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Abstract. Joint image registration and segmentation has long been an
active area of research in medical imaging. Here, we reformulate this
problem in a deep learning setting using adversarial learning. We con-
sider the case in which fixed and moving images as well as their segmen-
tations are available for training, while segmentations are not available
during testing; a common scenario in radiotherapy. The proposed frame-
work consists of a 3D end-to-end generator network that estimates the
deformation vector field (DVF) between fixed and moving images in an
unsupervised fashion and applies this DVF to the moving image and its
segmentation. A discriminator network is trained to evaluate how well
the moving image and segmentation align with the fixed image and seg-
mentation. The proposed network was trained and evaluated on follow-
up prostate CT scans for image-guided radiotherapy, where the planning
CT contours are propagated to the daily CT images using the estimated
DVF. A quantitative comparison with conventional registration using
elastix showed that the proposed method improved performance and
substantially reduced computation time, thus enabling real-time contour
propagation necessary for online-adaptive radiotherapy.

Keywords: Deformable image registration · Adversarial training ·
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1 Introduction

Joint image registration and segmentation (JRS) has long been an active area
of research in medical imaging. Image registration and segmentation are closely
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-32226-7 41) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2019
D. Shen et al. (Eds.): MICCAI 2019, LNCS 11769, pp. 366–374, 2019.
https://doi.org/10.1007/978-3-030-32226-7_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32226-7_41&domain=pdf
https://doi.org/10.1007/978-3-030-32226-7_41
https://doi.org/10.1007/978-3-030-32226-7_41
https://doi.org/10.1007/978-3-030-32226-7_41


Adversarial Optimization for Joint Registration and Segmentation 367

related and complimentary in applications such as contour propagation, disease
monitoring, and data fusion from different modalities. Image registration could
be enhanced and improved using an accurate segmentation, and vice versa reg-
istration algorithms could be used to improve image segmentation.

An important application in which coupling of image registration and seg-
mentation is crucial, is online adaptive image-guided radiotherapy. In this appli-
cation, clinically approved contours are propagated from an initial planning CT
scan to daily inter-fraction CT scans of the same patient. Image registration
can be used to correct for anatomical variations in shape and position of the
underlying organs, as well as to compensate for any misalignment in patient
setup. Ideally, contours should be propagated quickly to allow immediate com-
putation of a new dose distribution. With these propagated contours, margins
can be smaller and treatment-related complications may be reduced. Thus, it
is important that the daily contours are of high quality, are consistent with the
planning contours, and are generated in near real-time.

In the last decade, researchers have been working on fusing image registra-
tion and segmentation. Lu et al. [1] proposed a Bayesian framework for modelling
segmentation and registration such that these could alternatingly constrain each
other. Yezzi et al. [2] proposed using active contours to register and segment
images. Unal et al. [3], generalizing on [2], proposed to use partial differential
equations without any shape prior. Most of these methods require long compu-
tation times and complex parameter tuning. Recently, the widespread adoption
of deep learning techniques has led to remarkable achievements in the field of
medical imaging [4]. Among these techniques are generative adversarial networks
(GANs), which are defined by joint optimization of a generator and discrimina-
tor network [5]. GANs have boosted the performance of traditional networks for
image segmentation [6] as well as registration [7]. Recently, Mahapatra et al.
[8] proposed a GAN for joint registration and segmentation of 2D chest X-
ray images. However, this method requires reference deformation vector fields
(DVFs) for training. In practice, these are often unavailable and it may be more
practical to perform unsupervised registration [9], i.e. training without reference
DVFs.

In this paper, we introduce a fast unsupervised 3D GAN to jointly perform
deformable image registration and segmentation. A generator network estimates
the DVF between two images, while a discriminator network is trained simul-
taneously to evaluate the quality of the registration and the segmentation and
propagate the feedback to the generator network. We consider the use-case in
which fixed and moving images as well as their segmentations are available for
training, which is a common scenario in radiation therapy. However, no seg-
mentations are required for DVF estimation during testing. This paper has the
following contributions. First, we propose an end-to-end 3D network architec-
ture, which is trained in an adversarial manner for joint image registration and
segmentation. Second, we propose a strategy to generate well-aligned pairs to
train the discriminator network with. Third, we leverage PatchGAN as a local
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quality measure of image alignment. Fourth, the proposed network is much faster
and more accurate than conventional registration methods.

