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Abstract. Graph Convolutional Networks (GCNs) are a novel and pow-
erful method for dealing with non-Euclidean data, while Convolutional
Neural Networks (CNNs) can learn features from Euclidean data such as
images. In this work, we propose a novel method to combine CNNs with
GCNs (CNN-GCN), that can consider both Euclidean and non-Euclidean
features and can be trained end-to-end. We applied this method to sep-
arate the pulmonary vascular trees into arteries and veins (A/V). Chest
CT scans were pre-processed by vessel segmentation and skeletonization,
from which a graph was constructed: voxels on the skeletons resulting in
a vertex set and their connections in an adjacency matrix. 3D patches
centered around each vertex were extracted from the CT scans, oriented
perpendicularly to the vessel. The proposed CNN-GCN classifier was
trained and applied on the constructed vessel graphs, where each node
is then labeled as artery or vein. The proposed method was trained and
validated on data from one hospital (11 patient, 22 lungs), and tested
on independent data from a different hospital (10 patients, 10 lungs).
A baseline CNN method and human observer performance were used
for comparison. The CNN-GCN method obtained a median accuracy of
0.773 (0.738) in the validation (test) set, compared to a median accuracy
of 0.817 by the observers, and 0.727 (0.693) by the CNN. In conclusion,
the proposed CNN-GCN method combines local image information with
graph connectivity information, improving pulmonary A/V separation
over a baseline CNN method, approaching the performance of human
observers.

1 Introduction

Graph Convolutional Networks (GCN) are a variant of Convolutional Neural
Networks (CNN) applied on graphs [1,2]. Recently, there are many research
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fields processing graphs (non-Euclidean data), such as social networks, citation
networks, applied chemistry, computer vision, anatomical structures etc. GCNs
and their variants have obtained state-of-the-art performance in these fields [1,3].

In the medical imaging domain, GCNs achieved promising results as well.
Parisot et al. [4] proposed a semi-supervised method for disease prediction using
GCNs, where individuals were represented as nodes; the features consisted of
both image and non-image information; a sparse graph was constructed among
all individuals and partially labeled. The GCN was trained on the labeled nodes
and inferred classes of unlabeled nodes, based on node features and their connec-
tions. Shin et al. [5] proposed a deep vessel segmentation by combining CNNs and
GCNs, where a CNN was trained for generating features and vessel probabilities;
a GCN was trained to predict the presence of a vessel, based on the features and
connectivity, and an inference module to generate the final segmentation. The
method achieved competitive results in both retinal vessel and coronary artery
data sets. However, this classifier cannot be trained end-to-end, which may yield
sub-optimal results. In this work, we propose therefore a network linking CNNs
with GCNs, which can be trained end-to-end.

Separation of pulmonary arteries/veins (A/V) is a challenging problem,
because of the complexity of their anatomical structures and the similarity in
intensity and morphology. In recent years, only a few methods have been devel-
oped for separating A/V, including traditional methods [6,7] and deep learning
based methods [8]. Both local and global information were considered by the
traditional methods [6,7], including the property of parallel configuration and
close proximity of arteries and bronchus, anatomical information on the A/V
roots, and connectivity information. Nardelli et al. [8] proposed a CNN method
for classifying vessel particles to A/V based on local patches and subsequently
applied a graph-cut optimization to refine the classifications, which combined
connectivity information and predictions by the CNN classifier.

In this work, we propose a novel network linking CNNs and GCNs
(CNN-GCN), which considers both local image and graph connectivity features
and the classifier can be trained end-to-end. To enable large graphs with huge
amounts of nodes containing features from 3D patches to fit in GPU memory, we
propose a batch-based strategy on graphs for CNN-GCN training and validation,
instead of using entire graphs. The CNN-GCN method was applied to separate
pulmonary A/V. These images were pre-processed by vessel graph construction
and 3D patch extraction, and subsequently the classes of each node in the vessel
graph was predicted by the CNN-GCN classifier, and A/V volume was re-built
based on the classification of the nodes.

