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Abstract—The problem of motion detection has received con-
siderable attention due to the explosive growth of its applications
in video analysis and surveillance systems. While the previous
approaches can produce good results, the accurate detection of
motion remains a challenging task due to the difficulties raised
by illumination variations, occlusion, camouflage, sudden motions
appearing in burst, dynamic texture, and environmental changes
such as those on weather conditions, sunlight changes during
a day, etc. In this study, a novel per-pixel motion descriptor
is proposed for motion detection in video sequences which
outperforms the current methods in the literature particularly
in severe scenarios. The proposed descriptor is based on two
complementary three-dimensional discrete wavelet transforms
(3D-DWT) and a three-dimensional wavelet leader. In this ap-
proach, a feature vector is extracted for each pixel by applying a
novel three-dimensional wavelet-based motion descriptor. Then,
the extracted features are clustered by the well-known K-means
algorithm. The experimental results demonstrate the effectiveness
of the proposed method compared to state-of-the-art approaches
in several public benchmark datasets. The application of the
proposed method and additional experimental results for several
challenging datasets are available online.

Index Terms—Motion detection; Dynamic texture; 3D-discrete
Wavelet Transform; Wavelet leader

I. INTRODUCTION

Motion detection in video sequences is the detection of
moving objects throughout a subsequence of the frames. Over
the past decade, this problem has attracted significant attention
due to its wide range of applications in video surveillance,
natural disaster investigation systems, and other areas. For this
purpose, a wide variety of approaches have been proposed in
the literature [1–12]. These approaches can be divided into: 1)
spatial domain, and 2) frequency domain methods.

In spatial domain approaches, spatiotemporal descriptors are
often used to model the motion by considering local motion
patterns while ignoring holistic (global) motion patterns. St-
Charles et al. [12] proposed SelfBalanced SENsitivity SEg-
menter (SuBSENSE) as a pixel-level segmentation method that
relies on spatiotemporal binary features and color information
for change detection in video sequences. In their investiga-
tions, they used a spatiotemporal local binary similarity pattern
(LBSP) for characterizing the pixel representations and then
tuned the background parameters using pixel level feedback
loops. In background tuning approaches, the background is
modeled by a set of parameters which is updated by the

history of recently observed pixel values. In these methods,
the foreground detection depends on a decision threshold
[13]. In [12], LBSP defines for each pixel p, a neighbor set
N(p) on each frame, and then assigns a binary pattern to the
pixel p based on the differences of gray-levels between the
neighboring pixels and p. If the illumination changes is non-
uniform (i.e. the gray-level of a sub-set of neighbors changes),
the binary pattern will be changed. Therefore, LBSP is not
robust under non-uniform illumination changes. Moreover,
in order to regularize the process and eliminate salt-and-
pepper noise, SuBSENSE uses morphological operations and
a median filter. The intrinsic noise attenuation property of
these operations might inadvertently eliminate small moving
objects. Furthermore, the background tuning process [12] is
usually slow which makes adaptation to sudden illumination
changes and burst motions difficult [9]. Bianco et al. [10]
exploited genetic programming and combined state-of-the-art
motion detection approaches to obtain the best solution. This
method suffers from a heavy computational burden and there
is no guarantee for finding the optimal solution.

On the contrary, frequency domain approaches can be
considered holistic motion pattern extraction methods [14]. It
has been reported that the two-dimensional discrete wavelet
transform (2D-DWT) can be used for moving object detection
[15, 16]. These methods are able to compare the 2D-DWT
of the current frame with the previous frames and by using
a threshold value to detect the motion. However, the intrinsic
temporal dimension in the wavelet computation is not consid-
ered and the results are sensitive to the predefined threshold.

In another view, motion segmentation in video sequences
can be divided into two categories: background-modeling and
motion-modeling, where the former segments the moving
regions in video sequences by comparing each new frame
to a model of the background of the scene, while the latter
addresses the motion segmentation problem with modeling the
motion directly, i.e. without background modeling.

Although reasonable results can be obtained in the ap-
proaches mentioned earlier, accuracy in motion detection
remains a challenging task due to the difficulties raised by
illumination variations (such as those of weather conditions,
sunlight changes during a day), occlusion, camouflage, sudden
motion appearing in burst, dynamic texture, etc. Camouflage
is a situation for which motion detection is difficult because
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the color of foreground objects and that of the background are
similar [17]. Spatiotemporal binary features can be combined
with color information to detect the camouflaged foreground
objects [12, 18]. Ramirez et al. [17] proposed a thresholding
approach which tunes the values of the thresholds based on the
analysis of the global Hue histogram of only the initial frame
in order to identify if a color predominates on the scene. Due
to considering one threshold value for all the frames based
on only the initial frame, this method does not generalize
to other frames or regions on the same frame with different
intensity characteristics. A second challenge which is limitedly
addressed in the literature [9] is the appearance of sudden
motions which occurs in bursts. Moving escalators, swirling
wheels, fans, swinging foliage are examples of burst motion.
Background tuning approaches [9], where the background es-
timation is updated using the history of the values of the pixels
over the time [14, 19–22], are sensitive to burst motion. Liang
et al. generated a frequency and speed adaptive background
model for these approaches [3, 9]. Dynamic texture detection
is another issue which we considered in this work. Dynamic
texture refer to every texture with motion in a sequence of
video frames such as fire plume, water stream, smoke, etc.
Dynamic texture detection has gained a great deal of attention
recently [14, 19–21, 23]. To the best of our knowledge, none
of the presented approaches however considered the issue of
illumination changes for dynamic texture detection.

