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Abstract
Purpose Morphological changes to anatomy resulting from invasive surgical procedures or pathology, typically alter the
surrounding vasculature. This makes it useful as a descriptor for feature-driven image registration in various clinical appli-
cations. However, registration of vasculature remains challenging, as vessels often differ in size and shape, and may even
miss branches, due to surgical interventions or pathological changes. Furthermore, existing vessel registration methods are
typically designed for a specific application. To address this limitation, we propose a generic vessel registration approach
useful for a variety of clinical applications, involving different anatomical regions.
Methods A probabilistic registration framework based on a hybrid mixture model, with a refinement mechanism to identify
missing branches (denoted as HdMM+) during vasculature matching, is introduced. Vascular structures are represented as
6-dimensional hybrid point sets comprising spatial positions and centerline orientations, using Student’s t-distributions to
model the former and Watson distributions for the latter.
Results The proposed framework is evaluated for intraoperative brain shift compensation, and monitoring changes in pul-
monary vasculature resulting from chronic lung disease. Registration accuracy is validated using both synthetic and patient
data. Our results demonstrate, HdMM+ is able to reduce more than 85% of the initial error for both applications, and outper-
forms the state-of-the-art point-based registration methods such as coherent point drift and Student’s t-distribution mixture
model, in terms of mean surface distance, modified Hausdorff distance, Dice and Jaccard scores.
Conclusion The proposed registration framework models complex vascular structures using a hybrid representation of vessel
centerlines, and accommodates intricate variations in vascular morphology. Furthermore, it is generic and flexible in its design,
enabling its use in a variety of clinical applications.
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Introduction

A crucial component of noninvasive disease monitoring and
interventional guidance systems is the registration of serially
acquired intra-patient image data. As blood vessels permeate
through all organs within the body, they are a rich descrip-
tor for feature-driven image registration techniques. Vascular
structures can be visualized with high-resolution images in
real time, using state-of-the-art interventional and diagnostic
imaging modalities. Hence, registration of vascular struc-
tures provides a good basis for registering preoperative and
intraoperative images, necessary for image-guided proce-
dures, and a noninvasive mechanism for monitoring disease
progression.

Vascular image registration techniques can be categorized
into point-, graph- and curve-based approaches [16]. The
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main benefits of point-based approaches to vessel matching
are, that they do not require a priori identification of corre-
spondences; and may be imbued with robustness to outliers
and missing data, by formulating the problem within a prob-
abilistic framework [22]. Proposed the coherent point drift
(CPD) algorithm for point set registration based on Gaus-
sian mixture models (GMMs). Here, a uniform distribution
componentwas used to account for noise and outliers. Conse-
quently, prior knowledge about the degree of outliers present
in the data has a great impact on the registration accuracy.
Compared to conventional approaches such as ICP and robust
point matching (RPM) [5], CPD demonstrates its superior-
ity in numerous computer vision tasks. However, although
the incorporation of a uniform distribution component pro-
vides global robustness, localized robustness is desirable in
many clinical applications as outliers may be concentrated in
a spatial neighborhood. Toovercome this limitation [25], pro-
posed a probabilistic point set registration approach based on
Student’s t-distributions (TMM), which confers the property
of localized robustness to the registration process, via estima-
tion of a unique shape parameter for eachmixture component
in the TMM.Numerous recent studies have employed hybrid
shape representations [17–20,23,26], in order to increase the
discriminative capacity of probabilistic point set registra-
tion approaches. In [26] for example, spatial positions and
their associated surface normal vectors were modeled with
Student’s t-distributions, andVonMises–Fisher (vmF) distri-
butions, respectively. However, such an approach is ill-suited
to registering vessel centerlines, since vmF distributions are
not antipodally symmetric. Consequently, they cannot be
used to model vessel centerlines as the latter are not con-
sistently oriented in any specific direction throughout the
vascular tree.

