128]; 2) The couch is disturbing the registration and should therefore
be removed by masking or cropping. In this study both were used, where cropping
was also beneficial for runtime performance; 3) As we had compared the registration
accuracy with and without mask, we found that masking is helpful for small volume
organs such as the seminal vesicles and rectum, while no differences were observed
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Figure 5.2: Boxplot of registration performance against run time in seconds. From
left column to right column the DSC, MSD and 95%HD are shown, respectively. From
top to bottom the prostate, seminal vesicles and lymph nodes are shown, respectively.
Within one boxplot, from left to right the affine registration and B-spline registrations
with 100, 500, 1000 and 2000 iterations are shown, respectively. Each boxplot contains
results of 159 registrations.

for the prostate and lymph nodes. This finding is consistent with previous studies [4,
105].

In this study special attention was given to the registration runtime in relation
to achieved accuracy, determined by the number of iterations. Overall, registration
accuracy increased only slightly when gradually increasing the number of iterations
from 100 to 2000, suggesting that early convergence was obtained in most cases.
Only for the seminal vesicles an improvement in dose coverage was observed when
using 500 iterations, see Table 5.4. The geometrical success rate as expressed by the
percentage of registrations with an MSD below the slice thickness of 2 mm was 96%
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Figure 5.3: Boxplot of registration performance against run time in seconds. From left
column to right column the DSC, MSD and 95%HD are shown, respectively. Within
one boxplot, from left to right the affine registration and B-spline registrations with
100, 500, 1000 and 2000 iterations are shown, respectively. Each boxplot contains
results of 159 registrations.

Table 5.4: Percentage of registrations that meet the dose constraints for the different
contours. Conservative success rate (CSR) refers to the percentage of registrations for
which all target volumes (the prostate, seminal vesicles and lymph nodes) meet the
dose constraints.

Prostate Seminal vesicles Lymph nodes CSR

V
95

%
≥

98
% 100 89.2 78.5 97.9 68.8

500 89.2 88.2 97.9 77.4
1000 89.2 88.2 98.9 78.5
2000 90.3 88.2 97.9 77.4

V
10

7%
≤

2% 100 100.0 100.0 100.0
500 100.0 100.0 100.0

1000 100.0 100.0 100.0
2000 100.0 100.0 100.0

for the prostate. Clinical success rate, expressed by the dose coverage criteria, was
88% for the prostate. This means that in a high percentage of cases the automatically
generated contours can be directly used for online adaptive IMPT. For those patients,
smaller margins can be used and less robustness can be included than when using
conventional non-adaptive planning, resulting in less dose for the OARs and potentially
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Figure 5.4: Boxplot depicting the difference in dosimetric parameters between the
automatically generated delineations and the manual delineations in the treatment
plan based on the automatically generated delineations using 100 iterations for 94
scans. Each boxplot indicates the median and the 25th and 75th percentiles of the
obtained differences. The line depicts the remaining differences which are not outliers.
Values are defined outliers if they are more than 1.5 times the distance between the
25th and 75th quartiles away from the quartiles. The red marks indicate the outliers.

less complications for the patients. For the remaining cases interaction is warranted,
for example by manually supplying corresponding points at anatomical regions that
require improvement [130, 131].

From the 93 registrations that were assessed in terms of target coverage, 10 (12%)
did not directly meet the dose conformity constraints for the prostate. These cases
were inspected visually, and we found that 2 cases had many gas pockets in the rectum,
while for the other 8 cases no apparent reason was found. For the former we may
consider specialized DIR methodology using an intensity modification technique [132].
The MSD of these two cases was around 2.3 mm, and therefore also did not meet the
geometrical criteria. Of the 8 remaining cases, one case had a V95% of 97.99%, which
increased to ≥ 98% when 500 or more iterations were used. Two cases had a V95%

around 97% for all settings, which is very close the threshold of 98%; both had an
MSD of 1.3 mm, meeting the geometrical criterion for success. Two cases had a V95%

of 96%, which improved to 98% and 99% when 500 iterations or more were used.
The remaining three cases obtained a V95% in the range 92%-96% for the prostate and
an MSD in the range 1.6-1.8 mm, so were not far from success.