In this investigation, a novel motion-modeling method for
detecting the motion in video sequences is proposed that
defines a pixel-based feature descriptor based on the 3D-DWT
and a recent development from the wavelet community, i.e.
wavelet leaders, which we exploit for motion representation
in video sequences. Wavelet leaders overcome the problem
of a large number of close-to-zero wavelet coefficients [24].
Using the 3D-DWT rather than the 2D-DWT allows us to
consider the motion continuously over time in the video
frames. As the wavelet coefficient-based descriptors describe
motion patterns based on decomposing the signal into the
frequencies at multi-scales analysis, using a 3D-DWT can
represent the spatial and temporal motion information together.
This makes the developed approach applicable to dynamic
texture detection and robust to sudden motion. Moreover, the
proposed frequency-based features can provide a high degree
of insensitivity to camouflaged foreground objects.

The three main contributions of our work are as follows:
1) We developed a spatial frequency per-pixel feature ex-

traction method based on the high-pass/low-pass 3D-
DWT accompanied by wavelet leaders for the first time
in order to achieving proper motion detection results
in video sequences. By using a 3D-DWT, continuity of
timing information is provided by the proposed motion
descriptors;

2) We developed a novel method that not only detects
regular motion, as in previous works, but also sudden
motion appearing in bursts. Also, the method can deal
with dynamic textures;

3) We developed a robust and effective approach, which
outperforms previous methods for videos taken under
challenging conditions, such as varying weather condi-

tions, illumination variations, camouflaged foreground
objects, etc.

II. BACKGROUND

The 2D-DWT is widely used for moving texture detection
such as smoke detection [25], fire detection [26], etc. De-
monceaux et al. [27] proposed the combination of a 2D-DWT
and hierarchical Markov random fields for motion detection.
In order to overcome the problem of temporal aliasing, an
estimation of dominant motion on several image resolutions
is obtained. The results however exhibited obvious jaggedness
of the boundaries. In our work, by using 3D wavelet-based
descriptors, the problem of the jagged boundaries has been
solved. In this section an overview of the 3D-DWT as a
separable filter and wavelet leaders is provided.

A. Three dimensional discrete wavelet transform

The 3D-DWT has been employed for different purposes. In
[28] a 3D wavelet transform has been used for scene change
detection. However, different from the proposed approach, it
is used for classifying the motion of entire frames into three
broad classes: frames with motion, frames with a gradual tran-
sition, and static frames. In this paper, we detect the specific
area where motion is observed. In [29], unlike our work, uses
a 3D-DWT for video coding not for motion detection. In fact,
they used a figure-background decision based on a long-term
memory of static pixels that also takes the motion information
into account for processing the foreground and background
and estimating the motion. Then, a 3D wavelet transform
is used for coding the residual signal for reconstructing the
video sequences. Our method has employed the 3D wavelet
transform and wavelet leader concept in order to represent
motion in temporal and spatial dimensions for object motion
detection in video frames, and this has not been addressed
before in this way.

The 3D-DWT can be represented as a separable filter, thus
reducing the cost of computation. The separable 3D-DWT
filters can be written as the product of three simpler 1D filters:
two 1D spatial and one 1D temporal DWT filter [30]. In the
1D wavelet transform, a function f(t) is analyzed by:

f(t) =
∑
τ,s

Ψt(τ, s)ϕt(τ, s), (1)

where Ψt(τ, s)s are the wavelet coefficients estimated by:

Ψt(τ, s) =

∫ ∞
−∞

f(x)ϕt(τ, s)dt. (2)

Each of the wavelet coefficients Ψt(τ, s) represents the resem-
blance of the function f(t) to the wavelet bases ϕt(τ, s) at a
specific translation τ and scale s.

In this paper, we use Coiflet-like [31] nearly symmetric
orthogonal wavelet bases with a magnitude and group delay
flatness specification, which has been proposed by Abdel-
nour et al. [32]. Using the multi-scale wavelet decomposition
scheme, a hierarchy of localized sub-functions at different
spatial frequencies can be found. Suppose we have a volume
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Fig. 1: Wavelet decomposition using the separable 3D-DWT
filter. First the volume V is decomposed in a low-frequency
channel L and a high-frequency channel H , by repeating this
process for each of sub-volumes four different sub-volumes
(LL, LH , HL, HH) are computed, and by repetition we
obtain eight subbands (LLL, LLH , LHL, LHH , HLL,
HLH , HHL, HHH).