The applications of interest in this study are vasculature
registration for intraoperative brain shift compensation and
monitoring the progression of lung disease. Comprehensive
reviews on intraoperative brain shift compensation were pre-
sented in [1,11]. In general, brain shift can be described as
a nonrigid deformation of the brain parenchyma as a result
of craniotomy. This phenomenon has a significant impact
on the accuracy of neuronavigation systems. Nonrigid reg-
istration techniques are employed to warp the preoperative
image to its intra- and postoperative counterparts, in order
to compensate for brain shit. For example, blood vessel
centerlines extracted from preoperative MRIs and intraop-
erative ultrasound data were aligned by applying the ICP
algorithm [27]. In [9,15], CPD was used to compensate for
intraoperative brain shift. Both studies used thin plate splines
(TPS)-based interpolation to warp the preoperative image
to its intraoperative counterparts. Assessing changes to pul-
monary vasculature is a crucial for monitoring chronic lung
diseases [8,30]. Pathological changes to pulmonary vessels
may manifest as pruning of small vessels, dilation of large

vessels, or impaired vessel perfusion. Pulmonary vasculature
extracted from longitudinal CT scans are thus compared, to
assess treatment response and quantify disease progression
[31,32].

As reported in a recent review [16], a major limitation
of existing vessel registration approaches is that they are
typically designed, and evaluated, for a single application.
For example, algorithms incorporating details of the aortic
shape [13] cannot be employed for registering cerebral or
pulmonary vessels. Furthermore, a generalized vessel regis-
tration approach that achieves high accuracy andprecision for
different applications has not been tackled previously [16],
to the best of our knowledge. Consequently, in this study,
we propose a novel and generalized framework for regis-
tering vessel centerlines. We improve on the HdMM-based
vessel registration framework proposed in our recent study
[2], through suitable algorithmic modifications, and provide
a detailed description of the same. Furthermore, we evaluate
the proposed approach comprehensively and compare it with
the state-of-the-art, using vascular data from two different
clinical applications, namely, intraoperative brain shift com-
pensation, and quantification of pulmonary vascular changes
caused by lung disease.

Methods

An overview of the registration framework is presented in
Fig. 1. Vessels are represented as 6-dimensional hybrid point
sets comprising spatial positions and their corresponding
unit vectors describing local centerline orientation. Here,
each voxel representing the vessel centrelines denotes the
3D spatial positions, and the eigenvector corresponding to
the smallest eigenvalue of the Hessian matrix [10], is used to
represent the 3D local vessel orientation.Hybrid points defin-
ing the Source are regarded as the centroids of a HdMM,
while, the point set defining the Target is regarded as
data points (observations). The former is registered to the
latter by maximizing the log-likelihood (llh) function itera-
tively, using the expectation-maximization (EM) algorithm
[6]. The desired affine (translation, rotation and scaling) or
nonrigid (displacement) transformations are estimated in the
maximization (M)-step. All experiments conducted in this
study initially performed an affine registration, and used the
estimated transformations to initialize the subsequent non-
rigid registration step. In order to cope with large amounts
of missing data, we formulated a mechanism for refining
the correspondences established between the Source and
Target. This is achieved by clustering and excluding points
in the Source set that lie within the missing data region in
the Target set, following both affine and nonrigid registra-
tion, henceforth referred to as HdMM+.
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Fig. 1 Pipeline of proposed framework. The red path shows the steps of HdMM+, while the blue one represents the steps for HdMM

Hybrid mixture model for vascular structure
registration

Theproposed hybridmixturemodel is aweighted linear com-
bination of two different probabilistic components, where,
the Student’s t-distribution (S) and Watson distribution (W)
are used to model the spatial positions, and vessel center-
line orientations, respectively. Following the formulation of
TMM in [24,25], the joint likelihood of all N spatial posi-
tions in the Target centerline points xi=1...N being data
points, sampled from an M-component TMM (represented
by the Source centerline points), with model parameters
Θp = {μμμ j , ν j , σ j }, can be described as:

p(X | Θp) =
N∑

i=1

ln
M∑

j=1

π jS(xi | μμμ j , ν j , σ
2) (1)

