
Evaluation of Multi-metric Registration
for Online Adaptive Proton Therapy

of Prostate Cancer

Mohamed S. Elmahdy1(B), Thyrza Jagt3, Sahar Yousefi1, Hessam Sokooti1,
Roel Zinkstok1, Mischa Hoogeman3, and Marius Staring1,2

1 Leiden University Medical Center, Leiden, The Netherlands
m.s.e.elmahdy@lumc.nl

2 Delft University of Technology, Delft, The Netherlands
3 Erasmus MC Cancer Institute, Rotterdam, The Netherlands

Abstract. Delineation of the target volume and Organs-At-Risk
(OARs) is a crucial step for proton therapy dose planning of prostate can-
cer. Adaptive proton therapy mandates automatic delineation, as manual
delineation is too time consuming while it should be fast and robust. In
this study, we propose an accurate and robust automatic propagation
of the delineations from the planning CT to the daily CT by means
of Deformable Image Registration (DIR). The proposed algorithm is a
multi-metric DIR method that jointly optimizes the registration of the
bladder contours and CT images. A 3D Dilated Convolutional Neural
Network (DCNN) was trained for automatic bladder segmentation of
the daily CT. The network was trained and tested on prostate data of 18
patients, each having 7 to 10 daily CT scans. The network achieved a Dice
Similarity Coefficient (DSC) of 92.7%± 1.6% for automatic bladder seg-
mentation. For the automatic contour propagation of the prostate, lymph
nodes, and seminal vesicles, the system achieved a DSC of 0.87 ± 0.03,
0.89±0.02, and 0.67±0.11 and Mean Surface Distance of 1.4±0.30 mm,
1.4± 0.29 mm, and 1.5± 0.37 mm, respectively. The proposed algorithm
is therefore very promising for clinical implementation in the context of
online adaptive proton therapy of prostate cancer.
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1 Introduction

Prostate cancer is one of the leading causes of mortality and the most common
cancer among men. The American Cancer Society estimates around 161,360
new cases and 26,730 deaths from prostate cancer in the United States for 2017
[1]. Intensity-Modulated Proton Therapy (IMPT) has shown the capability of
delivering a highly localized dose distributions to the target volume. IMPT is
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however more sensitive to daily variations that may result in a suboptimal dose
distribution [2,3]. These variations could be due to anatomical changes in the
target volume and Organs-At-Risk (OARs) or a misalignment in the patient
positioning. In order to account for these variations, a margin is added to the
Clinical Target Volume (CTV) that leads to the Planning Target Volume (PTV).
These margins result in extra dose to the OARs, leading to an increase in the
treatment-related toxicities that may prevent dose escalation. Repeat imaging
and re-planning can handle this problem [4]. These repeat (inter-fraction) CT
scans have to be delineated first before generating a new treatment plan. There-
fore traditionally the inter-fraction re-contouring is not performed because it is
very time consuming and consequently new anatomical changes could be intro-
duced in the meantime. Therefore, it is vital for the automatic contouring to be
fast and robust, because otherwise there will be a need for fallback strategies
like manual correction that also take time.

The Atlas Based Auto Segmentation (ABAS) tool, Mirada, RayStation,
and MIM softwares are a well known commercial softwares for automatic re-
contouring. However, these softwares are considered a black box for the users,
and therefore limits the potential of parameter customization and tuning. Open
source DIR packages provide a high level of flexibility with a concrete scientific
evidence and reproducibility [5,6]. Qiao et al. [7] reported an MSD of 1.36±0.30
mm, 1.75 ± 0.84 mm, 1.49 ± 0.44 mm for the prostate, seminal vesicles, and
lymph nodes, respectively for 18 patients using the open source elastix soft-
ware. A clinical success rate of 69% was achieved, which means that 31% of the
delineations have to be corrected, leading to increased costs and a suboptimal
patient workflow. In 2011, Thor et al. deployed DIR to propagate the contours
of the prostate and OARs from CT to cone-beam CT [8]. The system achieved
a mean DSC of 0.80 for prostate, 0.77 for rectum, and 0.73 for the bladder with
a relatively high variance. Moreover, the system was not qualitatively evaluated
in terms of the dosimetric coverage. Recently, Woerner et al. [9] investigated
the error between different radiologists and both DIR and rigid registration in
different body regions. They only reported the results for the prostate, which
were 0.90, 0.99 mm, and 8.12 mm for the DSC, MSD, and Hausdorff Distance
(HD), respectively.