V , a 3D-DWT decomposes the volume V into one low-
frequency channel w1

LLL, seven strict high-frequency channels
wSo,l, and multiple non-strict high-frequency channels wso,l for
s ∈ {1, . . . , S − 1}, where s is from the scale set, S is
the coarsest scale, o ∈ O is from the orientation set, where
O = {vertical, horizontal, diagonal}, and l ∈ Γ is from the
level set, where Γ = {up, down}. Decomposing a volume V
into the wavelet coefficient uses a recursive process function
ΦS(V ), in which for each inter-volume v and each scale
s ∈ {1, ..., S}, Φs(v) is defined as:

Φs(v) =

{
ψs(v), s = 1
{ψs(v)− wsLLL(v)} ∪ Φ(s−1) (wsLLL (v)) , s > 1

(3)
and ψs for each inter-volume v is equal to:

ψs(v) = {wsLLL(v), wsLLH(v), wsLHL(v), wsLHH(v),

wsHLL(v), wsHLH(v), wsHHL(v), wsHHH(v)}.
(4)

Regarding filter concepts, Fig. 1 illustrates the 3D-DWT
filter banks for Φ(S=1)(V ). The figure indicates the sub-
volumes of each filter for one scale and a volume V .

B. Wavelet leader

In order to improve the robustness of the descriptors of
the wavelet coefficients, we use wavelet leaders [24]. Wavelet
leaders are another wavelet-based measurements which were
defined by Jaffard et al. for the first time [24]. In the literature,
wavelet leaders are used for various applications [14, 33–36].
Wavelet leaders are defined as the maximum magnitude of the
wavelet coefficients in a local spatial neighborhood through all
scales. As mentioned before, wavelet leaders obviate the prob-
lem of many close-to-zero wavelet coefficients. This makes
the motion feature descriptors more robust. In this paper,
we propose three-dimensional wavelet leader pyramids. The
wavelet leader for a pixel p which is the center of a cubic
neighbourhood Λp and scale 1 ≤ s ≤ S is defined as:

wsleader(p) = max
o∈O

max
l∈L

max
r′∈Λp

|wso,l(r′)|. (5)

III. THE PROPOSED METHOD

In this section, the proposed approach is provided. A flow
diagram of the method is shown in Fig. 2. As illustrated, the
input is a sequence of video frames, {It|t ∈ [1, T ]} in which
t is a temporal variable, and the output is a sequence of the
label fields, {`t|t ∈ [1, T ]}.

A. Cubic patch extraction

As motion can be done within spatial and temporal dimen-
sions in videos, motion descriptors must be defined for both
domains. Hence, the process of 3D-DWT feature extraction in
our paper is patch-based. As illustrated in Fig. 2 the first step
of the flow diagram is patch extraction. In this step, x and
y depict the spatial domain and t depicts temporal domain.
Therefore, in addition to considering temporal coherency,
descriptors capture both spatial and temporal motion patterns.
This process is done for each pixel p on the frames, by defining
a cubic neighbourhood set Λp, where p is the central pixel.
Fig. 3 represents Λp of size 4×4×4. In this figure, the volume
is defined by selecting a 4 × 4 neighborhood on a sequence
of frames of length 4. In Section IV-C, the evaluation of the
proposed method for various patch sizes will be investigated.
The results demonstrate that the patch size of 4 × 4 × 4
outperforms other patch sizes in accuracy.

B. 3D-Discrete Wavelet Transform (3D-DWT)

After extracting the patches, we use 3D-DWT. Applying
3D-DWT on a three-dimensional volume computes the ap-
proximation coefficient and seven detail coefficients in seven
different directions. These coefficients in different directions
describe the motion within the spatial domain and appearance
of the video sequences across time. As mentioned before, by
considering a separable 3D-DWT the process of computing
the wavelet coefficients can be decoupled into two 1D spatial
DWTs and one 1D temporal DWT. The spatial DWTs consider
the holistic motion patterns in space while the temporal
DWT considers the holistic motion pattern across time. In the
proposed method, the 3D-DWT is applied to the cubic patches,
which is illustrated in Fig. 2, Step 2. Then, for each scale the
wavelet leaders are computed. In this step, the original patch is
high-pass filtered, yielding the seven larger volumes labeled in
green, each describing local changes in details in the original
volume. It is then low-pass filtered and down scaled, yielding
an approximation volume; this volume is high-pass filtered to
produce the seven smaller detail volumes labeled in blue, and
low-pass filtered to produce the second approximation volume.
This iterative process is repeated for the second approximation
volume to produce seven smaller detail volumes labeled in red.
Then the second approximation volume is low-pass filtered to
produce the final approximation volume in the upper-left. In
this step, the wavelet leader for each scale is computed using
Equation (5). For this example, the yellow, orange and purple
patch depict the 3rd-scale, 2nd-scale, and 1st-scale wavelet
leaders, respectively.
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Fig. 2: Flow diagram of the proposed method. The input is a sequence of video frames; Step 1: Extracting the cubic patches;
Step 2: Applying the 3D-DWT on each patch for computing wavelet coefficients, and wavelet leaders. The seven green patches
are the wavelet coefficients extracted from the original patch, the yellow patch is the wavelet leader of 3rd scale, the seven
blue patches are the wavelet coefficients extracted from W 3