Here, μμμ j=1...M , ν j=1...M and σ 2 represent the mean posi-
tions, degrees of freedom and variance of the Student’s
t-distributions, while π j=1...M represents the mixture coef-
ficient of each TMM component. Considering the antipodal
symmetry of the centerline points, we formulate an addi-
tional Watson mixture model to model the 3D orientations of
vessels. Watson distributions (W) are antipodally symmetric
probability distributions defined on a unit-hypersphere, and
hence their probability density is the same in either direction
along its mean axis. On a d-dimensional unit-hypersphere
S
d−1 = {n | n ∈ R

d , ‖n‖2 = 1}, antipodally symmetric vec-
tors (±n ∈ R

d ) are considered to be Watson-distributed, if
their probability density function can be expressed as Eq. 2a.

p(±ni | m j , κ j ) = M

(
1

2
,
D

2
, κ j

)−1

expκ j (m j
T ni )2 (2a)

p(N | Θn) =
N∑

i=1

ln
M∑

j=1

π j p(±ni | m j , κ j ) (2b)

This distribution is parameterized by the mean orientation
m and the concentration κ . Here,M( 12 ,

D
2 , κ)−1 is the conflu-

ent hyper-geometric function. This function has been shown
to be monotonically increasing within [−∞,∞] [29]. With
increasing |κ|, n are more concentrated along m, for κ > 0.
Consequently, κ is often considered to be analogous to the
precision of a Gaussian distribution. The joint llh of the axes
of all N centerline points in the entire Target point set,
being generated by an M-component Watson mixture model
(defined by the Source) with parameters Θn = {m j , κ j } is
given by Eq. 2b.

We assume both the spatial positions (xi ) and the cen-
terline orientations (ni ) of each hybrid point in the Target
set to be conditionally independent. Consequently, their joint
PDF can be formulated as a product of the individual con-
ditional densities as shown in Eq. 3, where Θp = {ν j , σ j },
Θn = {m j , κ j } and π j are the parameters of the HdMM to
be estimated. Here, all hybrid points in the Target (T) are
assumed to be independent and identically distributed obser-
vations of a HdMM defined by the Source point set. The
desired transformation parameters T are estimated by maxi-
mizing Eq. 3, in the M-step of the EM-algorithm, in addition
to the associated model parameters Θp,Θn .

log(T | T ,Θp,Θn) =
N∑

i=1

ln
M∑

j=1

π jS(xi | T μμμ j , ν j , σ
2)

×W(ni | T m j , κ j ) (3)

Affine and nonrigid registration

Pair-wise affine and nonrigid registration is achieved by
maximizing the joint likelihood in Eq. 3 using EM. Each
hybrid point in the Target set is denoted as di = {xi ,ni }.
EM alternates between: the expectation E-step, where the
expectations of the posterior probabilities Pt

i j are evalu-
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ated (refer to Eq. 4a), given an estimate for the model and
transformation parameters Θ t = {Θ t

p,Θ
t
n, T t }; and the

maximization M-step (refer to Eq. 4b), where the estimated
Pt
i j at the t th iterative, are used to update estimates forΘ t , by

maximizing the conditional expectation of the complete
data log-likelihood function Q, with respect to each
parameter.

Pt
i j = π j p(di | Θ t )

∑M
j=1 π j p(di | Θ t )

(4a)

Q(Θ t+1 | Θ t ) =
N ,M∑

i, j=1

Pt
i j [ln π j + Q(Θ t+1

p | Θ t
p)

+Q(Θ t+1
n | Θ t

n)] (4b)

First, we perform an initial affine registration (refer to
Eq. 5a) of the vessel centerlines, which is used to initialize the
subsequent nonrigid registration step. Here, P�(t) represents
the corrected posterior probabilities estimated in the E-step.
Updates for the affine transformation T = {s,R, t} and
model parameters σ 2, ν j are derived analytically similarly
to [25] and computed in the M-step. The model parameters
κ j associated with the Watson distributions are estimated
using the approximation derived in [4].