In order to improve the success rate of the automatic propagation of contours
using DIR, we propose a multi-metric based registration. Hereby, instead of
depending on the intensity of the images alone, we introduce a second objective
that specifically optimizes the bladder overlap, based on a bladder estimate
provided by a neural network.

2 Materials and Methods

2.1 Dataset

This study includes eighteen anonymized patients who were treated for prostate
cancer in 2007 using intensity-modulated radiation therapy at Haukeland Uni-
versity Hospital. Each patient has a planning CT and 7 to 10 repeat CT scans.
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Fig. 1. The architecture for the 3D-DCNN network where {1X, . . . , 16X} denotes the
dilation rate. The blue convolution blocks represent 3× 3× 3 kernels while the grey con-
volution blocks represent fully connected convolution layers implemented by 1× 1× 1
kernels. The green and red blocks denote batch normalization layers and dropout layers,
respectively. The red square represents the patch, while the yellow square represents
the receptive field. (Color figure online)

The field of view of the scans included the prostate, lymph nodes, seminal vesi-
cles, in addition to the bladder and rectum as the main OARs. Each scan has
90 to 180 slices with a slice thickness of around 2 mm. All the slices were of
size 512 × 512 with in-plane resolution of around 0.9 mm. The prostate, lymph
nodes, seminal vesicles, rectum, and bladder were delineated in each CT scan by
an expert and reviewed by another one.

2.2 Dilated Convolution Neural Network Architecture (DCNN)

Motion and filling of the bladder as well as the rectum have an important influ-
ence on the anatomical changes in the abdomen. Therefore, we hypothesize that
intensity-based DIR may improve in terms of accuracy and robustness if the
motion of either of these structures is taken into account explicitly. Since the
bladder is a well-defined structure that is relatively easy to delineate, we opt
to segment it fully automatically. In this study, we propose a 3D Dilated Con-
volutional Neural Network (3D-DCNN) in order to automatically segment the
bladder. Dilated convolution is a generalized version of the traditional convo-
lution process where more spacing is added to the convolution kernel so that
a larger spatial neighborhood is considered when calculating the feature maps.
This spacing is called the dilation rate; for traditional convolution the dilation
rate is 1. Using a dilation rate larger than 1 has several advantages. First, stack-
ing convolution layers with increasing dilation rate will accordingly enlarge the
Receptive Field (RF) of the neural network without adding additional trainable
parameters. Second, there is no need for adding down-sampling layers to have a
large RF and therefore the network can handle high resolution volumes using a
smaller number of trainable parameters. Figure 1 shows the architecture of the
dilated network. This network is a modified version of the architecture deployed
in [10]. The first six convolutional layers have a kernel size of 3× 3× 3, 32 fea-
ture maps, and a logarithmic increasing dilation rate. Dropout layers with a
dropout rate of 0.6 as well as batch normalization layers are introduced before
the last two fully convolutional layers. Moreover, the 2D convolution layers in
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Fig. 2. The proposed multi-metric registration process using elastix software.

the original architecture were replaced with 3D layers in order to consider the
homogeneity of tissues in 3D. Hence, it can help to get more accurate and robust
results. The network has a receptive field of 65× 65× 65 and has 144,551 train-
able parameters.

In order to train the network, the 18 patients are divided into three sets: 12
patients for training, 3 patients for validation, and 3 patients for testing. This
results in a total of 120, 28, and 30 CT scans for training, validation, and test-
ing, respectively. 1,000,000 patches of size 71× 71× 71 are randomly extracted
from the training volumes, making sure they are equally distributed between
foreground and background. Cross Entropy is deployed as a cost function and
the network is trained using the Adam optimizer with a fixed learning rate of
10−4. All the experiments were carried out using an NVIDIA GTX1080 Ti with
11 GB of GPU memory.