LLL, the orange patch is the wavelet leader of 2nd scale, the eight
cubic red patches are the wavelet coefficients extracted from W 2

LLL, and the purple patch is the wavelet leader of 1st patch.
Step 3: Computing the feature descriptors using the wavelet coefficients and the wavelet leaders, here the value of features for
all the wavelet coefficients and the wavelet leaders are shown. The green arrows depict the feature descriptor values for the
moving objects in the video sequences. As can be seen, the feature descriptors FLHH , FHLH , FLLH , Fleader can model the
motion pattern obviously; Step 4: Applying K-means classification. Finally, the result of the classifier which illustrate moving
objects (red regions) and static regions (green regions).

It+1ItIt-1It-2

Fig. 3: Neighbourhood Λp of size 4× 4× 4 on a sequence of
lattices of the subsequent frames, the red pixel shows p and the
other pixels on the blue grids demonstrate the neighbourhood
set Λp. It is the frame at time t which contains p.

C. Feature Extraction

In order to obtain proper results and prevent jagged bound-
aries, the feature vectors are described by a pixel-based process
over the wavelet coefficients obtained in the previous step.
Zhang et al. proposed some feature vectors for the 2D-

DWT [37]. In our work, we propose feature vectors based
on the 3D-DWT decomposition coefficients and a 3D-wavelet
leader. By using 3D-wavelet coefficients, we can model the
holistic motion patterns in different directions. By applying
3D-wavelet transform on a volume or a cubic patch, the
approximation coefficient and seven detail coefficients in seven
different directions in a 3D space are computed. The high-
pass wavelet coefficients can model the motion patterns over
a sequence of frames. We define the descriptor vectors as:

Fh̄(p) =
1∑S
s=1 s

S∑
s=1

s

√√√√∑
r′∈Λp

(
wsh̄r′

(rs)
)2

, (6)

where p is the central pixel on a neighborhood cube Λp, r′

the neighbors of p, h̄ ∈ ∆ where

∆ = {LLL,LLH,LHL,LHH,HLL,HLH,HHL,HHH, leader}
(7)
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and rs is defined as:

rs =

{
Λp, s = S

ws+1
h̄

(
rs+1

)
, 1 ≤ s < S,

(8)

in which S is the coarsest scale, wsh̄ demonstrates the wavelet
sub-bands of the sth scale.

In Equation (6),

√∑
r′∈Λp

(
wsh̄r′

(rs)
)2

computes the Eu-

clidean norm on a n−space [38] for the sth scale level and
the h̄th wavelet sub-bands, which n is the number of the
neighbours of p. This distance gives the ordinary distance from
an origin to the patch vector. This distance can be considered
as the difference between the value of the central pixel and its
neighbours in a patch which implies motion in a patch. Also,
averaging over multiple scale levels in Equation (6) leads to
apply the more significant wavelet components in finer scales.
which consequently causes noise reduction. In this paper, in
order to compute the feature descriptors, we use S scales for
volumes of size 2S × 2S × 2S . In Fig. 2- Step 3 illustrates the
feature vectors extracted from the wavelet coefficients using
Equation (3) and the wavelet leaders using Equation (5) for a
set of consecutive frames, using cubic patches of size 4×4×4
and S = 3. As it is shown by the green arrows, the feature
vectors extracted from high-pass wavelet coefficients contain
wLHH , wHLH , wLLH , and wleader, illustrate motion patterns
significantly. Hence, we use these feature vectors to model the
motion patterns in three-dimensional space.

D. Classification

Ultimately, after feature extraction, the feature vectors are
classified into two classes using K-means clustering: motion &
zero-motion. In Fig. 2 the outputs are illustrated as a sequence
of label fields, red regions demonstrate the moving objects and
green regions demonstrate the static regions.

Fig. 2 explains the proposed method as follow. In the first
step, the cubic patches are extracted; then the 3D-DWT of
three scales is applied on each patch in order to compute
wavelet coefficients using Equation (3), and wavelet leaders
using Equation (5). Generally, for S scales 7× S + 1 patches
for the wavelet coefficients and S patches for the wavelet
leaders are computed. Afterward, the feature descriptors based
on Equation (6) using the wavelet coefficients and the wavelet
leaders are computed. Then K-means classification is applied
to classify motion vs. non-motion regions. Finally, the result
of the classifier is a sequence of label fields which illustrate
moving and static regions.

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed ap-
proach, this section reports the qualitative and quantitative
results on video datasets including a variety environments.
Also, the implementation of the proposed method in Matlab
8.3 and C, named the 3D-DWT motion detector (3D-DWT-
MD) tool, is freely available at: https://github.com/yousefis/
MotionDetector.