Q(Θ t+1
p | Θ t

p) =
N ,M∑

i, j=1

P�(t)
i, j

[
−‖xi − sRμμμ j − t‖2

2σ 2

+κ j (RmT
j )n j

]
(5a)

Q(Θ t+1
p | Θ t

p) =
N ,M∑

i, j=1

−P�(t)
i, j

||xi − (μμμ j + v(μμμ j )||2
2σ 2

+λ

2
Tr{WTGW} (5b)

Subsequently, the desired nonrigid transformation (T ),
expressed as a linear combination of radial basis functions
(refer to Eq. 5b), is estimated using EM. The associated
parameters (W) are computed as described in [22]. Tikhonov
regularization is employed to ensure that the estimated defor-
mation field is smooth. In Eq. 5b, v is the displacement field
mapping the Source to the Target, while W and G rep-
resent the weights associated with the radial basis functions
and the Gaussian kernel, respectively. The trade-off between
registration accuracy and the smoothness of the estimated
deformation field is regulated by λ.

In CPD and TMM, the Gaussian kernel is computed as

G(μμμl ,μμμm) = exp−‖μμμl−μμμm
2β ‖2 . Here, β controls the width

of the Gaussian kernel and is a hyperparameter that is cho-
sen manually. The value chosen for β controls the range of
filtered frequencies, and consequently, the spatial smooth-

ness of the deformation field, i.e., higher values result in
smoother deformations [22]. However, as it is defined manu-
ally, it requires some prior information regarding the degree
of smoothness required for accurate registration, or alterna-
tively, tuning of the hyperparameter to identify a suitable
value for an application. Furthermore, the same value for β

is used when computing G, for all points μ, defining the
centroids of the mixture model. Consequently, such a ker-
nel has two main limitations - manual definition of kernel
width; and enforced global smoothness on the deformation
field, as the kernel width is fixed for all μ, when computing
G(μμμl ,μμμm). Our framework addresses these limitations by
using the model parameters κ j of the Watson distributions in
the HdMM, which represent the concentration of centerline
orientations along the mean orientations of each component
in the HdMM, to compute a locally adaptive variant of the
Gaussian kernel as, G(μμμl ,μμμm, κ j ) = exp−‖2κ j (μμμl−μμμm )‖2 .
The intuition here is that, as κ is analogous to the preci-
sion (or inverse of the variance) of a Gaussian distribution, it
can be used in place of β (i.e., the variance of the Gaussian
kernel). As all κ j are estimated in the M-step of the algo-
rithm, during the preceding affine registration step, they are
automatically defined when computing G for the subsequent
nonrigid registration step. Additionally, as κ j is estimated for
each component of the HdMM, the resulting kernel is locally
adaptive, thereby providing different degrees of smoothness
to the deformation field, at different spatial positions.

During nonrigid registration, the transformation parame-
ters T = v = GW, and a subset of the model parameters,
namely, {σ j , ν j , κ j } ∈ Θ are estimated analytically, via
EM. Following EM-convergence, the displacements map-
ping the Source to the Target are computed as: T (M) =
M + GW, where, M represents the means of the HdMM,
defined by the former. Since the degrees of freedom ν j do
not have a closed-form solution, they are estimated iteratively
in both registration steps, by the Newton–Raphson scheme,
similar to [25].

Registration refinement

Significant proportions of missing data in the Source rel-
ative to the Target, limits the accuracy and robustness of
the proposeHdMM-basedmethod. Consequently, we formu-
lated a mechanism for refining the point correspondences, in
order to accommodate for the missing data during registra-
tion.