We quantitatively evaluate the proposed method on a prostate CT database,
which shows that the method compares favorably to elastix software [10].

2 Methods

Image registration is the transformation of a moving image Im to the coordinate
system of a fixed image If . In this paper, we assume that all image pairs are
affinely registered beforehand, and we focus on local non-linear deformations.

In conventional contour propagation algorithms, registration and segmenta-
tion are disjoint. First, the DVF Φ is estimated using image registration, and
then Φ is used to warp the contours Sm to the fixed coordinate space. After-
wards, during system evaluation, a similarity measure such as the Dice similarity
coefficient (DSC) can be used to measure the quality of the propagated contours
w.r.t. ground truth contours, but this information is not fed back to the reg-
istration algorithm. We call this an open loop system. In contrast, this paper
proposes an end-to-end closed loop system to improve image registration based
on feedback on the registration as well as the segmentation quality.

2.1 Adversarial Training

We propose to train a GAN containing two CNNs: a generator network that
predicts the DVF Φ given If and Im, and a discriminator network that assesses
the alignment of If (x) and Im(Φ(x)) as well as the overlap between Sf (x) and
Sm(Φ(x)). Hence, we assume that Sf and Sm are both available, but during
training only. The GAN is trained using a Wasserstein objective [11], which has
empirically been shown to improve training stability and convergence compared
to the GAN objective in [5]. Equations (1) and (2) list the generator loss LGAN

G

and the discriminator loss LGAN
D of WGAN:

LGAN
G = −E [D(If (x), Im(Φ(x)), Sm(Φ(x)))] , (1)

LGAN
D = E [D(If (x), Im(Φ(x)), Sm(Φ(x)))] − [D(If , Θ(If ), Sf )] , (2)

where G and D denote the generator and discriminator networks with trainable
parameters and Φ is the DVF provided by G. In a GAN, the discriminator is
trained to distinguish between real and fake samples. In this case, fake sam-
ples are the triple (If , Im(Φ), Sm(Φ)), while real samples should be well-aligned
images. As we perform unsupervised registration, and assume no knowledge
about the ideal alignment of two images, we synthesize such image based on the
fixed image and its segmentation alone: (If , Θ(If ), Sf ). Hence, Θ in Eq. (2) is a
random combination of disturbance functions, as follows. First, to mimic imag-
ing noise, Gaussian noise and Gaussian smoothing are added with zero mean
and a standard deviation of 0.04. Second, to mimic contrast variations, we apply
gamma correction with a random gamma factor in the range [−0.4, 0.4]. Third,
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we mimic interpolation errors by applying a random deformation of less than
0.5 mm and resample the images using that deformation using linear interpola-
tion.

In addition to these image-based quality measures, we include the segmen-
tation of the deformed moving image as input to the discriminator in order to
enforce DVFs that are consistent with the moving segmentation. We test two
designs. The first design concatenates the segmentation as a third input channel
in the discriminator, next to the fixed and moving image channels. The second
design multiplies the fixed and moving image channel with the corresponding
segmentation, so that the network learns to focus on the target structures and
organs-at-risk instead of on the bowels and other less relevant soft tissue. These
designs are named JRS-GANa and JRS-GANb, respectively.

We found that training the network using WGAN loss only, resulted in slow
convergence and suboptimal registrations. Thus, a similarity loss Lsim, based on
image similarity and segmentation overlap, was added to the generator:

Lsim = (1 − DSC(Sm(Φ(x)), Sf (x))) + (1 − NCC(Im(Φ(x)), If (x))), (3)

where DSC is the Dice similarity coefficient and NCC is normalized cross-
correlation. Adding the DSC to Lsim ensures that the registration improves
the segmentation and vice versa. Furthermore, to ensure smooth and continu-
ous DVFs, the bending energy penalty of the DVF, Lsmooth, was added as a
regularization term to the overall generator loss, which was defined as:

LG = Lsim + λ1Lsmooth + λ2L
GAN
G , (4)

where λ1 and λ2 are weights for the DVF smoothness and the generator loss.
During training of the network, for every iteration of the generator we used

100 iterations of the discriminator, for the first 25 iterations. After that we used
the ratio 1:5. In each iteration, weights of the discriminator were clipped to the
range [−0.01, 0.01] [11].

