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matching using a hybrid mixture model
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Abstract—Non-rigid registration is essential for a wide range
of clinical applications, such as intraoperative image-guidance
and postoperative follow-up assessment, and longitudinal image
analysis for disease diagnosis and monitoring. Vascular structures
are a rich descriptor of the organ deformation, since it permeates
through all organs within body. As vasculature differs in size,
shape and topology, following surgical intervention/treatment or
due to disease progression, non-rigid vessel matching remains a
challenging task. Recently, hybrid mixture models (HdMM) have
been applied to tackle this challenge, and demonstrate significant
improvements in terms of accuracy and robustness relative to the
state-of-the-art. However, the smoothness constraint enforced on
the deformation field with this approach only accounts for the
global topology of the vasculature, resulting in a reduced capacity
to accurately match localized changes to vascular structures,
and preserve local topology. In this work, we proposed a
modified version of HdMM by formulating an adaptive kernel, to
enforce a local smoothness constraint on the deformation field,
henceforth referred to as HdMMad. The proposed HdMMad
framework is evaluated with cerebral and pulmonary vascula-
ture, acquired retrospectively. The registration results for both
data sets demonstrate that the proposed approach outperforms
registration algorithms also designed to preserve local topology.
Using HdMMad, around 80% of the initial registration error was
reduced, for both data sets.

I. INTRODUCTION

FOR numerous clinical applications, serially acquired intra-
patient image data are commonly registered into a single

coordinate frame for further analysis or decision making. As
the vessels represent an intrinsic bio-marker that permeates
through all organs, morphological changes to soft tissues
caused by tissue manipulation or progression of chronic dis-
eases, may be estimated by non-rigidly matching vasculature.
Consequently, an accurate and robust alignment of vasculature
benefits the quality of intrapatient image registration, for a
broad spectrum of clinical procedures.

In [1], the authors categorize vascular registration tech-
niques into point-, graph- and curve-based approaches. Com-
pared to graph- and curve-based methods, point-based ap-
proaches do not require a priori identification of correspon-
dences. Considering the registration of vasculature as a point
matching problem of its centerline points, iterative closest
point (ICP) can be used to establish the point correspon-
dences between the target and source points [2]. Additionally,
probabilistic approaches based on Gaussian Mixture Model
(GMM) such as Coherent Point Drift (CPD) [3], has been
applied e.g. for cerebral vessel alignment [4]. Compared
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to ICP, CPD demonstrates its superiority in medical image
processing tasks. However, fundamental drawbacks of CPD
in a clinical setting are the lack of inherent robustness to
outliers, and the absence of local topology preservation. In
order to confer localized robustness to the registration process,
[5] proposed a point matching framework based on Student’s
t-distributions (TMM). Furthermore, a hybrid representation
of vessel centerlines was proposed recently [6], resulting in
increased discriminative capacity of the mixture models for
deformable registration of cerebral vasculature. Local topology
constraint inspired by Local Linear Embedding was incorpo-
rated into a GMM-based registration framework (GLTC) in
[7]. Recently, a more sophisticated local topology constraint
based on geodesic path (GLTCgeo) was proposed in [8], to
quantify the changes in vascular morphology of lung diseases.

We present a hybrid mixture model for non-rigid registra-
tion, equipped with the functionality to preserve local vascular
topology, in a manner robust to outliers. In contrast to our
previous work [6], here we use a locally adaptive kernel de-
rived from the hybrid mixture model parameters. The proposed
framework is evaluated using cerebral and pulmonary vascular
data, and compared with the state-of-the-art.

II. HYBRID MIXTURE MODEL WITH ADAPTIVE LOCAL
TOPOLOGY CONSTRAINT

Vessel registration can be treated as the matching of
vessel centerlines. With the HdMM approach [6], extracted
centerlines are represented as 6-dimensional hybrid points,
comprising spatial position and axis orientation. Registration
of vessel centerlines is formulated as a probabilistic density
estimation problem, where the hybrid points defining the
Source are regarded as the centroids of the mixture model
and the Target hybrid points are regarded as data points. The
spatial positions are modeled using Student’s t-Distributions
(S), while the axes orientations are modeled with Watson
Distributions (refer to eq. 1). The Source is registered to
the Target by iteratively maximizing the log-likelihood (llh)
using the expectation maximization (EM) framework.

Watson distribution: The Watson distribution (W) is a
directional probability distribution with antipodal symmetry.
This distribution is parameterized by the mean orientation m
and the concentration κ, where κ is analogous to the precision
of a Gaussian distribution.
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Registration Framework: We assume the spatial position
(xi) and centerline orientation (ni) components of each hybrid
point in the Target set to be conditionally independent.
Consequently, their joint probability density function (PDF)
can be approximated as a product of the individual conditional
densities. Considering all Target points to be independent
and identically distributed (i.i.d), the objective function to be



TABLE I: Comparison of the accuracy of CPD, GLTC, GLTCgeo, HdMM, HdMMgl, HdMMgeo and HdMMad for cerebral
and pulmonary vessel registration. Mean and standard deviation of all evaluation metrics in millimeters (mm) are presented.