First, we construct a 2D feature space for each point
in the Source. This feature vector is constructed based
on the intuition that points lacking correspondence should
have low responsibility in describing the Target points.
This behavior is reflected in the N×M posterior probabil-
ity matrix estimated following registration using HdMM,
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where each entry describes the probability of each point in
the Target being observations sampled from each point in
the Source point set. Consequently, Source points which
are missing in the Target point set have a large number
of values close to zero in the posterior probability matrix.
Furthermore, Source points lacking correspondence have
large Euclidean distances to the Target points, following
HdMM-based registration. Therefore, we select the follow-
ing two features: (1) the number of points in the Target
set which have posterior probabilities greater than 1e−5, for
each point in the Source point set, and (2) the minimum
Euclidean distance between each updated Source point
(use HdMM) and the points in the Target point set.

Subsequently, PCA was used to extract the first princi-
pal component. Finally, automatic histogram clipping using
Otsu-thresholding was performed on the first principal com-
ponent, to identify and exclude points within the missing
data region. The refined correspondences in the Source
are subsequently nonrigidly registered to the Target set
using HdMM again (henceforth referred to as HdMM+), to
accommodate for the missing data, and improve the overall
registration accuracy.

Experiments and results

Evaluationmetrics

In order to demonstrate the effectiveness of incorporating
centerline orientations, and the proposed outlier removal
mechanism for registering vasculature, we compare CPD,
TMM, TMM+, HdMM and HdMM+, for two different clini-
cal applications. For fair comparison, we fixed the smoothing
factor associated with Tikhonov regularization (λ = 1) dur-
ing nonrigid registration, for CPD, TMM, TMM+, HdMM
and HdMM+ in all experiments. The width of the Gaus-
sian kernel (β) is set to 1, for CPD, TMM and TMMM+
in all experiments. Following preliminary investigations, we
identified 0.5 to be a suitable value for the uniform distri-
bution component weight in CPD, which remained fixed for
all experiments. The maximum number of iterations is set to
100 for all methods. Following estimation of the sparse dis-
placement field with the established point correspondence,
B-spline interpolation [28] is employed to estimate a dense
deformation field and warp the Source image.

Modified Hausdorff distance (MHD) [7], and mean surface
distance (MSD) [25], are used to quantitatively assess regis-
tration accuracy. MHD1, MSD1 compute the MHD and MSD
between registered Source and Target point sets once
point correspondences are established;MHD2, MSD2 evalu-
ate theMHD and MSD between the vessel centerlines extracted
following warping of the Source image to each corre-
sponding Target image. Furthermore, 100 homologous

fiducial landmark pairs are defined semi-automatically for
each patient, usingMurphy’s method [21] to assess the mean
target registration error (mTRE). Since the semi-automatic
annotationmethod in [21] is designed for thoracicCT images,
it is not applicable for DSA brain acquisitions. In order to
evaluate the degree of overlap in cerebral vasculature fol-
lowing registration of the Source images to corresponding
Target images, for clinical data, we calculate the Dice
and Jaccard coefficients between their respective vessel
segmentations.

Intraoperative brain shift compensation

For intraoperative brain shift compensation, the performance
of CPD, TMM, TMM+, HdMM and HdMM+ is compared
using both an anthropomorphic head phantom and clinical
data. First, vesselness maps of the images are estimated
using Frangi’s vesselness filter [10]. The vessel centerlines
are extracted by applying a homotopic thinning algorithm
proposed in [12].

Phantom data An anthropomorphic deformable head
phantom as described in [3] (refer to Fig. 2) is used to acquire
cone beam CT (CBCT) data and conduct synthetic experi-
ments. During the experiments, distilled water is used to fill
up the ventricle. We use a 1:10 solution of distilled water and
Ultravist 370 as contrast agent to enhance the vascular struc-
tures. The embedded tumor is initially inflated with 40 ml
distilled water, and downsized to 25ml, 15ml, 5ml and 0 ml
subsequently, emulating a tumor resection surgery. In each
step, contrast-enhanced cone beamCT image is acquired. All
images have a voxel resolution of 0.48 mm3 (refer to Fig. 2
right).