2.3 Image Registration

The open source package elastix was used for deformable image registration
[6]. This package is available from http://elastix.isi.uu.nl. All the experiments
were performed on a desktop PC operated on Windows 10 with 16 GB of memory
and an Intel Xeon E51620 CPU with 4 cores running at 3.6 GHz.

http://elastix.isi.uu.nl
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In this study, the planning CT of each patient together with the manual
delineation of the bladder are considered the moving images, while the repeat CT
of the same patient accompanied with the bladder segmentation resulting from
the proposed 3D-DCNN are the fixed images. The generated Deformation Vector
Field (DVF) is then used to propagate the remaining contours (prostate, seminal
vesicles, lymph nodes, and rectum) from the planning CT to the repeat CT. In
order to have a good registration initialization, the registrations were initialized
based on the center-of-gravity of the bony anatomy defined by a Hounsfield
number larger than 200. To remove the effect of the CT table, a mask of the body
torso was generated using Pulmo software [11]. The registration process is a two
step procedure. First, the CT images are aligned using a single resolution affine
transformation so that we can eliminate the large organ movements. Second, a
deformable registration is applied to tackle the local deformations of the organs.
A fast recursive implementation of the B-spline transformation was employed for
DIR [12]. Adaptive stochastic gradient descent was used for optimization [13].
Figure 2 illustrates the proposed registration pipeline. For the DIR stage we used
a three level Gaussian pyramid, and two cost functions. Mutual information
was used for the CT images. To take into account the bladder contours the
distance transform of the bladder segmentations is used instead of the binary
segmentations themselves, to ensure a smooth and stable optimization process.
This results in the following optimization problem:

∧
μ = arg min

µ
{C1 (IF , IM ;Tµ) + αC2 (DT (SF ) ,DT (SM ) ;Tµ)}, (1)

where C1 is the mutual information cost function, C2 is the Mean Square Dif-
ference (MSD) cost function, α is a weight balancing these two cost functions,
IF is the daily scan, IM is the planning scan, DT (SF ) is the distance transform
of the DCNN bladder segmentation, and DT (SM ) is the distance transform of
the manual annotation of the planning scan.

2.4 Registration Performance Evaluation

The registration quality is measured by the overlap and residual distance between
the manually and the automatically propagated contours of the daily CT for the
prostate, lymph nodes, seminal vesicles, rectum, and bladder. The most common
metrics for quality are the Dice Similarity Coefficient (DSC), the Mean Surface
Distance (MSD), and the Hausdorff Distance (HD), all computed in 3D.

DSC =
∑ 2|F ∩ M |

|F | + |M | , (2)

where F and M are the propagated contour and the ground truth contour,
respectively.

MSD =
1
2

(
1
n

n∑

i=1

d (ai,M) +
1
m

m∑

i=1

d (bi, F )

)
, (3)
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HD = max
{

max
i

{d (ai,M)} ,max
j

{d (bi, F )}
}

, (4)

where {a1, a2, ..., an} and {b1, b2, ..., bm} are the surface mesh points of the fixed
and moving contours, respectively and d (ai,M) = minj ||bj − ai||.

3 Experimental Results

3.1 DCNN Segmentation Performance

The DCNN network achieved an average segmentation DSC of 92.7%± 1.6% on
the test patients. It took an average of 15 s to segment a single volume using a
single GPU depending on the number of slices per volume.

3.2 Registration Performance

The weight α of the cost function for the bladder segmentation (C2) was set
to 0.05 for the first resolution and zero for the second and third resolutions.
These weights were chosen after a set of initial experiments. For investigating
the effect of the number of iterations on the registration performance, we var-
ied this parameter between 100 and 500 iterations. Table 1 illustrates the DSC
evaluations of the single-metric and multi-metric registrations for the set of iter-
ations. The overlap performance of the prostate, lymph nodes, and rectum were
very similar for single and multi metric registrations. For the seminal vesicles
and bladder the overlap was higher for multi-metric at 100 and 500 iterations.