In order to use elastix in a clinical setting, one should consider quality control.
This can be done via visual inspection of the generated contours, but assistance by
automatic techniques for uncertainty estimation of image registration may be of
interest [133, 134]. These techniques may pinpoint areas of possible misregistration,
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thus enabling a quicker assessment of registration quality. Secondly, for 12% of cases
manual assistance or fall-back strategies are needed. Registration can for example be
efficiently improved by manual indicating a few landmarks on structure boundaries
[131]. Robustness may be further improved by taking into account automatic estimates
of the bladder [135] in the registration by optimizing a joint functional. Thirdly, in
this study we used clinical quality repeat CT scan, which assumes the availability of
an in-room CT-on-rails system. Since such a system is not available in all hospitals,
alternatively Cone Beam CT (CBCT) may be used in-room [114, 136]. However, the
reduced soft-tissue contrast of CBCT images may increase the uncertainty of DIR,
which therefore may influence the quality of the IMPT plans. Fourthly, the registration
time assessed in this chapter is determined by a fixed number of iterations, which
is not case-specific [100, 137]. A patient-specific stopping condition for stochastic
gradient decent, such as considering a moving average of the noisy cost function
values (or gradient), may remedy this. Lastly, a further reduction in runtime may be
obtained with the help of a GPU and other computational techniques [106, 22, 120].

5.5 Conclusion
In this study we showed that the open source registration package elastix can
automatically re-contour repeat CT scans of the prostate in 13 seconds, yielding
treatment plans that directly meet the dose conformity constraints in 78.5% to 97.9%
of cases, and a geometrical criteria of success in 96% of cases. This software may
therefore facilitate online adaptive proton therapy of prostate cancer, enabling a
reduction in treatment margins.
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6
Discussion and conclusion

Image registration is important for medical image analysis. However, its clinical
application is sometimes limited by the speed of the algorithm. For example, in
online adaptive radiation therapy a few seconds is ideal, while it usually takes several
minutes, at the least. In this thesis, we consider acceleration techniques for parametric
intensity-based image registration problems focussing on the optimization routine,
specifically the step size and the search direction. The different proposed methods
are thoroughly evaluated on different datasets across modalities, subject, similarity
measures and transformation models. Depending on the registration settings, the
estimation time of the step size is reduced from 40 seconds to less than 1 second when
the number of parameters is 105, almost 40 times faster. The total registration time of
new acceleration techniques (FASGD) is reduced by a factor of 2.5-7x compared with
ASGD for the experiments in this thesis. All methods were implemented using C++ in
the open source registration package elastix. Based on these acceleration schemes
we evaluated elastix on the application of automatic contour propagation in online
adaptive intensity modulated proton therapy for prostate cancer.

6.1 Summary
A summary of the thesis is given below:

Chapter 2 Step size selection is important for gradient descent optimization. It is
difficult to perform manually, because for image registration different fixed or
moving images, different similarity measures or transformation models require
a different step size. Klein et al. proposed a method to automatically estimate
the step size, however, for a large number of transformation parameters, i.e.
in the order of 105 or higher, the runtime is unacceptable and the time used in
estimating the step size will dominate the optimization [45]. In this chapter,
a new automatic method (FASGD) for estimating the optimization step size
parameter a, needed for gradient descent optimization methods, has been
presented for image registration. The parameter a is automatically estimated
from the magnitude of voxel displacements, randomly sampled from the fixed
image. A relation between the step size and the expectation and variance of
the observed voxels displacement is derived. The proposed method has a free
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parameter δ, defining the maximally allowed incremental displacement between
iterations. Unlike a, it can be interpreted in terms of the voxel size (mm).
In addition, it is mostly independent of the application domain, i.e. setting
it equal to the voxel size provided good results for all applications evaluated
in this chapter. Compared to the original ASGD method, the time complexity
of the FASGD method is reduced from quadratic to linear with respect to the
dimension of the transformation parameters P . For the B-spline transformation,
due to its compact support, the time complexity is further reduced, making the
proposed method independent of P . The FASGD method is publicly available via
the open source image registration toolbox elastix [10]. The FASGD method
was evaluated on a large number of registration scenario’s and shows a similar
accuracy as the original ASGD method. It however improves the time complexity
of the step size estimation from 40 seconds to no more than 1 second, when
the number of parameters is ∼ 105: almost 40 times faster. Depending on the
registration settings, the total registration time is reduced by a factor of 2.5-7x
for the experiments in this chapter.