2.2 Network Architectures

Generator Network. To estimate the parametric mapping function Φ between
the fixed and moving images we use a 3D network similar to the U-net [12].
Figure 1 shows the network design in more detail. The input to the network is
the concatenation of If and Im. The network encodes the image pairs through a
set of 3× 3× 3 convolution layers followed by LeakyReLU and batch normaliza-
tion layers. Strided convolutions are used in the contractive path and upsampling
layers are used in the expanding path. The output size of the network is smaller
than the input size in order to consider a larger field of view. A resampling net-
work adopted from NiftyNet [13] is used to warp the images using the estimated
DVF during training time so that the network can be trained end-to-end.

Discriminator Network. The discriminator is responsible for assessing
whether the image pairs are well-aligned or not, as well as assessing whether
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Fig. 1. The proposed generator (top) and discriminator (bottom) networks, where k,
s, and p represent the kernel size, stride size, and padding option, respectively. The
numbers above the different layers represent the feature maps.

the segmentations overlap. Figure 1 shows the network design, which is similar
to the contracting path of the generator. The discriminator network was trained
using PatchGAN [16]. Hence, instead of representing the quality of the whole
patch with a single number, the network could quantify the sub-patch quality
locally.

3 Experiments and Results

3.1 Dataset, Evaluation Criteria and Implementation Details

This study includes eighteen patients who underwent intensity-modulated radi-
ation therapy for prostate cancer in 2007 at Haukeland university hospital [14].
Each patient had a planning CT as well as 7 to 10 inter-fraction repeat CT
scans. The prostate, lymph nodes, seminal vesicles, as well as the rectum and
bladder were annotated. Each scan has 90 to 180 slices with a slice thickness of
around 2 to 3 mm. All the slices were of size 512 × 512 with an in-plane resolu-
tion of around 0.9 mm. All the volumes were affinely registered using elastix.
The volumes were resampled to isotropic voxel size of 1× 1× 1 mm. All volumes
intensities were scaled to [−1, 1]. We split the dataset into 111 image pairs
(from 12 patients) for training and validation and 50 image pairs (6 patients)
for testing.

The quality of registration is quantified geometrically in 3D by comparing the
manual delineations of the daily CT with the automatically propagated contours.
We use the mean surface distance (MSD), and the 95% Hausdorff distance (HD).
A Wilcoxon signed rank test at p = 0.05 is used to compare results.
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The networks were implemented using TensorFlow (version 1.13) [15] with
the RMSProp optimizer using a learning rate of 10−5. The networks were trained
and tested on an NVIDIA Tesla V100 GPU with 16 GB of memory. From each
image pair, 1000 patches of size 96× 96× 96 voxels were sampled within the
torso mask. To improve stability, the network was trained to warp the fixed
patch to the moving patch and vice versa at the same training iteration. The
magnitude of the three loss terms in Eq. (3) was scaled by setting λ1 = 1 and
λ2 = 0.01.

Table 1. MSD (mm) values for different experiments, where † and ‡ represent a sig-
nificant difference compared to elastix-MI and Reg-CNN, respectively.

Evaluation Prostate Seminal vesicles Lymph nodes Rectum Bladder

μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ

elastix-NCC 1.81± 0.7 2.80± 1.6 1.19± 0.4 3.79± 1.2 5.31± 2.6

elastix-MI 1.73± 0.7 2.70± 1.6 1.18± 0.4 3.68± 1.2 5.26± 2.6

Reg-CNN 1.44± 0.5† 2.09± 1.7† 1.22± 0.3 2.59± 1.3† 4.18± 2.6†

JRS-CNN 1.18± 0.4†‡ 1.91± 1.6†‡ 1.02± 0.3†‡ 2.32± 1.3†‡ 2.37± 2.0†‡

Reg-GAN 1.40± 0.5† 2.14± 1.7† 1.06± 0.3†‡ 2.72± 1.3† 4.31± 2.8†

JRS-GANa 1.13± 0.4†‡ 1.81± 1.6†‡ 1.00± 0.3†‡ 2.21± 1.3†‡ 2.29± 2.0†‡

JRS-GANb 1.17± 0.4†‡ 1.90± 1.5†‡ 1.01± 0.3†‡ 2.34± 1.3†‡ 2.41± 2.1†‡

Table 2. %95HD (mm) values for different experiments, where † and ‡ represent a
significant difference compared to elastix-MI and Reg-CNN, respectively.