The qualitative and quantitative results are reported by
comparing them with the results of several unsupervised ap-
proaches including background-modeling approaches: SOBS-
CF [2], CP3-online [9], SUBSENSE [12], C-EFIC [39],
GMM|Zivkovic[40], AMBER [41], and motion-modeling
approaches: CwisarDH [4], IUTIS-3 [10], 2D-DWT [15],
AAPSA [17]. We optimized a hyper-parameter (the patch size)
on an independent dataset (LASIESTA), and evaluated the
proposed method on three other datasets:

1) For finding the optimal patch size we used LASI-
ESTA dataset (available at https://www.gti.ssr.upm.es/
data/lasiesta database.html), which is composed by
many real indoor and outdoor sequences organized in
different categories [42]. Since we do not consider
camera motion, we used the sequences which were
captured by a static camera. The indoor part includes
Simple sequences, Camouflage, Occlusions, Illumination
changes, Modified background, Bootstrap, and the out-
door part contains Cloudy conditions, Rainy conditions,
Sunny conditions.

2) In order to evaluate our method for motion detection
under various light conditions, we use the CD.net2014
dataset (available at www.changedetection.net). This
dataset provides a realistic, camera-captured, diverse set
of videos which contains several video categories with 4
to 6 video sequences in each category [43]. Furthermore,
each category is accompanied by accurate ground truth
segmentation and annotation of change or motion areas
for each video frame. In order to compare our method
with the previous methods, we obtained the results of
the previous methods which were reported and main-
tained on http://dspl.ce.sharif.edu/motiondetector.html.
For this goal, we compare the proposed method with
the previously reported unsupervised methods which
are published in first-tier conferences and journals in
recent years. Since we do not consider camera mo-
tion, we report experimental results for the video se-
quences which are captured by a static camera. For
this purpose, we examine the proposed method for
four different categories include: NightVideos, Thermal,
IntermittentObjectMotion and Baseline, which contain
nineteen video sequences. The video sequences are
highway, Parking, StreetLight, AbandonedBox, Winter-
Driveway, TramStop, sofa, Park, LakeSide, Corridor,
diningRoom, Library, BridgeEntry, busyBoulvard, Flu-
idHighway, StreetCornerAtNight, TramStation, Winter-
Street.

3) In order to examine the proposed method for dynamic
texture detection, the Dyntex dataset [20] is used.
Dyntex is a comprehensive database of dynamic tex-
tures providing a large and diverse database of high-
quality dynamic textures, which have been de-interlaced
with a spatiotemporal median filter [20]. The dynamic
texture sequences have been acquired using a SONY
3 CCD camera using a tripod. The sequences are
recorded in PAL format (720 × 576). In this work,
we evaluate the proposed method for ten different

https://github.com/yousefis/MotionDetector
https://github.com/yousefis/MotionDetector
https://www.gti.ssr.upm.es/data/lasiesta_database.html
https://www.gti.ssr.upm.es/data/lasiesta_database.html
www.changedetection.net
http://dspl.ce.sharif.edu/motiondetector.html
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video series of this dataset contain: moving smoke
(648ea10, 649hb10, 73v192u, and 57db110), washing
machine (64ca510), CD driver (64bac10), waving water
(6ame200 and 6482420), shower (56ub110), and mov-
ing flame (64cad10).

4) The UCSD pedestrian dataset [19] is another dataset
which is commonly used for motion detection eval-
uation. The dataset contains video of pedestrians on
UCSD walkways, taken from a stationary camera with
two different viewpoints. In this paper, we compare the
results of the proposed method to the results of MDT
[19] (available at http://visal.cs.cityu.edu.hk/).

A. Qualitative Comparison

In this section, a qualitative comparison of the proposed
method with various methods is provided. From the
viewpoint of occlusion, Fig. 4 illustrates the comparison
of the moving object segmentation between the pro-
posed method and the previous approaches, including
CP3-online [9], IUTIS-3 [10], and SUBSENSE [12],
for two frames of the WinterStreet sequence. In the
figure, the red segments are the ground truth masks,
the blue segments illustrate the moving regions, the
green segments represent the static regions, and the
yellow circles highlight the differences between the
segmentation results. As can be seen, the mentioned
methods consider two consequent moving objects as one
object while 3D-DWT-MD can distinguish the individual
moving objects.
Fig. 5 illustrates more qualitative comparisons of our
method with the aforementioned approaches, for various
frames of WinterStreet sequence of the CD.net 2014
dataset. As shown in the results, despite severe environ-
mental conditions raised by video acquisition and car
light at night, unlike the other methods the proposed
method can deal with the occlusion properly. Another
qualitative comparison, for various frames of Street-
CornerAtNight sequence of the CD.net 2014 dataset, is
indicated in Fig. 6. The results of the proposed method
are compared with CP3-online [9] and SUBSENSE
[12]. As shown in the results, the proposed method can
overcome the motion detection problem at night light
properly. Moreover, Fig. 7 illustrates another qualitative
comparison of the proposed method with CP3-online
[9], SUBSENSE [12], and AAPSA [17] for various
frames of the busyBoulvard sequence of the CD.net
2014 dataset. As these results indicate, the proposed
method can overcome the illumination variations, oc-
clusion more robustly.
Fig. 8 illustrates a qualitative comparison of the pro-
posed method with CP3-online [9], AAPSA [17] and
2D-DWT [15] for various frames of Corridor and Park
sequence in CD.net 2014 dataset. The results indicate the
appropriate ability of the proposed method in difficulties
raised by camouflage.
Fig. 9 illustrates the motion detection results of CP3-
online [9], SUBSENSE [12], and our method respec-