2 Methods

In this section, we provide the theoretical background of GCNs, and motivation
for linking CNNs with GCNs. We demonstrate its usage by an application in
separating pulmonary arteries-veins.
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2.1 Graph Convolution Networks

We follow the works of Kipf et al. [1] and Wu et al. [2] to introduce the
theoretical background of GCNs. A graph is defined as G = (V, A), where
V = {vi, i = 1, . . . , N} is the vertex set consisting of N nodes, and A = (aij)N×N

is the adjacency matrix of the graph: aij = 1 if nodes vi and vj are connected,
otherwise aij = 0. For consistency, each node is always connected to itself, i.e.
aii = 1. Each node vi has an F -dimensional feature vector xi ∈ R

F , and the
feature matrix for all nodes is X = [x1, . . . , xN ]T i.e. X ∈ R

N×F . Each node
vi belongs to a class c out of C, which can be encoded as a one-hot vector
yi ∈ {0, 1}C .

In a graph convolution layer, the operations can be divided into three stages:
feature representation, feature transform and nonlinear activation. Commonly,
the input layer H(0) is the input feature matrix: H(0) = X. Within a GCN, the
input for the kth layer is the output from the (k − 1)th layer: H(k−1) with size
N × F (k−1), and as output H(k) of size N × F (k). The processing within this
layer is expressed as:

H(k) = σ
(
WH(k−1)Θ(k)

)
, (1)

where W is an N × N weight matrix among nodes V; Θ(k) is a layer-specific
trainable parameter matrix of size F (k−1) × F (k); σ(·) is an activation function,
like ReLU. The operation Ĥ(k) = WH(k−1) is considered to be a ‘feature repre-
sentation’, which averages the feature vectors of neighbors around nodes. Based
on the spectral graph convolution, Kipf et al. [1] estimated the weight matrix
using Chebyshev polynomials: W = D− 1

2 AD− 1
2 , with D the diagonal degree

matrix of A and wij = aij√
di·dj

, i.e. not trainable. Instead of using a fixed hand-

crafted weight matrix, Monti et al. [3] proposed a method to calculate W using
parametric kernels wij = k(xi, xj |θ), where θ represents the trainable parame-
ters and k(·) is a Gaussian kernel. In this study we use the trainable method.
The operation: H̃(k) = Ĥ(k)Θ(k) corresponds to a ‘feature transform’, where the
feature vector can be transformed from F (k−1) dimensions to F (k) dimensions. If
needed, a trainable bias ε of size 1 × F (k) can be involved as well after transfor-
mation. Finally, a ‘nonlinear activation’ operation is applied: H(k) = σ

(
H̃(k)

)
.

2.2 Linking CNN with GCN

A GCN can combine both local and connectivity information, which may be
useful to analyze vascular trees. To combine CNNs with GCNs we let the feature
matrix X be learned by a CNN: xi = Φ(pi|Θ), where Φ(·) is a general CNN with
an arbitrary sequence of layers, and pi a local image patch with size S. Then,
the CNN and GCN can be linked as follows:

H = σ (WθXΘ), where X = Φ (P |Θ), (2)
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Algorithm 1. Model linking CNN with GCN
1: procedure CnnGcnModel(B, NB)
2: Inputs of the model
3: Batch: B with size b × S
4: Neighborhood Batch: NB with size b × n × S
5: X̃ = Φ(B|Θ) � Φ(·) is a shared function with sequential layers
6: ÑX = Φ(NB|Θ)
7: H = GcnLayer(X̃, ÑX)
8: Y = softmax(H) � other activation may also be used here
9: return Y

Algorithm 2. Graph convolutional layer with batch strategy on graphs
1: procedure GcnLayer(X, NX)
2: Inputs: X, NX � X with size b × F ; NX with size b × n × F
3: W = k(X, NX|θ) � k(·) is a trainable function.
4: W̃ = expend dims(W, axis = 1) � W with size b × n; W̃ with size b × 1 × n
5: X̂ = K.reshape(K.batchdot(W̃ , NX), (b, F )) � X̂ with shape b × F
6: Ĥ = (X + X̃)/(1 + sum(W )) � feature representation and normalization.
7: H̃ = ĤΘ � feature transform
8: H = Relu(H̃) � other activations may be used here
9: return H

with P = [p1, ..., pN ]T the set of all patches. In other words, X are the learned
feature maps from the CNN, which is then followed by a step of a normal GCN
akin to Eq. (1). The CNN-GCN classifier is linked as a function chain, which can
be straightforwardly optimized by gradient decent using back-propagation. The
patch pi of each node is processed with a shared CNN function Φ(·). Pseudo-code
of the proposed method is given in Algorithm 1.