Chapter 3 This chapter presents a stochastic quasi-Newton optimization method (s-
LBFGS) for non-rigid image registration. It uses the classical limited memory
BFGS method in combination with noisy estimates of the gradient. Curvature
information of the cost function is estimated robustly once every L iterations and
then used for the next L iterations in combination with stochastic gradients. A
novel restarting procedure, automatically selecting the optimization step size, is
shown to be beneficial for accelerated convergence. The new optimization
routine is validated on follow-up data of 3D chest CT scans (19 patients).
Compared to ASGD the proposed method uses about 5 times fewer iterations to
reach the same metric value, resulting in an overall reduction in run time of a
factor of two. Compared to deterministic LBFGS, s-LBFGS is almost 500 times
faster.

Chapter 4 A generic preconditioner estimation method was proposed in this chapter
for the stochastic gradient descent optimizers used in medical image registration.
Based on the observed distribution of the voxel displacements, this method
automatically constructs a diagonal preconditioner, avoiding the computationally
complex calculation of the Hessian matrix. We performed experiments to
compare our method with FASGD and also other preconditioning techniques:
Jacobian type preconditioned stochastic gradient descent (PSGD-J) [70] and
Hessian type preconditioned stochastic gradient descent (PSGD-H) [70]. All
tested methods obtained a similar final registration accuracy in all tested datasets.
The proposed FPSGD optimizer, however, outperforms FASGD and PSGD-J in
terms of convergence rate, while yielding a similar computational overhead.
While a previous method (PSGD-H) even further reduces the required number
of iterations, it comes at a substantial overhead in computing the preconditioner,
especially for high dimensional transformations. Additionally, PSGD-H can
only be used in mono-modal problems and requires the implementation of a
Hessian matrix computation. We conclude that the proposed method can act
as a generic preconditioner for optimization in registration methods, yielding
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similar accuracy as gradient descent routines while substantially improving the
convergence rate with a speedup by a factor of 2-4.

Chapter 5 In this chapter we showed that by integration of our algorithms in the
open source registration package elastix, repeat CT scans of the prostate can
be automatically re-contoured for adaptive online IMPT. The online adaption
of IMPT could allow for small margins of the target (the prostate), leading to
less complications. The dosimetric performance was evaluated with a margin of
2mm, 3.5mm and 3.5mm for the prostate, seminal vesicles and lymph nodes,
respectively. The fastest setting of 13 seconds yielded a promising clinical
acceptance rate of 83 in 93 cases (89.2%), 73 in 93 (78.5%), and 91 in 93
(97.9%) in dosimetric coverage for the prostate, seminal vesicles and lymph
nodes, respectively. We conclude that the fast setting of open source elastix can
automatic re-contour the daily scans that meet the dose conformity constraints
in 78.5% to 97.9% of cases, and a geometrical criteria of success in 96% of cases.
This software may therefore facilitate online adaptive proton therapy of prostate
cancer, enabling a reduction in treatment margins.

6.2 Discussion
The aim of this thesis was to accelerate the procedure of image registration for clinical
applications, such as online adaptive radiation therapy. The image registration pro-
cedure includes sampling, transformation, optimization, interpolation and similarity
measure selection [10], where the core part and most time-consuming component is
optimization. From the evaluation of different optimization strategies performed by
Klein et al. [25], we realized that the speed of image registration could be improved by
subsampling. Later he proposed adaptive stochastic gradient descent (ASGD), which
is powerful and achieved a good registration accuracy and fast convergence speed
in terms of runtime. However, this method is still not fast enough for large scale
problems, for example for 106 transformation parameters and 3D volumetric image
registration. If the runtime of ASGD could be further reduced, the speed of image
registration will be accelerated.