Clinical data The clinical data used in this retroper-
spective study comprises 3D DSA images acquired during
tumor resection surgery of a glioma patient. The images are
acquired preoperatively, following craniotomy, during resec-
tion, and postoperatively, to monitor blood flow within the
brain during and after surgery. The surgery is performed in
a hybrid operating room with Siemens Artis zeego installa-
tion. As with the phantom experiments, the acquisitions have
a voxel resolution of 0.48 mm3.

For the phantom data, centerlines extracted from the
CBCT images with the tumor maximally inflated (40ml),
was treated as Source and aligned to the other four remain-
ing acquisitions. In order to validate the performance of the
proposed method for brain shift compensation with suffi-
cient amount of clinical data, we include every combination
of two, out of four, acquired clinical images as a Source -
Target pair, where the Source image is always acquired
before Target image.

Quantitative results for brain shift compensation are sum-
marized in Table 1. The initial average MSD and MHD are
5.42±1.07mm and 5.57±1.11mm for phantom data, while
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Fig. 2 The computer-aided design model of the anthropomorphic head phantom, the experiment setting and an example slice of CBCT acquisition
of the phantom are shown from left to right

Table 1 Comparison of the
accuracy of CPD, TMM, HdMM
and HdMM+ for intraoperative
brain shift compensation

CPD TMM TMM+ HdMM HdMM+

Phantom

MHD1 1.04 ± 0.21 0.61 ± 0.08 0.41 ± 0.06 0.56 ± 0.05 0.34 ± 0.030.34 ± 0.030.34 ± 0.03

MHD2 2.16 ± 0.17 1.85 ± 0.06 1.77 ± 0.04 1.81 ± 0.07 1.76 ± 0.051.76 ± 0.051.76 ± 0.05

MSD1 0.97 ± 0.21 0.58 ± 0.09 0.32 ± 0.03 0.54 ± 0.06 0.24 ± 0.020.24 ± 0.020.24 ± 0.02

MSD2 1.83 ± 0.42 1.20 ± 0.03 1.15 ± 0.01 1.19 ± 0.02 1.15 ± 0.011.15 ± 0.011.15 ± 0.01

Clinical

MHD1 2.46 ± 0.26 1.33 ± 0.32 1.04 ± 0.28 1.23 ± 0.32 0.90 ± 0.240.90 ± 0.240.90 ± 0.24

MHD2 4.48 ± 0.43 1.73 ± 0.53 1.48 ± 0.46 1.52 ± 0.42 1.37 ± 0.371.37 ± 0.371.37 ± 0.37

MSD1 2.32 ± 0.27 1.07 ± 0.24 0.64 ± 0.15 0.97 ± 0.21 0.55 ± 0.130.55 ± 0.130.55 ± 0.13

MSD2 3.31 ± 0.28 1.51 ± 0.50 1.30 ± 0.44 1.39 ± 0.43 1.26 ± 0.391.26 ± 0.391.26 ± 0.39

Dice 0.28 ± 0.07 0.72 ± 0.07 0.74 ± 0.07 0.72 ± 0.06 0.76 ± 0.050.76 ± 0.050.76 ± 0.05

Jaccard 0.16 ± 0.05 0.56 ± 0.08 0.58 ± 0.07 0.57 ± 0.08 0.61 ± 0.070.61 ± 0.070.61 ± 0.07

Mean and standard deviation of all evaluation metrics are summarized in millimeters (mm)
Bold values are used to emphasize the lowest mean and standard deviation

for clinical images, they are 5.40±1.24 mm and 5.62±1.31
mm. With regard to qualitative assessment of our approach,
extracted vessel centerlines from registered Source images,
are superimposed on its counterpart extracted from Target
images in Fig. 3. Each row represents the registration result
of different Source and Target pairs, while each column
represent a different registration method.