tively for various frames of the blizzard, streatlight,
and Parking sequences in the CD.net 2014 dataset. As
the results indicate, while the other mentioned methods
can not detect moving objects in these video scenarios,
the proposed method can detect tiny moving objects
perfectly. Furthermore, Fig. 10 indicates a qualitative
comparison of the motion detection results with CP3-
online [9], for various frames of busStation sequence of
the CD.net 2014 dataset. As can be seen, the results of
3D-DWT-MD is much more robust. Fig. 11 indicates
another qualitative comparison of the motion detection
results with MDT [19] for some frames of the sequences
of the UCSD pedestrian dataset. In this figure, the
green segments represent moving object and the yellow
segments represent static regions. Results indicate that
the efficiency is improved by the proposed method.
Finally, Fig. 12 illustrates the motion detection results
of the proposed method on various frames of sequences
from the Dyntex dataset. The sequences contain dynamic
textures like smoke, fire, and waving water. Also, burst
motions contain disk driver and washing machine. The
results indicate that the proposed method can be used
for dynamic texture segmentation in video sequences.

B. Quantitative measurements

For quantitative comparison, various evaluation metrics
contain Recall (Re); Specificity (Sp); False Positive Rate
(FPR); False Negative Rate (FNR); Percentage of Wrong
Classifications (PWC); F-measure, and Precision will be
used. Recall can be seen as the completeness of the
moving object. Specificity can be seen as the complete-
ness of background. FPR is the rate of the background
which is detected as the foreground incorrectly, and
FNR, the rate of the foreground which is detected as the
background incorrectly. The PWC measurement is the
percentage of the foreground and background which is
detected incorrectly. Finally, the F-measure is a weighted
harmonic mean of the Precision and Recall. For the
aforementioned measures, zero is the best value for FPR,
FNR, and PWC, while one is the best value for Recall,
Specificity, and F-measure.

C. Quantitative comparison

The most important parameter of the model is the
cubic patch size for computing the wavelet coefficients.
For tuning this parameter, we evaluate the proposed
algorithms on the LASIESTA database for the different
cubic patch sizes given in Table I. In this table the scale
decomposition levels are shown. The patch sizes are
defined such that they are a power of 2 in spatial and
temporal dimensions. The number of scales is defined
by the logarithm of the patch size base 2. In this section
the different patch sizes are used for finding the optimal
patch size, on this independent dataset.
Table II illustrates the average of the different measures
containing Re, SP, FPR, FNR, PWC, Precision, F-
measure of the proposed approach with different scales

http://visal.cs.cityu.edu.hk/
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Frame Ground truth CP3-online [9] IUTIS-3[10] SUBSENSE [12] Proposed method

Fig. 4: Qualitative comparison of the various approaches in the presence of occlusion. Shown are two frames (#990 & #1027)
from the CD.net 2014 dataset, WinterStreet sequence.

Frame Ground truth CP3-online [9] IUTIS-3 [10] SUBSENSE [12] 2D-DWT [15] Proposed method
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Fig. 5: Qualitative comparison of the various approaches for several frames of the WinterStreet sequence of the CD.net 2014
dataset. The gray regions indicate the ground truth masks. These masked for the results of the other methods are applied as
zero masks. More comparisons without applying the masks are available at http://dspl.ce.sharif.edu/motiondetector.html.

TABLE I: The sizes of the cubic patches and their decompo-
sition scales which are used for the experimental results.

Patch sizes Scale Decomposition levels
——
2× 2× 2 1 1× 1× 1
4× 2× 2 1 2× 1× 1
8× 2× 2 1 4× 1× 1
2× 4× 4 1 1× 2× 2
4× 4× 4 2 2× 2× 2→ 1× 1× 1
8× 4× 4 2 4× 2× 2→ 2× 1× 1
2× 8× 8 1 1× 4× 4
4× 8× 8 2 2× 4× 4→ 1× 2× 2
8× 8× 8 3 4× 4× 4→ 2× 2× 2→ 1× 1× 1

and sizes, for the LASIESTA dataset. Also, Fig. 13
shows a qualitative example of the comparison of the
results’ quality depending on the patch size. Results
indicate that a patch size of 4 × 4 × 4 produces the
best F-measure value.
Table III gives a quantitative comparison with various
approaches for frames of the mentioned eighteen dif-

TABLE II: The average of the different measures and computa-
tion time at different scales and patch sizes for the LASIESTA
dataset. The best values are shown in bold. More results are
available at http://dspl.ce.sharif.edu/motiondetector.html.