We first focus on the core part of the optimization algorithm, specifically in
finding a suitable initial step size and determining a search direction yielding a faster
convergence rate. These two parts are not only important for stochastic gradient type
methods but also for deterministic gradient type methods. In Chapter 2 we found that
the good initialization of the step size is important for the optimization and especially
for stochastic gradient type methods. Therefore, different schemes to choose a suitable
step size are still an actively pursued topic in the optimization field. Considering
search direction schemes, first order gradient methods have the inherit shortcoming
of a linear or sublinear convergence rate. A new scheme using second order gradient
information with stochastic gradient was thereby proposed and first used in medical
image registration problems in Chapter 3. This chapter provides an insight to take use
of second order gradient information with an averaging and restarting scheme, both of
which are useful to improve the optimization speed. Besides directly using the second
order gradient information, we found that we could scale or transform multi-variate
problems from an ill-conditioned status to a well-conditioned one at the very beginning
of the optimization. A more generic preconditioning scheme was then proposed for
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(stochastic) gradient descent methods in Chapter 4. The experimental results evaluated
on different clinical data had shown that the proposed methods work well for different
image registration problems parameterized by different transformation models and
different similarity measures. In summary, the step size and the search direction are
both important, and essential parts for optimization of image registration.

The successful speedup of the proposed methods on the evaluated datasets encour-
ages further research in this direction. The possibilities are either on the adaptive
step size selection or on the efficient search direction scheme. There are many other
adaptive step size selection methods such as Adagrad [138], Adadelta [139] and
Adaptive Moment Estimation (Adam) [140], which use the properties of the current
gradient together with the past gradient. For the search direction, the conjugate
stochastic gradient descent [141], variance reduction stochastic gradient descent
[142], stochastic gradient descent with momentum [143, 144] and others provide
some avenues for future research. Reducing the variance of the stochastic gradient
estimation may improve the convergence rate and averaging the stochastic gradient
can reduce the noise. Finally, combining these two techniques may yield of further
performance improvement. For iterative optimization schemes, these three proposed
methods, fast initial step size estimation, stochastic second order gradient method and
fast preconditioning scheme, are not independent. Our fast preconditioning scheme
was based on the work of fast initial step size estimation, so this scheme could also be
used to accelerate second order gradient methods.

In this thesis, we applied these proposed methods to online adaptive IMPT for
the prostate cancer and achieved a registration time of 13 seconds for automatic
propagation of the contours for most cases. We found that this speed is fast enough
for the current procedure of online adaptive IMPT. There are still some aspects that
should be considered for improvement. The registration time assessed in this thesis
is determined by the number of iterations, which is not case-specific [137, 100]. For
cases that are geometrically close, image registration may finish the task with less than
the average required iterations, while for difficult cases the number of iterations may
be much larger. An adaptive stopping condition for stochastic gradient descent, such
as considering a moving average of the noisy cost function values (or gradients), may
remedy this. To apply this in clinical practice, the robustness of image registration is
also critical. Robustness may be further improved by taking into account automatic
estimates of targets for instance the bladder in the prostate cancer [135] in the
registration by optimizing a joint function.

Besides the speedup improvements in the optimization, there are several ap-
proaches to further accelerate the image registration procedure. The first is the
importance-driven sampling strategy used in image registration [44], which could
reduce the runtime and improve the registration accuracy. Second, more efficient
calculation techniques in the transformation models have become available, such as
using a non-uniform cubic B-spline transformation model [145], using a fast recursive
implementation [122], and using a random perturbation to smooth the B-spline
control grid [146, 103]. Thirdly, fast implementation of for example the interpolator
is also useful for acceleration, for example, Shamonin et al. [22] proposed to use the
GPU for the acceleration. Lastly, other strategies with learning could be applied, such
as fast image registration using prior knowledge [147].
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6.3 Conclusion
In this thesis we developed several stochastic optimization methods for fast image
registration, leading to a 5-10 fold speedup over previous approaches. All proposed
methods are implemented using C++ and integrated in the open source registration
package elastix. We also exploited the usage of high performance computation
resources – the life science grid (lsgrid) to perform over 106 registrations, which
significantly reduced computation time for large scale computational tasks. As we
have evaluated the proposed method in the application of online adaptive IMPT for
prostate cancer, we expect that these methods can achieve the desirable performance
for use in clinical practice.
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Samenvatting