Pulmonary vascular alternation of lung diseases

For the evaluation of noninvasive disease monitoring of pul-
monary diseases, we select baseline (Source) and follow-
up (Target) CT scans of 12 patients from SPREAD study,
suffering from pulmonary emphysema [30]. This results in
24 Source and Target image pairs. All CT images are
acquired during breath hold and reconstructed with a stan-
dardized protocol optimized for lung densitometry. The slice
thickness of the CT images is 2.5 mm and in plane reso-
lution is 0.65 × 0.65 mm. The segmentation of pulmonary
vessels is performedwith a graph cut-basedmethod proposed

in [33]. Subsequent steps including the centerline extraction
technique, point matching algorithms, and image warping,
are identical to the brain shift compensation experiments.

For all 24CT image pairs, the initial averageMSD and MHD
between centerlines extracted from baseline and follow-up
images are 8.24 ± 2.33 mm and 9.07 ± 3.7 mm. Quantita-
tive results after applying CPD, TMM, HdMM and HdMM+
are summarized in Table 2. Examples of overlay between
updated Source and Target point set are presented in
Fig. 4.

Discussion and outlook

The quantitative (refer to Tables 1 and 2) and qualitative
(refer to Tables 3 4) results indicate that TMM outperforms
CPD significantly, with further improvements achieved using
HdMM, compared to TMM. This demonstrates the ability of
the proposed registration framework to model fine structural
details of both cerebral and pulmonary vasculature. This is
attributed to the hybrid representations of vessel centerlines,
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Fig. 3 Overlay of registered Source centerlines (blue) on Target
(red) point set. The green circle visualizes the location of missing
branches caused by tumor resection. The first row shows centerlines
extracted from a preoperative DSA image aligned to intraoperative vas-

cular structures following the dura opening. The second row presents
the preoperative data aligned with postresectional centerlines. While in
the last row, postoperative point set of vasculature is aligned with the
intraoperative data following the dura opening

Table 2 Comparison of the
accuracy of CPD, TMM,
HdMM and HdMM+ for
longitudinal assessment of
pulmonary diseases

CPD TMM TMM+ HdMM HdMM+

MHD1 3.31 ± 0.87 2.34 ± 0.53 1.55 ± 0.54 2.03 ± 0.33 1.24 ± 0.271.24 ± 0.271.24 ± 0.27

MHD2 4.16 ± 1.21 2.28 ± 0.48 2.05 ± 0.60 2.26 ± 0.46 2.05 ± 0.322.05 ± 0.322.05 ± 0.32

MSD1 3.04 ± 0.76 2.24 ± 0.53 1.15 ± 0.42 1.91 ± 0.32 0.90 ± 0.170.90 ± 0.170.90 ± 0.17

MSD2 3.25 ± 0.72 2.11 ± 0.38 1.84 ± 0.47 2.01 ± 0.41 1.80 ± 0.291.80 ± 0.291.80 ± 0.29

mTRE 2.70 ± 3.45 2.22 ± 2.852.22 ± 2.852.22 ± 2.85 2.21 ± 2.802.21 ± 2.802.21 ± 2.80 2.20 ± 2.822.20 ± 2.822.20 ± 2.82 2.20 ± 2.822.20 ± 2.822.20 ± 2.82

Mean and standard deviation of all evaluation metrics are summarized in millimeters (mm)
Bold values are used to emphasize the lowest mean and standard deviation

as they are a rich descriptor of local vessel morphology, and
the improved discriminative capacity and locally adaptive
nature of themodel employed in the HdMM/HdMM+ frame-
work. Complex structures such as vasculature require more
descriptive features for accurate registration, than affordedby
spatial positions alone. Consequently, a registration frame-
work that jointly models the PDF of spatial positions and
centerline orientations, is better equipped for registering
complex geometries such as vasculature, than point match-
ing methods that rely on spatial positions alone, regardless
of clinical application.