Patch Size Re SP FPR FNR PWC Precision F-measure
2× 2× 2 0.43 0.99 0.01 0.57 3.61 0.70 0.53
4× 2× 2 0.52 0.99 0.01 0.48 3.40 0.69 0.59
8× 2× 2 0.66 0.98 0.02 0.34 3.58 0.61 0.64
2× 4× 4 0.59 0.99 0.01 0.41 3.26 0.68 0.63
4× 4× 4 0.74 0.98 0.02 0.26 2.84 0.69 0.71
8× 4× 4 0.67 0.98 0.02 0.33 3.56 0.61 0.64
2× 8× 8 0.69 0.98 0.02 0.31 3.73 0.59 0.64
4× 8× 8 0.70 0.97 0.03 0.30 3.99 0.57 0.63
8× 8× 8 0.75 0.96 0.04 0.25 5.01 0.48 0.59

ferent video sequences of the CD.net 2014 dataset. In
this experiment, the cubic patch sizes are 4 × 4 × 4
and the decomposition scale is 2. As the results show,
the average and standard deviation values of the mea-
sures, containing Re, Sp, FNR, PWC, Precision and

http://dspl.ce.sharif.edu/motiondetector.html
http://dspl.ce.sharif.edu/motiondetector.html
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Fig. 6: Qualitative comparison of the results with different approaches for StreetCornerAtNight sequence of the CD.net 2014
dataset. The gray regions indicate the ground truth masks. These masked for the results of the other methods are applied as
zero masks. More comparisons without applying the masks are available at http://dspl.ce.sharif.edu/motiondetector.html.
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Fig. 7: Qualitative comparison of the results with different approaches for BusyBoulvard sequence of the CD.net 2014 dataset.
The gray regions indicate the ground truth masks. These masked for the results of the other methods are applied as zero masks.
More comparisons without applying the masks are available at http://dspl.ce.sharif.edu/motiondetector.html.

F-measure of the proposed method, for four different
mentioned categories, are equal to 0.82, 0.94, 0.06,
0.17, 4.11, 0.79 and 0.78 respectively. According to the
value of F-measures, these quantitative results indicate
an substantial improvement compared with the previous
approaches.
Fig. 14 illustrates a comprehensive quantitative com-
parison of the average of the different measurements
between the proposed method and a substantial number

of existing unsupervised approaches for video sequences
of CD.net 2014. As it can be comprehended, the F-
measure for the proposed method with 0.81 has the
highest median value. Also, it tends to to have the most
narrow fences in comparison with the other approaches
which shows that the proposed method outperforms the
other methods remarkably. Moreover, it is clear that the
fences defined by the Presicion and Recall are far too
small in comparison to the previous methods. It is clear

http://dspl.ce.sharif.edu/motiondetector.html
http://dspl.ce.sharif.edu/motiondetector.html
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Fig. 8: Qualitative comparison of the results with different approaches Thermal sequence of CD.net 2014 dataset

TABLE III: Comparison of the measures of different approaches for eighteen video sequences belong to four categories of
CD.net 2014 dataset (µ stands for mean and σ stands for standard deviation)
. The best results are shown in bold.

Method Re SP FPR FNR PWC Precision F-measure
µ σ µ σ µ σ µ σ µ σ µ σ µ σ

——————SOBS-CF [2] 0.71 0.22 0.96 0.05 0.04 0.05 0.29 0.22 4.96 4.40 0.61 0.31 0.59 0.26
CwisarDH [4] 0.57 0.28 0.99 0.01 0.01 0.01 0.43 0.28 3.38 3.65 0.71 0.25 0.59 0.27

CP3-Online [9] 0.74 0.19 0.93 0.15 0.07 0.15 0.26 0.19 6.99 1.25 0.56 0.27 0.60 0.24
IUTIS-3 [10] 0.69 0.22 0.99 0.01 0.01 0.01 0.31 0.22 2.70 2.73 0.74 0.25 0.68 0.22

SuBSENSE [12] 0.72 0.20 0.99 0.01 0.01 0.01 0.28 0.20 3.13 3.04 0.73 0.24 0.69 0.21
AAPSA [17] 0.51 0.25 0.99 0.01 0.01 0.01 0.49 0.25 3.50 3.17 0.70 0.27 0.55 0.25
C-EFIC [39] 0.79 0.15 0.97 0.08 0.03 0.08 0.21 0.15 4.11 7.01 0.71 0.25 0.71 0.21

GMM|Zivkovic [40] 0.55 0.20 0.98 0.03 0.02 0.03 0.45 0.19 4.66 4.44 0.65 0.28 0.54 0.21
AMBER [41] 0.70 0.23 0.97 0.04 0.03 0.04 0.30 0.23 4.03 4.48 0.67 0.30 0.63 0.26
2D-DWT [15] 0.39 0.19 0.98 0.02 0.47 0.33 0.61 0.19 4.82 5.40 0.49 0.30 0.36 0.13

Proposed method 0.82 0.14 0.94 0.21 0.06 0.21 0.18 0.14 4.11 9.39 0.79 0.20 0.78 0.13

that for the proposed method the FNR median has the
lowest value and its fences are more narrow than most
of the other methods. Despite the improvements in the
mentioned measurements, the value of Specificity and
PWC are equal to the other methods. Therefore this
figure indicates that the proposed method improves on
the other approaches significantly.