Beeldregistratie is belangrijk voor medische beeldanalyse. Het toepassen ervan in
de kliniek is echter soms beperkt vanwege de snelheid van het algoritme. Voor
bijvoorbeeld online adaptieve radiotherapie zou een aantal seconden ideaal zijn,
terwijl beeldregistratie normaal gesproken op zijn minst een paar minuten duurt. In dit
proefschrift worden versnellingstechnieken voor parametrische intensiteit-gebaseerde
beeldregistratieproblemen behandeld, waarbij gefocust wordt op de optimalisatierou-
tine en met name de stapgrootte en de zoekrichting. De verschillende aangedragen
methodes zijn grondig geëvalueerd op verscheidene datasets variërend in modaliteit,
patiëntengroep, gelijkenismaat en transformatiemodel. De tijd om de stapgrootte
te schatten wordt, afhankelijk van de registratieinstellingen, gereduceerd van 40
seconden tot minder dan 1 seconde als het aantal parameters 105 bedraagt; dat is bijna
40 keer sneller. De totale registratietijd met de nieuwe versnellingstechnieken (FASGD)
is met een factor 2.5-7 reduceerd ten opzichte van ASGD voor de experimenten
uitgevoerd in dit proefschrift. Alle methodes zijn geïmplementeerd in C++ in het
open source registratiepakket elastix. Met behulp van deze versnellingen hebben
we elastix geëvalueerd op het automatisch propageren van intekeningen in online
adaptief intensiteitsgemoduleerde protontherapie voor prostaatkanker.

Samenvatting

Hieronder volgt de samenvatting van dit proefschrift:

Hoofdstuk 2 Stapgrootteselectie is belangrijk voor gradiëntafdalings-optimalisatie.
Handmatig is dit moeilijk uit te voeren, omdat in beeldregistratie verschillende
fixed en moving beelden, beeldgelijkenismaten of transformatiemodellen verschil-
lende stapgroottes vereisen. Klein et al. stelt een automatische stapgrootteschat-
tingsmethode voor, maar in geval van een groot aantal transformatieparameters,
dat wil zeggen van ordegrootte 105, is de rekentijd onacceptabel en de tijd nodig
voor het schatten van de stapgrootte de optimalisatie [45] domineert. In dit
hoofdstuk wordt een nieuwe automatische methode (FASGD) voor het schat-
ten van de optimalisatiestapgrootteparameter a, nodig voor gradiëntafdalings-
optimalisatiemethodes, gepresenteerd voor beeldregistratie. De parameter a
wordt automatisch geschat aan de hand van de magnitude van voxel verplaatsin-
gen die willekeurig in het fixed beeld bemonsterd worden. Een verband tussen de
stapgrootte en de verwachtingswaarde en variantie van de geobserveerde voxel
verplaatsingen is afgeleid. De voorgestelde methode heeft een vrije parameter δ
die de maximaal toegestane incrementele verplaatsing tussen iteraties definieert.
In tegenstelling tot a kan deze wel geïnterpreteerd worden in termen van
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voxel grootte (mm). Daarnaast is deze vrijwel geheel onafhankelijk van het
toepassingsdomein, dat wil zeggen dat een δ gelijk aan de voxel grootte goede
resultaten gaf voor alle toepassingen die geëvalueerd zijn in dit hoofdstuk.
In vergelijking met de originele ASGD-methode is de tijdscomplexiteit van
de FASGD-methode gereduceerd van kwadratisch tot lineair afgezet tegen
de dimensie van transformatieparameters P . In het geval van de B-spline
transformatie is, door zijn beperkte support, de complexiteit van de voorgestelde
methode verder gereduceerd en onafhankelijk van P . De FASGD-methode is
publiekelijk beschikbaar via het open source beeldregistratiepakket elastix [10].
De FASGD-methode werd geëvalueerd op een groot aantal registratiescenario’s
en laat een vergelijkbare nauwkeurigheid als de originele ASGD-methode zien.
Daarentegen verbetert het de tijdscomplexiteit van de stapgrootteschatting van
40 seconden tot niet meer dan 1 seconde, voor een parameteraantal van ∼ 105:
bijna 40 keer sneller. Afhankelijk van de registratieinstellingen is de totale
registratietijd gereduceerd met een factor 2.5-7x voor de experimenten in dit
hoofdstuk.