Straightforward training of the CNN-GCN requires loading the entire graph
in GPU memory. As features are learned, local patches of all nodes need to be
available as well, i.e. the entire matrix P which has size around 45000×S. Since
this is not feasible with current GPUs, we propose a sampling strategy on graphs
instead of using entire graphs, similarly to batch processing for training CNNs.
Given a graph G, we randomly select b nodes with their patches as an input
batch B, with size b × S. Since we use a graph structure, we also need the image
patches of these neighbors. This is denoted by NB which has size b × n × S,
where n is the number of neighbors. Both the batch B and the neighborhood
batch NB are processed with a shared CNN function Φ (·), which may consist of
multiple layers, such as convolution layers, max-pooling layers, activation layers
etc. In every iteration a new selection of B and NB is made. Pseudo-code of a
GCN layer with batch strategy on graphs is presented in Algorithm 2.

2.3 Application to Pulmonary Artery-Vein Separation

Lung vessel trees were extracted from the chest CT scans by a vessel segmen-
tation method [9] and then skeletonized by a skeletonization method [10] (using
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MevisLab 2.7.1). All voxels on the vessel skeleton were added as a set of nodes V,
and the adjacency matrix A was constructed based on their connections. In this
study, only one-degree (direct) neighbors were considered. A graph G was con-
structed for left and right lung separately. For each voxel on the vessel skeleton,
a local patch pi perpendicular to the vessel orientation and of size S = [32, 32, 5]
was extracted from the CT images. A patch pi is labeled either artery or vein,
i.e. yi ∈ {0, 1}2, based on the label of the center voxel. The CNN architecture
Φ (·|Θ) for processing patches is adopted from [8]. Following the proposed batch
strategy, input batch B and its neighbors NB were processed with the shared
function Φ (·|Θ) to the feature vectors X and NX, respectively. The feature vec-
tors X and NX were inserted into a GCN layer, represented and transformed
to a new dimension. After an activation layer, the output is predicted with 2
dimensions. The architecture for pulmonary artery-vein separation by linking
CNN and GCN is demonstrated in Fig. 1. Based on the predictions of center
voxels, the A/V volume is re-built, where each voxel on the cross-sectional area
is labeled with the prediction of corresponding center-voxel.

CT scan

Skeleton

Skeleton predictions

AV volume

Graph construction

3D view of patch

CNN-GCN classifier

B
NB

Fig. 1. An overview of proposed method for pulmonary arteries-veins separation.

3 Experiments

The CNN-GCN method was implemented in ‘TensorFlow.Keras’, version 1.12.2,
where the GCN layer was implemented inheriting from the ‘Keras.layers.Layer’
class. Categorical cross-entropy was used as loss function and the Stochastic
Gradient Descent method was used as optimizer. Training was performed on a
local GPU cluster (Nvidia Titan Xp 12 GB). The source code is publicly available
via https://github.com/chushan89/Linking-CNN-GCN.git.

We collected contrast enhanced CT scans of 11 cases, scanned with a Toshiba
Aquilion ONE, from Sun Yat-sen University Hospital (SunYs data set) and con-
trast enhanced CT scans of 10 cases, scanned with a Toshiba Aquilion 64, from
Leiden University Medical Center (LUMC data set). All CT scans were resam-
pled by a cubic B-spline filter to obtain isotropic voxels, with a size of 0.625 mm3.

https://github.com/chushan89/Linking-CNN-GCN.git
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Fig. 2. Architecture of CNN-GCN model for pulmonary arteries-veins separation, by
linking CNN and GCN layer. C: convolution layer; MP: max-pooling layer; DO: dropout
layer; FC: fully-connected layer (or dense layer); Φ (·|Θ): a CNN function with multiple
layers; GCN: graph convolutional layer.