V. DISCUSSION

In this work, a robust motion detection method in video
sequences has been presented. Its core is a 3D-DWT
based feature descriptor which is resistant to illumina-
tion changes. By using separable filter banks the DWT
can be directly applied to one-dimensional subbands.
It is well known that 1D wavelet transformations for
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Fig. 9: Qualitative comparison of the segmentation results with different approaches for various frames of IntermittentObject-
Motion sequence of the CD.net 2014 dataset, as it can be perceived, the competitive methods do not detect moving objects
while the proposed method even can detect tiny moving objects properly. The gray regions indicate the ground truth masks.
These masked for the results of the other methods are applied as zero masks. More comparisons without applying the masks
are available at http://dspl.ce.sharif.edu/motiondetector.html.
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Fig. 10: Qualitative comparison of the results with different approaches BusStation sequence of the CD.net 2014 dataset

a signal with n points can be accomplished in O(n)
time [44]. As we used a separable DWT, the time
complexity of the proposed method can be computed
linearly with respect to the patch size for each patch.
For a patch of size n = px × py × pt and for S scales
the complexity of calculating the wavelet coefficients
is equal to T (n, S) = n

∑S−1
s=0

1
23s . Hence, the time

complexity of the proposed method for pt frames with
size N×M is equal to TDWT

3D = O(T (n, S)×N×M),
in which n and S are not large numbers (� N,M , w.r.t
Table I). Hence, TDWT

3D can be simplified to O(N×M),
which is equal to the time complexity of the 2D-DWT.
In the remainder of this section first the limitations of
the proposed method are discussed, then future works

http://dspl.ce.sharif.edu/motiondetector.html
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Fig. 11: Qualitative comparison of the motion detection results with MDT [19] for some frames of the sequences of the UCSD
pedestrian dataset, (static segments colored yellow and motion segments colored green)
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Fig. 12: Qualitative segmentation results of the proposed method for various frames of the video sequences in Dyntex dataset
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Fig. 13: Qualitative comparison of the different patch sizes
for I BS 01 sequence of LASIESTA dataset, green contour:
ground truth and red contour: the output of the method.

are presented.
As motion is defined with respect to the temporal
dimension, selecting a correct number of consecutive
frames for motion detection is an important choice that
we have to make. The experimental results in this paper
was reported for a fixed patch size according to the best
average of measures. The optimal number can however
be different from one moving object in a video to another
one. This value can be low for quick objects to reduce
false positive predictions, and should be high for slow
ones to reduce false negative predictions. Therefore, the
quality of the proposed method is affected by the size
of the patches. In our application, this issue has been
alleviated by defining a user-tuned run-time constraint
that demonstrates the patch size.
We have reported the results of the method using the K-
means classifier. As this module is independent of the
proposed feature extraction approach, it can be replaced
with other classifiers. In the online available application
(i.e. http://dspl.ce.sharif.edu/motiondetector.html), it is
possible to choose a K-means classifier or a Gaussian
Mixture Model classifier. A more robust method for this
goal would consider the coherency in spatio-temporal
dimensions by trajectory tracking through time (see
[45]). Also, we did not consider camera jitter in this
investigation. Generally, camera jitter can be introduced
as a uniform additive motion noise affecting the trajec-
tory of image features. Visentini et al. proposed a 2D
wavelet transform based method for global camera mo-
tion detection [46]. Therefore, another point for further
research is considering the camera motion.

VI. CONCLUSIONS

In this paper, we proposed a novel motion detection
method using spatial frequency descriptors based on
the three-dimensional wavelet transform and the three-
dimensional wavelet leader. Due to the ability of fre-

quency domain approaches in providing holistic motion
pattern information, the proposed method can effectively
deal with the difficulties raised by illumination changes,
camouflage, and sudden motions. The proposed wavelet-
based descriptors, can effectively be used for dynamic
texture segmentation. Moreover, the proposed method
had a good capability in detecting small moving objects.
In order to evaluate the performance of the proposed
method, various qualitative and quantitative compar-
isons were performed. Towards this goal, four different
datasets i.e. LASIESTA (for finding the optimal patch
size) and CD.net 2014, Dyntex, and UCSD pedestrian
(for evaluation of the method) were used. Furthermore,
various evaluation metrics were computed for each of
these datasets. The results from these qualitative and
quantitative comparisons demonstrated that the proposed
approach outperforms existing methods, both in terms of
motion detection and in the capability of segmenting the
dynamic textures properly.
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