Evaluation Prostate Seminal vesicles Lymph nodes Rectum Bladder

μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ

elastix-NCC 4.2± 1.8 6.1± 3.3 2.8± 1.0‡ 11.0± 5.2 15.4± 8.4‡

elastix-MI 4.0± 1.7 6.0± 3.7 2.8± 1.0‡ 10.9± 5.2 15.3± 8.3‡

Reg-CNN 5.3± 2.5 6.2± 3.5 4.4± 1.4 11.0± 6.5 16.6± 9.3

JRS-CNN 3.6± 1.5†‡ 5.4± 3.4†‡ 3.1± 0.9‡ 10.3± 6.7†‡ 11.6± 10.5†‡

Reg-GAN 4.3± 2.1‡ 6.0± 3.6 3.4± 1.0‡ 11.1± 6.4 16.2± 9.6‡
JRS-GANa 3.4± 1.4†‡ 5.3± 3.3†‡ 3.1± 0.9‡ 10.0± 6.7†‡ 11.0± 10.3†‡

JRS-GANb 3.5± 1.4†‡ 5.6± 3.7‡ 3.0± 1.0‡ 10.5± 6.8†‡ 11.4± 10.6†‡

3.2 Experiments and Results

Tables 1 and 2 provide quantitative results comparing the following methods.
First, we include conventional iterative methods using elastix software [10]
with NCC (elastix-NCC) and MI (elastix-MI) similarity measures, using the
settings from [17]. Second, we evaluate two unsupervised deep learning-based
methods without adversarial feedback: One uses the generator trained with the
NCC loss (Reg-CNN), similar to [9]; the other uses the generator with both
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the NCC and DSC loss (JRS-CNN). Third, we evaluate several versions of our
GAN-based approach. To study the effect of adversarial training without added
segmentations, we perform an experiment named Reg-GAN. Finally, we evaluate
the proposed JRS-GANa and JRS-GANb methods. See supplemental document
for Dice Similarity Coefficient (DSC).

Fig. 2. Boxplots for the evaluated methods in terms of MSD (mm).

Fig. 3. An example result for three of the methods. Top row shows the fixed image
with propagated contours (solid line is manual; dotted is automatic result). The red,
yellow, cyan, violet, and green contours represent the bladder, lymph nodes, prostate,
rectum, and seminal vesicles, respectively. Bottom row shows heatmaps of absolute
difference images between fixed and deformed moving image. (Color figure online)
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The MSD values in Table 1 show that for all organs, the GAN-based methods
significantly improved over elastix. This is further shown in Fig. 2. The results
indicate a significant improvement when performing joint registration and seg-
mentation instead of disjoint registration. Furthermore, the boxplot indicates
that performance for JRS-GANa and JRS-GANb was very similar. Similarly,
the 95% HD values in Table 2 show improvements in contour accuracy when the
GAN-based method is used. Especially the organs-at-risk showed large improve-
ments. The standard deviations of the Jacobian determinant of the estimated
DVFs were 0.08± 0.01 and 0.17± 0.04 for elastix-MI and JRS-GANa, respec-
tively. The average runtime for the proposed pipeline is 0.6 s on the GPU for a
volume of size 2563 voxels, while the average runtime of elastix at 100 itera-
tions is 13 s per volume on an Intel Xeon E51620 CPU using 4 cores. Figure 3
illustrates the segmentation and registration for an example case (see supple-
mental document for more examples).

4 Discussion and Conclusion

In this study, we investigated the performance of an end-to-end joint registra-
tion and segmentation network for adaptive image-guided radiotherapy. Unlike
conventional registration methods, our network encodes and learns the most rel-
evant features for joint image registration and segmentation, and exploits the
combined knowledge on unseen images without segmentations.

We demonstrate that including the segmentation during training boosts
the system’s performance by a margin. Furthermore, adversarial feedback had
a small benefit on performance, when comparing Reg-CNN with Reg-GAN.
Results indicate a noticeable benefit of including segmentation masks as input to
the discriminator during training. How exactly segmentation masks were embed-
ded during training was less relevant, with only small differences observed for
the seminal vesicles. This could be due to the small size and irregular nature
of the seminal vesicles. A key advantage of the proposed deep learning-based
contour propagation method is its runtime on new and unseen data, i.e. 0.6 s.