Hoofdstuk 3 Dit hoofdstuk presenteert een stochastische quasi-Newton optimal-
isatiemethode (s-LBFGS) voor niet-rigide beeldregistratie. Het gebruikt de
klassieke beperkt-geheugen BFGS in combinatie met ruizige schattingen van de
gradiënt. Krommingsinformatie over de kostenfunctie wordt robuust geschat
elke L iteraties en vervolgens gebruikt voor de volgende L iteraties in combinatie
met stochastische gradiënten. Voor een vernieuwende herstartprocedure die
de optimale stapgrootte automatisch selecteert, wordt aangetoond dat deze
gunstig is voor versnelde convergentie. De nieuwe optimalisatieroutine is
gevalideerd op vervolgdata van 3D-CT-scans van de longen. Vergeleken met
ASGD gebruikt de voorgestelde methode ongeveer 5 keer minder iteraties om
dezelfde gelijkheidsmaatwaarde te bereiken, resulterende in een factor twee
reductie van de algehele rekentijd. Vergeleken met deterministische LBFGS is
s-LBFGS bijna 500 keer sneller.

Hoofdstuk 4 Een generieke preconditieschattingsmethode is in dit hoofdstuk voorgesteld
voor de stochastische gradiëntafdalingsoptimaliseerder die gebruikt wordt in
medische beeldregistratie. Gebaseerd op de geobserveerde verdeling van voxel
verplaatsingen construeert deze methode een diagonale preconditionering, waar-
bij een computationeel complexe berekening van de Hessiaanmatrix vermeden
wordt. We hebben experimenten uitgevoerd om onze methode te vergelijken
met FASGD en ook met andere preconditioneringstechnieken: Jacobiaantype
gepreconditioneerde stochastische gradiëntsafdaling (PSGD-J) [70] en Hessiaan-
type gepreconditioneerde stochastische gradiëntsafdaling (PSGD-H) [70]. Alle
geteste methodes verkregen een vergelijkbare registratienauwkeurigheid in alle
geteste datasets. De voorgestelde FPSGD-optimaliseerder daarentegen, overtrof
FASGD en PSGD-J in termen van convergentiegraad terwijl het een vergelijkbare
overhead opleverde. Ondanks dat een vorige methode (PSGD-H) het benodigd
aantal iteraties zelfs verder reduceert, brengt dit een substantiële overhead
met zich mee voor het berekenen van de preconditionering, met name voor
hoog dimensionele transformaties. Daarnaast kan de PSGD-H alleen gebruikt
worden voor mono-modale problemen en vereist het een implementatie voor
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Hessiaanmatrix berekening. We concluderen dat de voorgestelde methode als
een generieke preconditioneerder voor optimalisatie in registratie methodes kan
fungeren en daarbij een vergelijkbare nauwkeurigheid oplevert als gradiëntsaf-
dalingsroutines, terwijl de convergentiegraad substantieel verbeterd wordt met
een versnellingsfactor van 2-4.

Hoofdstuk 5 In dit hoofdstuk hebben we laten zien dat door integratie van onze
algoritmes in het open source registratiepakket elastix herhaal-CT-scans van de
prostaat automatisch ingetekend kunnen worden voor adaptieve online IMPT.
Het online aanpassen van IMPT maakt het mogelijk om kleine marges te hanteren
voor de doelstructuur (prostaat), hetgeen tot minder complicaties leidt. De
dosimetrische prestaties zijn geëvalueerd met een marge van 2 mm, 3.5 mm en
3.5 mm voor respectievelijk de prostaat, zaadblaasjes en lymfeklieren. De snelste
instelling van 13 seconden leverde een veel belovende klinische acceptatiegraad
op van 83 van de 93 gevallen (89.2%), 73 van de 93 (78.5%) en 91 van de 93
(97.9%) in dosimetrische dekking van respectievelijk de prostaat, zaadblaasjes
en de lymfeklieren. We concluderen dat de snelste instelling voor open source
elastix de dagelijkse scans automatisch kan intekenen en daarbij voldoet aan
de conformiteitsbeperkingen in 78.5% tot 97.9% van de gevallen en met een
geometrisch criterium voor succes in 96% van de gevallen. Deze software kan
daarmee online adaptieve protonentherapie voor prostaatkanker faciliteren en
een reductie van behandelingsmarges mogelijk maken.