The evaluations in terms of MSD are shown in Table 2. For the prostate,
seminal vesicles, rectum, and bladder, there was a significant improvement from
the affine transformation to DIR-100, and a slight improvement for 500 iterations
in both single and multi-metric registrations. This was not the case for lymph
nodes. However, the MSD errors for almost all the organs were within a voxel
size. The 95% HD showed a similar pattern as MSD as presented in Table 3.

Figure 3 shows the comparison of the registration performance between
single-metric (intensity image only) and multi-metric registrations (intensity
and bladder segmentation) for affine, 100, and 500 iterations. The comparison
illustrates the performance in terms of DSC, MSD, and 95%HD for the target
volumes and OARs. The figure shows much less outliers for the multi-metric reg-
istrations, especially for the seminal vesicles, which is a challenging structure due
to its small volume. Here, results above the top whisker (defined by 1.5 times
the inter-quartile range) are termed an outlier. In order to explore the upper
limit of the proposed method, it was tested with the manual annotation of the
bladder instead of the segmentation of the DCNN. The boxplot shows a very
similar pattern between the multi-metric registration using the bladder contours
from the DCNN network and the manually annotated bladder contours.
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Table 1. DSC value of the target volumes and OARs for different registration settings.
† and ‡ represent a significant difference (at p = 0.05) between single-metric and multi-
metric for 100 and 500 iterations, respectively.

Evaluation # it. Prostate SV† LN Rectum Bladder†‡

μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ

Affine 0.83 ± 0.08 0.34 ± 0.27 0.92 ± 0.03 0.69 ± 0.09 0.78 ± 0.07

Single-metric 100 0.87 ± 0.03 0.59 ± 0.22 0.90 ± 0.02 0.77 ± 0.08 0.90 ± 0.05

500 0.87 ± 0.04 0.63 ± 0.20 0.89 ± 0.02 0.78 ± 0.07 0.91 ± 0.06

Multi-metric 100 0.87 ± 0.03 0.67 ± 0.11 0.89 ± 0.02 0.78 ± 0.06 0.93 ± 0.03

500 0.87 ± 0.02 0.66 ± 0.11 0.89 ± 0.02 0.79 ± 0.06 0.93 ± 0.03

Table 2. MSD (mm) of the target volumes and OARs for different registration settings.
† and ‡ represent a significant difference (at p = 0.05) between single-metric and multi-
metric for 100 and 500 iterations, respectively.

Evaluation # it. Prostate SV† LN Rectum Bladder†‡

μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ

Affine 1.8 ± 0.78 3.7 ± 2.00 1.1 ± 0.37 4.1 ± 1.50 4.3 ± 1.70

Single-metric 100 1.4 ± 0.33 2.1 ± 1.40 1.3 ± 0.28 3.1 ± 1.30 2.0 ± 1.00

500 1.3 ± 0.35 1.9 ± 1.40 1.4 ± 0.27 3.0 ± 1.20 1.7 ± 0.87

Multi-metric 100 1.4 ± 0.30 1.5 ± 0.37 1.4 ± 0.29 2.9 ± 0.95 1.4 ± 0.38

500 1.3 ± 0.28 1.6 ± 0.42 1.4 ± 0.29 2.8 ± 0.88 1.3 ± 0.32

Table 3. %95HD (mm) of the target volumes and OARs for different registration
settings. † and ‡ represent a significant difference (at p = 0.05) between single-metric
and multi-metric for 100 and 500 iterations, respectively.