Lung vessels were segmented and provided for each case [9]. For the SunYs data
set, two radiologists of Sun Yat-sen University Hospital labeled the segmented
lung vessels into arteries or veins, as initial annotations. The initial labels were
checked and corrected by three experts at the LUMC. The corrected annota-
tions were used as ground truth, where initial annotation was used to assess
observer performance. In total 22 lungs from 11 patients (consisting of 1,041,463
patches) with fully annotated pulmonary arteries-veins were obtained, referred
to as the SunYs dataset. From this data set, 16 lungs (722,013 patches) were
used for training and 6 lungs (319,450 patches) for validation. For the LUMC
data set, either right or left lung vessels of each case were labeled by two experts
independently, in total 10 lungs (504,527 patches) with fully A/V annotations
were prepared as an independent test set, from a different patient population,
CT protocol and scanner, that was not seen during training.

The CNN3D architecture proposed by Nardelli et al. [8] was used for compar-
ison. The weights of the function Φ (·) in the CNN-GCN method were initialized
randomly using the Glorot uniform initializer, as demonstrated in Fig. 2. Alter-
natively, we transferred the learned weights from the CNN3D for initialization
of the CNN-GCN method, which we refer to as ‘CNN-GCNt’. All three meth-
ods were trained and validated with the same data, and their hyper-parameter
settings were kept the same: learning rate = 1e−3, batch size = 128, epoch = 100.
As a benchmark, the initial annotations of observers were validated against the
ground truth. Accuracy was used as a key measure for comparing all methods
and observer performance.

4 Results

The trained classification models were used to predict labels of pulmonary A/V,
and results were evaluated against the ground truth. The results are avail-
able in Fig. 3. With the validation set from the SunYs data set, the automatic
methods obtained median accuracies of 0.727, 0.764 and 0.778 for the CNN3D,
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CNN-GCN, and CNN-GCNt method, respectively. This compares to a median
inter-observer accuracy of 0.817. For the independent test set (LUMC data set),
median accuracies of 0.693, 0.723 and 0.738 were obtained for these three meth-
ods. Example A/V separation results are shown in Fig. 4, showing a good and a
bad case from the validation set.

Fig. 3. Accuracy of the automatic methods and observers in training, validation and
test sets, respectively.

(a) 

CNN3D 

CNN-GCN 

CNN-GCNt 

Ground truth CNN3D 

CNN-GCN 

CNN-GCNt 

Ground truth 

(b) 

Fig. 4. A 2D visualization of a good and bad result in (a) and (b), respectively, where
the accuracies of CNN3D, CNN-GCN and CNN-GCNt in the good one were 0.759,
0.800 and 0.807, respectively; the accuracies in the bad one were 0.687, 0.710 and
0.724, respectively.

5 Discussion and Conclusion

We proposed a novel deep-learning-based method by linking CNNs with GCNs,
which can be trained end-to-end. The CNN-GCN method can consider both
local image and connectivity information. A local batch strategy on graphs was
proposed, in order to make graphs with huge amounts of nodes trainable within
GPU memory. In the application of pulmonary artery-vein separation, the CNN-
GCN method could provide a primary separation, which performs better than
the CNN method and obtains slightly worse results compared to observers. There
are some limitations of this study. In the test data set, we didn’t independently
verify the observers’ annotations, therefore observer performance wasn’t pro-
vided during testing. In the future, annotation correction will be added in the
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test set. Probably over-fitting occurred during training, which may be overcome
by adding regularizers or more training samples. Even with GCN, some con-
nectivity errors still remained. Including high-order information (such as branch
information) or high-degree neighbors may be helpful in solving these remaining
errors. Despite these limitations, we obtained encouraging results from the inde-
pendent test set, especially considering the fact that these are from a different
patient population, CT-protocol and CT-scanner. In conclusion, the proposed
CNN-GCN method, with end-to-end training, successfully combines information
from images and graphs.
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