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ABSTRACT

Currently, non-rigid image registration algorithms are too computationally intensive to use in time-critical ap-
plications. Existing implementations that focus on speed typically address this by either parallelization on
GPU-hardware, or by introducing methodically novel techniques into CPU-oriented algorithms. Stochastic gra-
dient descent (SGD) optimization and variations thereof have proven to drastically reduce the computational
burden for CPU-based image registration, but have not been successfully applied in GPU hardware due to its
stochastic nature. This paper proposes 1) NiftyRegSGD, a SGD optimization for the GPU-based image registra-
tion tool NiftyReg, 2) random chunk sampler, a new random sampling strategy that better utilizes the memory
bandwidth of GPU hardware. Experiments have been performed on 3D lung CT data of 19 patients, which
compared NiftyRegSGD (with and without random chunk sampler) with CPU-based elastix Fast Adaptive SGD
(FASGD) and NiftyReg. The registration runtime was 21.5s, 4.4s and 2.8s for elastix-FASGD, NiftyRegSGD
without, and NiftyRegSGD with random chunk sampling, respectively, while similar accuracy was obtained. Our
method is publicly available at https://github.com/SuperElastix/NiftyRegSGD.
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1. DESCRIPTION OF PURPOSE

Image registration is widely used in clinical applications. The high number of parameters in non-rigid registration
(up to 100k in some cases) makes this approach computationally intensive, resulting in a rather high computation
time. This limits non-rigid registration from being used in real-time critical applications, such as image-guided
surgery or online adaptive radiotherapy.

To address this problem, FASGD1 was proposed recently, which speeds up the adaptive2 version of stochastic
gradient descent optimization (SGD).3 In SGD, the cost function gradients are computed using a random subset
of samples (i.e. voxels) instead of the entire set of sample space (i.e. full image). A random subset is generated
each iteration. Hence, this approach reduces data intensity which results in less computation time as compared
to conventional gradient descent methods. High performance computation approaches such as NiftyReg4 and
Plastimatch5 take advantages of the GPU architecture for parallel computing. These implementations are,
however, based on gradient descent optimization using full image sampling. In Shamonin et al.,6 CPU and GPU
parallelization were implemented in elastix.7 In the field of machine learning or neural networks, there exist
implementations of SGD on the GPU.8 However, these methods typically optimize over a large collection of data
and the term stochastic refers to random batches of data instead of random voxels within one image, which is a
fundamental difference from a registration point of view.

This paper presents the implementation of SGD on the GPU architecture for image registration to take advan-
tage of both stochastic optimization as well as parallel computing. For the proposed work, coined NiftyRegSGD,
NiftyReg was chosen as a foundation of our implementation for its public access and pre-existing use of the
GPU. The accuracies and timings of lung CT registrations are compared with elastix-FASGD, which has been
evaluated using the same data and is the fastest publicly available method to our knowledge.
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2. METHOD

Our implementation NiftyRegSGD is based on NiftyReg. In this section we discuss the several changes that
have been carried out to implement a stochastic gradient descent method and we introduce the random chunk
sampler. Image registration may be formulated as an iterative optimization problem, using:

µk+1 = µk − γkgk, (1)

where µ represents the transformation parameters at iteration k, g is the search direction and γk the stepsize.

The optimizer of NiftyReg uses a search direction gk based on the gradient in combination with a line search
strategy to select the optimal stepsize γk. The line search of NiftyReg inherently imposes a stopping criterion
for k. For the search direction either the gradient gk := ∂C/∂µ, or the conjugate gradient of the cost function
C can be selected. The cost function in image registration typically takes the following form:

C(µ) = Ψ

(
1

|ΩF |
∑
xi∈ΩF

ξ(F (xi),M(T(xi, µ)))

)
, (2)

where Ψ(u) and ξ(u, v) are continuous and differentiable functions, and where ΩF is a discrete set of voxel
coordinates from the fixed image. The key idea in SGD3 is to compute a fast but noisy approximation of the
search direction g̃k := ∂C̃/∂µ, by randomly selecting a small subset of all fixed image coordinates. In each
iteration a new random subset is drawn. An exponentially decaying stepsize γk is typically used:

γk =
δa

(A+ k)α
, (3)

where δ is the maximum voxel spacing among the x, y and z axes. Parameters a, A and α are constants that
typically need to be tuned for the type of data. Since stochastic gradient descent does not have a trivial stopping
criterion the maximum number of iterations kmax needs to be set as well.