CPD GLTC GLTCgeo HdMM HdMMgl HdMMgeo HdMMad
Cerebral MSD 2.36± 0.25 2.08± 0.46 2.37± 0.37 1.03± 0.23 1.03± 0.23 1.04± 0.23 0.93± 0.200.93± 0.200.93± 0.20

MHD 2.49± 0.28 2.22± 0.39 2.59± 0.49 1.23± 0.31 1.23± 0.31 1.21± 0.30 1.14± 0.311.14± 0.311.14± 0.31

Pulmonary MSD 3.42± 0.83 3.40± 0.83 3.57± 0.61 2.44± 0.57 2.44± 0.56 2.91± 0.41 1.91± 0.321.91± 0.321.91± 0.32
MHD 3.80± 0.90 3.79± 0.91 3.90± 0.69 2.53± 0.54 2.53± 0.53 3.03± 0.41 2.03± 0.332.03± 0.332.03± 0.33

optimized with respect to the model parameters {Θp,Θn} is
defined as Eq. 2.

log(T | T ,Θp,Θn) =
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i=1
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Initially, an affine transformation (T ) and model parameters
Θp = {νj , σ2} and Θn = {κj} associated with S and W
are updated in the M-step similarly to [6]. Subsequently, the
non-rigid deformation is estimated by maximizing Eq. 3, with
respect to the associated parameters W.
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Locally Adaptive Kernel: In Eq. 3, v is the desired dis-
placement field, while G represents the Gaussian kernel,
which regulates the smoothness of v. In CPD, the Gaussian
kernel is defined as G(µµµl,µµµm) = exp−‖

µµµl−µµµm
2β ‖2 , where β

is used to control the width of the kernel, and consequently,
the smoothness of v. As β is fixed and user-defined for
all points µ, it requires prior information regarding the de-
gree of smoothness required for a given task. Additionally,
this enforces a global smoothness constraint on v. In our
framework, we employ κj , derived from the initial affine
registration to compute a locally adaptive Gaussian kernel as
G(µµµl,µµµm, κj) = exp−‖2κj(µµµl−µµµm)‖2 . Since κj is estimated
automatically for each component of HdMM, the resulting
G is inherently locally adaptive, which enables recovery of
localized deformations and preserves local topology.

III. EXPERIMENTS AND RESULTS

The proposed framework, HdMMad, is evaluated using two
intra-patient datasets, namely, cerebral and pulmonary vas-
culature, for intraoperative guidance during tumour resection
surgery, and assessing pulmonary disease-driven changes to
vasculature, respectively. The voxel size of the cerebral and
pulmonary images are 0.48mm3 and 0.65 × 0.65 × 2.5mm,
respectively. The images were processed and hybrid point
sets were generated as described in [6] and [8]. Overall, 6
pairs of cerebral vessel centerlines from a single neurosurgical
procedure, and 8 random pairs of pulmonary vessel images
from the SPREAD study [9], were used.

The effectiveness of the proposed adaptive Gaussian kernel
is compared with state-of-the-art probabilistic approaches such
as CPD, GLTC, GLTCgeo and HdMM proposed in [3], [6],
[7], [8], respectively. In order to evaluate of the performance
of HdMMad comprehensively, local topology constraints pro-
posed the in [7] and [8] are combined with HdMM (henceforth
referred as HdMMgl and HdMMgeo respectively), providing
two additional benchmark methods.

Modified Hausdorff distance (MHD) [10], and mean surface
distance (MSD) [5], are used to quantitatively assess regis-
tration accuracy. For a fair comparison, we set the λ to 1
and the number of EM-iterations to 100, for all experiments.
For GLTC, GLTCgeo, HdMMgl and HdMMgeo, the hyperpa-
rameter α related to the local topology constraint is set to
100 and the width of Gaussian Kernel β is set to 1. The
uniform distribution weight for CPD, GLTC and GLTCgeo
are remained fixed to 0.5, for all experiments. The quantitative
results are summarized in Table. I. The average MSD and MHD
prior to registration for the cerebral and pulmonary vessel
pairs are 5.40±1.24mm, 5.62±1.31mm, and 8.24±2.33mm,
9.07± 3.7mm, respectively.

IV. DISCUSSION AND CONCLUSION

HdMMad, a vessel registration framework with a locally
adaptive kernel was proposed in this study. The quantitative
results indicate that the proposed framework consistently out-
performs the state-of-the-art in all experiments. The locally
adaptive nature of the proposed approach permits recovery
of localized deformations more accurately, and enables better
preservation of local topology, relative to its counterparts that
employ a global smoothness constraint. Furthermore, only one
user-defined hyperparameter remains in the proposed frame-
work, in contrast to the others, which require multiple such
parameters to be tuned for a given task. Automatic robustness
to outliers, improved discriminative capacity, and the locally
adaptive nature of the proposed registration framework, make
it well suited to a variety of clinical applications.
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