Discussie
Het doel van dit proefschrift was om de procedure van beeldregistratie te versnellen
voor klinische toepassingen, zoals online adaptieve radiotherapie. De beeldregis-
tratieprocedure omvat bemonsteren, transformeren, optimaliseren, interpoleren en
keuze voor de ge-lijk-heids-maat [10], waarbij het kerndeel en meest tijdrovende
component de optimalisatie is. Aan de hand van de evaluatie van verschillende
optimalisatiestrategiën, uitgevoerd door Klein et al. [25], realiseerden we dat de
snelheid van beeldregistratie verbeterd kon worden door onderbemonstering. Later
stelde hij adaptieve stochastische gradiëntsafdaling (ASGD) voor die krachtig is en
een goede registratienauwkeurigheid en een hoge convergentiesnelheid in termen van
rekentijd verkrijgt. Echter, deze methode is niet snel genoeg voor problemen van grote
schaal, zoals bijvoorbeeld transformaties met 106 parameters en 3D-volumetrische
beeldregistratie. Als de rekentijd van ASGD verkort kan worden, zal de beeldregistratie
versneld worden. Als eerste richten we ons op de kern van het optimalisatieal-
goritme, met name op het vinden van een geschikte initiële stapgrootte en het
bepalen van de zoekrichting om een hogere convergentiegraad te behalen. Deze
twee delen zijn niet alleen belangrijk voor stochastische gradiënttype methodes maar
ook voor deterministische gradiënttype methodes. In hoofdstuk 2 hebben we ontdekt
dat een goede initialisatie van de stapgrootte belangrijk is voor de optimalisatie
en met name voor stochastische gradiënttype methodes. Om die reden zijn de
verschillende aanpakken voor het kiezen van een geschikte stapgrootte een actief
onderzoeksveld binnen de optimalisatie. Wat betreft de aanpak van de zoekrichting
hebben eerste orde gradiëntmethodes de inherente tekortkoming van een lineaire of
sublineaire convergentie. Een nieuwe aanpak van tweede orde gradiëntinformatie

89



met stochastische gradiënten werd daarom voorgesteld en als eerste gebruikt in
medische beeldregistratieproblemen in hoofdstuk 3. Dat hoofdstuk geeft inzicht
om gebruik te maken van tweede orde gradiëntinformatie met een middelings-
en herstartstrategie die beide helpen om de optimalisatiesnelheid te verbeteren.
Naast dat we de tweede orde gradiëntsinformatie direct gebruiken, vonden we
dat multi-variate problemen van een slecht geconditioneerde toestand geschaald
of getransformeerd konden worden tot een goed geconditioneerde aan het begin
van de optimalisatie. Een generiekere preconditioneringsstrategie werd vervolgens
voorgesteld in hoofdstuk 4. De resultaten van de experimenten, geëvalueerd op
verschillende klinische datasets, hebben laten zien dat de voorgestelde methode goed
werkt voor verschillende registratieproblemen geparametriseerd door verschillende
transformatiemodellen en verschillende gelijkenismaten. Samengevat, de stapgrootte
en zoekrichting zijn beide belangrijk en zijn essentiële onderdelen van optimalisatie in
beeldregistratie.

De succesvolle versnelling op de geëvalueerde datasets door de aangedragen
methodes moedigen aan tot verder onderzoek in deze richting. De mogelijkheden
liggen dan wel op het gebied van de adaptieve stapgrootteselectie of wel bij effectieve
zoekrichtingsstrategieën. Er bestaan vele andere adaptieve stapgrootteselectiemeth-
odes zoals Adagrad [138], Adadelta [139] en adaptieve impulsschatting (Adam) [140],
die de eigenschappen van de huidige gradiënt met de vorige gradiënt combineren. In
het geval van de zoekrichting bieden de geconjugeerde stochastische gradiëntsafdaling
[141], de variantie-reducerende stochastische gradiëntsafdaling [142], de stochastis-
che gradiëntsafdaling met impuls en ook andere methodes perspectief voor verder
onderzoek. Het reduceren van de variantie van de stochastische gradiëntsschatting
kan de convergentie versnellen en het middelen van de stochastische gradiënten
kan de ruis verminderen. De combinatie van deze twee technieken kan uiteindelijk
een verdere prestatieverbetering opleveren. Omtrent iteratieve optimalisaties zijn
de drie methodes, de snelle initiëlestapgrootteschatting, de stochastische tweede
orde gradiëntsmethode en de snelle preconditioneringsstrategie niet onafhankelijk.
Onze snelle preconditioneringsstrategie is gebaseerd op het werk van de snelle
initiëlestapgrootteschatting en daarom kan deze strategie ook gebruikt worden om
andere tweede orde gradiëntsmethodes te versnellen.