Figure 1: Block diagram of NiftyRegSGD, adding the Random Sampling function to original design of NiftyReg.

The architectural changes applied to NiftyReg allow for the implementation of a random sampler, enabling
the calculation of the approximate gradient and replacing the line search strategy with a stopping criterion by the



decaying step size function using a fixed number of iterations. Figure 1 shows NiftyRegSGD architecture which
is similar to the original NiftyReg.4 We implemented a naive sampler that randomly picks samples from the
fixed image. This randomness, however, prevents the GPU from accessing memory in parallel, forcing sequential
global memory reads, which lead to higher memory access time and wastage of memory bandwidth. Therefore,
we propose a new sampling strategy that is better tailored to GPU hardware, coined random chunk sampling.
In this strategy, every first sample out of 32 samples is created randomly, followed by 31 samples adjacent to
this first sample. This enables 32 threads on a GPU to have a coalesced memory access, which results in faster
memory access and increased GPU throughput. Figure 2 shows the non-coalesced and coalesced memory access
for the naive and chunk random sampler respectively. Left picture in Figure 2 shows the non-coalesced memory
access for the naive sampler. When thread 0 in a GPU warp accesses a memory at address 0 from the global
memory, the neighboring memory addresses (denoted by dots) are copied to the cache memory automatically.
But, other threads in the same warp do not access these neighboring memory available in cache. Instead, these
threads again access the global memory. Thus, there are 32 global memory accesses in a warp, which are slower
than accessing the memory from cache. Using the random chunk sampling (right picture in Figure 2), there is
only one global memory access. While, the other 31 threads will access the faster cached memory.

Figure 2: Non coalesced (left) and coalesced (right) memory access.

3. EXPERIMENTS AND RESULTS

The proposed NiftyRegSGD method with naive random sampling as well as with random chunk sampling is
compared with elastix-FASGD and the original NiftyReg.

For the experiments, CT lung data from the SPREAD study9 have been used. It consists of 19 patients with
baseline (fixed) and follow-up (moving) images. Each patient has 100 corresponding landmarks that serve as
a ground truth to evaluate the target registration error (TRE). The data was divided into a training set of 10
patients, to find the optimal registration settings, and a testing set of 9 patients to perform the final evaluation.
All experiments were run on an Intel Xeon E5-1620 CPU with a Tesla K40c GPU.

Profiling the most time consuming GPU kernels, i.e. the B-spline transform and the resampler kernel, shows
an improvement in the throughput by the random chunk sampler with respect to the the naive random sampler.
In Figure 3, the GPU-throughputs are plotted for both samplers for different sampling percentages s% and
the different resolution levels of the registration procedure. For each sampling percentage and resolution level



the random chunk sampler has a better GPU-throughput than the naive random sampling for both the B-
spline transform and resampler kernel. An important notion for this graph is that, although a higher sampling
percentage might give a higher throughput, it still takes more time for one iteration in the registration procedure.
And, although a higher sampling percentage improves the approximation of the gradient, this does not necessarily
improve the convergence rate in such a way that the total registration time is smaller. Registration experiments
were performed to assess this.

Figure 3: GPU-throughputs of the most time consuming kernels for different sampling percentages at different
resolution levels of the registration procedure. The throughputs using the random chunk sampler are indicated
with ’chunk’ and those using the naive random sampler without.

The registration settings we used for elastix-FASGD where proposed by its authors1 and were determined
for the same SPREAD data set. To have a fair comparison based on speed we tuned NiftyRegSGD with the
random chunk sampler to match the median TRE accuracy to that of elastix-FASGD. NiftyReg could not
be tuned to achieve a sufficient median TRE, therefore we report using the default settings. For NiftyRegSGD
we used the same B-spline grid spacing as NiftyReg. The values α = 0.90 and A = 20 were chosen from the
literature.2 We optimized the parameters gain factor a ∈ [0.05, 0.65], sampling percentage s% ∈ [10, 80] and
maximum number of iteration kmax ∈ [10, 300], over the training set. Keeping computation time in mind, the
optimal value of a was found to be 0.25. For a = 0.25, optimal values for s% = 15% and kmax = 20 were found,
see Figure 4.