Evaluation # it. Prostate SV†‡ LN Rectum Bladder†‡

μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ

Affine 4.0 ± 1.70 7.8 ± 3.7 2.7 ± 1.00 11.0 ± 4.7 11.0 ± 4.7

Single-metric 100 3.2 ± 0.96 5.2 ± 3.3 3.3 ± 0.63 9.5 ± 4.3 5.9 ± 3.9

500 3.1 ± 1.00 4.9 ± 3.4 3.4 ± 0.63 9.3 ± 4.2 5.0 ± 3.4

Multi-metric 100 3.2 ± 0.97 4.0 ± 1.5 3.6 ± 0.71 8.7 ± 3.4 3.4 ± 1.4

500 3.0 ± 1.00 4.1 ± 1.5 3.6 ± 0.71 8.5 ± 3.2 3.2 ± 1.1
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Fig. 3. Boxplot comparison between single-metric and multi-metric image registration
versus the number of iterations. The columns show the DSC, MSD, and 95%HD from
left to right. Prostate, seminal vesicles, lymph nodes, rectum, and bladder are shown
from top to bottom rows, respectively. Here multi-metric DCNN is the result of using
the bladder segmentation of the network, while multi-metric GT is the result of using
the ground truth bladder delineation.

4 Discussion and Conclusion

In this study, we investigated the hypothesis of enhancing the performance and
robustness of the automatic contouring of the target volumes and OARs for
prostate cancer using multi-metric Deformable Image Registration (DIR). The
purpose of adaptive IMPT is to be able to use a small margin between PTV and
CTV, which is only a viable option if the daily re-planning can be performed in
an accurate and robust manner. This daily re-planning requires robust automatic
re-contouring in order to avoid local treatment-related toxicities and subsequent



102 M. S. Elmahdy et al.

adverse side effects. The proposed automatic contouring algorithm was evaluated
geometrically. In order to improve the robustness of the registration process,
we introduced a multi-metric optimization. This optimization depends not only
on the intensity image but also on the segmentation of another organ. In this
study, we chose the bladder due to its well defined borders which eases the
segmentation process. The quality of the bladder segmentation has a significant
effect on steering the registration process, therefore it has to be accurate and
robust, so we chose 3D-DCNN. The network achieved a higher DSC than the
reported DSC of 81.9% in [14], where a CNN was combined with level sets to
segment the bladder in CT urography. It also outperformed the dice overlap of
72% reported in [15], where they attempted to segment all the abdominal organs
using a 2D Fully Convolutional Neural Network.

Initializing the registration process using the bony anatomy improved the
stability of the registration which is consistent with the findings in [13]. Moreover,
introducing a small weighting (α) of 0.05 at the first resolution managed to steer
the registration to a better local minima without causing any overfitting to the
bladder, therefore there was no need for further weighting in the second and
third resolutions.

In this study, we focused on the registration robustness represented by the
number of outliers and the variance in the system performance. Overall, the
multi-metric registration showed a significant decrease in the number of outliers
compared to the single-metric registration. Reducing the number of outliers for
the seminal vesicles, which is an important target volume, means a more pre-
cise targeting with potential benefits in terms of local control (lower probability
of recurrences). Moreover, much less outliers for rectum and especially blad-
der, which are OARs, means less dose to the OARs with potential benefits in
terms of treatment-induced complications after the therapy, so higher probabil-
ity of better quality-of-life after treatment, see Fig. 3. It also showed a significant
improvement in terms of the DSC, MSD, and 95% HD for the seminal vesicles and
bladder. For multi-metric registration, the overall performance gets slightly bet-
ter for 500 iterations and remarkably increased from affine transformation. The
figure shows a similar pattern between the multi-metric registration using the
manually annotated contours of the bladder and the contours from the DCNN
network. This pattern emphasizes that, the proposed method achieved the upper
limit of the system. For most of the organs, the registration performance in terms
of the MSD was less than 2 mm, which is less than the slice thickness.

In this study, we illustrated the effectiveness of deploying multi-metric reg-
istration using the elastix software in order to automatically re-contour daily
CT scans of the prostate. This re-contouring showed a promise for generating
daily treatment plans. Moreover, it showed a substantial improvement in the
system robustness, which means that more treatment plans can be directly used
without manual correction, which is a crucial factor for enabling online daily
adaptation and thus the use of relatively small treatment margins. Therefore,
the proposed method could facilitate online adaptive proton therapy of prostate
cancer.
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