This work has shown that adversarial feedback can help improve registra-
tion, i.e. that a discriminator can learn a measure of image alignment. This is a
promising aspect that could be further explored in future work. This will include
improved GAN objectives, such as the use of gradient penalty regularization.

To conclude, we have proposed a 3D adversarial network for joint image
registration and segmentation with a focus on prostate CT radiotherapy. The
proposed method demonstrated the effectiveness of training the registration and
segmentation jointly. Moreover, it showed a substantial reduction in the com-
putation time making it a strong candidate for online adaptive image-guided
radiotherapy of prostate cancer. Since the proposed method did not only improve
accuracy for the target areas, but substantially so for the organs-at-risk, this may
aid reducing treatment-induced complications.



374 M. S. Elmahdy et al.

Acknowledgements. This study was financially supported by Varian Medical Sys-
tems and ZonMw, the Netherlands Organization for Health Research and Development,
grant number 104003012. The dataset with contours were collected at Haukeland Uni-
versity Hospital, Bergen, Norway and were provided to us by responsible oncologist
Svein Inge Helle and physicist Liv Bolstad Hysing; they are gratefully acknowledged.

References

1. Lu, C., et al.: An integrated approach to segmentation and nonrigid registration for
application in image-guided pelvic radiotherapy. Med. Image Anal. 15(5), 772–785
(2011)

2. Yezzi, A., et al.: A variational framework for integrating segmentation and regis-
tration through active contours. Med. Image Anal. 7(2), 171–185 (2003)

3. Unal, G., Slabaugh, G.: Coupled PDEs for non-rigid registration and segmentation.
In: IEEE CVPR (2005)

4. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image
Anal. 42, 60–88 (2017)

5. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, vol. 27, pp. 2672–2680 (2014)

6. Kazeminia, S., et al.: GANs for Medical Image Analysis. arXiv:1809.06222v2 (2018)
7. Haskins, G., et al.: Deep Learning in Medical Image Registration: A Survey.

arXiv:1903.02026v1 (2019)
8. Mahapatra, D., Ge, Z., Sedai, S., Chakravorty, R.: Joint registration and segmen-

tation of Xray images using generative adversarial networks. In: Shi, Y., Suk, H.-I.,
Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 73–80. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00919-9 9

9. de Vos, B.D., et al.: A deep learning framework for unsupervised affine and
deformable image registration. In: Medical Image Analysis, pp. 204–212. Springer,
Heidelberg (2019)

10. Klein, S., et al.: Elastix: a toolbox for intensity-based medical image registration.
IEEE Trans. Med. Imaging. 29(1), 196–205 (2010)

11. Arjovsky, M., et al.: Wasserstein GAN. arXiv:1701.07875v3 (2017)
12. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomed-

ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

13. Gibson, E., et al.: NiftyNet: a deep-learning platform for medical imaging. Comput.
Methods Programs Biomed. 158, 113–122 (2018)

14. Muren, L.P., et al.: Intensity-modulated radiotherapy of pelvic lymph nodes in
locally advanced prostate cancer: planning procedures and early experiences. Int.
J. Radiat. Oncol. Biol. Phys. 71, 4, 1034–1041 (2008)

15. Matin, et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Dis-
tributed Systems. arXiv:1603.04467 (2017)

16. Isola, et al.: Image-to-Image Translation with Conditional Adversarial Networks.
arXiv:1611.07004v3 (2016)

17. Qiao, Y.: Fast optimization methods for image registration in adaptive radiation
therapy. Ph.D. thesis, Chapter 5, Leiden University Medical Center (2017). http://
elastix.isi.uu.nl/marius/downloads/2017 t Qiao.pdf

http://arxiv.org/abs/1809.06222v2
http://arxiv.org/abs/1903.02026v1
https://doi.org/10.1007/978-3-030-00919-9_9
http://arxiv.org/abs/1701.07875v3
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1611.07004v3
http://elastix.isi.uu.nl/marius/downloads/2017_t_Qiao.pdf
http://elastix.isi.uu.nl/marius/downloads/2017_t_Qiao.pdf