The accuracies and average timings of the four methods are compared in Figure 5 for both the training and
the test set. For the training data, Wilcoxon signed rank tests indicated that there were no significant differences
in median accuracies of both NiftyRegSGD methods with respect to elastix-FASGD (p > 0.05). For the test
data, the differences with respect to elastix-FASGD were found to be just significant for the NiftyRegSGD with
random chunk sampling and not for the NiftyRegSGD with naive random sampling. All settings are summarized
in Table 1.

elastix-FASGD Original NiftyReg NiftyRegSGD (both)
Resolutions 3 3 3
Transform B-spline B-spline B-spline

3D Parameters ≈ 1k/6k/35k ≈ 6k/35k/230k ≈ 6k/35k/230k
Metric NMI NMI NMI

Optimizer FASGD Conjugate gradient SGD
Step size adaptive line search Equation (3)
Iterations 500/500/500 ≈ 54/64/169 20/20/20
Sampler random full random or random chunk
Samples 5000/5000/5000 (0.04%) ≈ 4 · 105/3 · 106/2 · 107 (100%) ≈ 6 · 104/5 · 105/4 · 106 (15%)

Run time 21.5 sec 35.2 sec 4.4 sec or 2.8 sec, resp.

Table 1: Algorithmic and settings overview of the various registration methods.



Figure 4: The median TRE for NiftyRegSGD with random chunk sampling is plotted against s% in steps of 5%
and kmax in steps of 10 for a = 0.25 for the training set. The background color indicates the median TRE. The
white curve equals the median TRE of elastix-FASGD. The left-most point on this white curve indicates the
fastest setting equally accurate as FASGD. The optimal settings are s% = 15% and kmax = 20.

Figure 5: Target registration error (TRE) in mm using settings of Table 1 for the training and test data set.
Proposed NiftyRegSGD with random chunk sampling performs fastest with better accuracy for the training data
and less accuracy for the test data compared to elastix-FASGD.

4. DISCUSSION AND CONCLUSION

We presented our image registration method NiftyRegSGD which introduces stochastic gradient descent (SGD)
optimization in a high performance GPU implementation. Experiments have been performed on follow-up lung
CT scans. The use of SGD drastically speeds up registration time (to 2.8s) compared to the current GPU-
based registration method (NiftyReg, 35.2s) that uses fully deterministic gradients. At an equal median target



Figure 6: Run time of all methods, using an Intel Xeon E5-1620 CPU with a Tesla K40c GPU

registration error, our GPU implementation also outperforms elastix-FASGD (21.5s), to our knowledge the
currently fastest method on this dataset.

We introduced a random chunk sampler as part of our SGD, which shows a speed improvement over a
naive random sampler (4.4s). Due to its coalesce memory access, the throughput of GPU kernels is drastically
increased. Sacrificing some of the randomness-properties only harmed the convergence rate a little (as observed
in the test set), which might easily be compensated for by an extra iteration.

Experiments from Figure 4 have shown that the stochastic sub-sampling percentage of NiftyRegSGD was
found to be optimal at 15%, in contrast to the CPU-based SGD of elastix-FASGD of around 0.04%. A smaller
percentage of data reduces the computation time per iteration, but typically degrades the convergence rate. On
the GPU, this trade-off favors a higher sampling percentage due to its parallel computation.

The small difference in accuracy for training and test data shows that accuracy depends on manual tuning,
that is currently needed for NiftyRegSGD. For future work we may adopt the automatic parameter estimation
methods from FASGD to remedy this. We may accelerate this estimation procedure on the GPU as well. The
current results however still yield sub-voxel accuracy within 2.8s for a non-rigid registration procedure. We
therefore conclude that the proposed methods open up possibilities to embed online registration in the clinical
workflow, and consequently may benefit e.g. image-guided surgery and adaptive radiotherapy. Our fork of
NiftyReg is publicly available at https://github.com/SuperElastix/NiftyRegSGD.
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