In dit proefschrift hebben we de voorgestelde methodes toegepast op online adap-
tieve IMPT voor prostaatkanker en hebben voor de meeste gevallen een registratietijd
van 13 seconden behaald voor het automatische propageren van intekeningen. Deze
snelheid achtten we hoog genoeg voor de huidige procedure van online adaptieve IMPT.
Er zijn nog een aantal aspecten die overwogen dienen te worden voor verbetering. De
registratietijd die bepaald werd in dit proefschrift, hangt af van het aantal iteraties,
hetgeen niet specifiek is per geval [137, 100]. Voor gevallen die geometrisch dichtbij
zijn, kan beeldregistratie de taak in minder dan de gemiddelde vereiste iteraties
afronden, terwijl bij moeilijke gevallen het aantal iteraties veel groter dient te zijn.
Een adaptieve stopconditie voor stochastische gradiëntsafdaling, zoals het bijhouden
van een lopend gemiddelde van de ruisachtige kostenfunctiewaarden (of -gradiënten),
kan overwogen worden om dit verhelpen. Om dit toe te passen in de kliniek is ook de
robuustheid van beeldregistratie kritiek. Robuustheid kan verder worden verbeterd
door rekening te houden met automatische schattingen van de doelstructuren zoals de
blaas bij prostaatkanker [135] door dit in een gezamenlijke functie te optimaliseren in
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de registratie.
Naast de snelheidsverbeteringen van de optimalisatie zijn er verscheidene an-

dere methodes om de registratieprocedure verder te versnellen. Als eerste is er
de importantie-gedreven bemonsteringstechniek voor beeldregistratie [44], die de
rekentijd kan ver-kort-en en de registratienauwkeurigheid kan verbeteren. Ten
tweede zijn er efficiëntere berekeningsmethoden voor de transformatiemodellen
beschikbaar gekomen, zoals een snelle recursieve implementatie [145] voor het
niet-uniforme kubische B-spline-transformatiemodel [122] en het gebruikmaken van
willekeurige perturbaties op het B-spline-coëfficiëntenraster [146, 103]. Als derde zijn
ook de implementaties van onder andere de interpoleerder bruikbaar voor versnelling;
Shamonin et al. [22] stelde bijvoorbeeld een GPU-acceleratie voor. Ten slotte kunnen
lerende strategieën worden toegepast, zoals snelle beeldregistratie met behulp van
voorkennis [147].

Conclusie
In dit proefschrift ontwikkelden we diverse stochastische optimalisatiemethodes voor
snelle beeldregistratie die een 5-10-voudige versnelling ten opzichte van vorig werk
bewerkstelligden. Alle voorgestelde methoden werden geïmplementeerd met behulp
van C++ en geïntegreerd in het open source registratiepakket elastix. Om meer dan
106 registraties uit te voeren, benutten we ook de high performance computation on-
dersteuning van het life science grid (lsgrid) dat de rekentijd voor grootschalige com-
putertaken aanzienlijk verminderd. Aan de hand van de evaluaties van de voorgestelde
methode binnen de toepassing van online adaptieve IMPT voor prostaatkanker, verwachten
we dat deze methoden de gewenste prestatie voor gebruik in de klinische praktijk
kunnen bereiken.
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Appendix

Parameter names of implementations in elastix

Chapter 2: fast adaptive stochastic gradient descent (FASGD)

(Optimizer "AdaptiveStochasticGradientDescent")

(ASGDParameterEstimationMethod "DisplacementDistribution")

Chapter 3: stochastic L-BFGS (s-LBFGS)

(Optimizer "AdaptiveStochasticLBFGS")

(StepSizeStrategy "Adaptive")

(CurvatureSampler "Random")

(NumberOfInnerLoopSamples 50000)

Chapter 4: fast preconditioned stochastic gradient descent (FPSGD)

(Optimizer "PreconditionedStochasticGradientDescent")

(NumberOfSamplesForPrecondition 50000)

(RegularizationKappa 0.6)

(ConditionNumber 1)
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