A major challenge in many clinical applications is the
presence of missing data due to surgical interventions or
pathology-induced morphological changes. The green circle
in Fig. 3 highlights the missing branches caused by tumor
resection. When registering pre- and postresectional data
(refer to row 2 in Fig. 3), missing data poses a great challenge
for CPD, TMM and HdMM, whereas TMM+ and HdMM+
are less affected and able to establish correct point cor-
respondences. The correspondence refinement mechanism
proposed in our framework identifies a subset of points in the
Source, which have a large responsibility (i.e., large poste-
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Fig. 4 Results of the pulmonary vessel registration using CPD, TMM, HdMM and HdMM+. Updated Source (blue) point set is superimposed
with Target (red) data

rior probability) in describing points in the Target, without
any prior knowledge regarding the positions of missing ves-
sel branches. Following refinement, TMM+ and HdMM+
achieve significant improvements in registration accuracy
(refer to Tables 1 and 2) relative to TMMandHdMM, respec-
tively. Overall, HdMM+ consistently outperformed all other
methods, in all experiments conducted.

The performance of CPD is affected by three manually
chosen hyperparameters (outlier weight, β and λ). While,
TMM/TMM+ are affected by just β and λ, as they are
inherently robust to outliers due to the heavy tailed prop-
erty of the constituent Student’s t-distributions. However, in
the proposed HdMM/HdMM+ framework, β is defined auto-
matically using the concentration parameters (κ j ) estimated
for the constituent Watson distributions, i.e., only a single
hyperparameter (λ) remains. Furthermore, as different val-
ues for κ are estimated for each component of the HdMM,
the resulting kernel is locally adaptive, resulting in local-
ized smoothness constraints on the estimated deformation
field (as opposed to the global constraint enforced in CPD,
TMM and TMM+). The improvements in registration accu-
racy afforded by HdMM/HdMM+ relative to TMM/TMM+
are attributed to this locally adaptive kernel. Thus, compared
to CPD and TMM/TMM+, HdMM/HdMM+ are considered
to be of greater practical value within a clinical setting.

Quantitative results presented in Tables 1 and 2 also indi-
cate that MSD and MHD values are higher, when they are
computed following image warping, compared to those eval-
uated following point set registration. This is attributed to the
localized support of B-spline basis functions, used to warp
the images. Global deformations introduced by the change

of biomechanical boundary conditions are therefore not con-
sidered, when deriving dense displacement fields from its
sparse counterparts.

At each bifurcation point, centerline orientation could fol-
low either the main branch or any sub-brunch, i.e., the spatial
position and orientation are conditionally independent. This
assumption increases the flexibility and the discriminative
capacity of the proposed HdMM/HdMM+ framework. How-
ever, the proposed framework may be improved bymodeling
the conditional dependency of spatial positions and associ-
ated orientations, for points within each branch. The lack of
a “gold standard” for quantitative evaluation of local accu-
racy is a limitation of the current study. Usually, mTRE is
the state-of-the-art metric to evaluate the average local accu-
racy of a registration framework. However, the homologous
fiducial landmarks used in this study for the pulmonary data
set, is not able to identify differences in the performance
of HdMM+ from HdMM and TMM. This is because the
homologous landmarks are annotated semi-automatically,
where a fixed number of corresponding point pairs are iden-
tified without considering missing data. Hence, even if one
of the landmarks identified in the Source image lacks a
corresponding landmark on the Target due to patholog-
ical changes of the vessels, the semi-automatic approach
used, will still identify a point in the Target. As the aim
of this study was to compare different probabilistic mix-
ture model-based registration approaches, for the task of
generalized vessel registration, some aspects regarding the
evaluation and algorithmic analysis were beyond it‘s scope.
Future work will look to identify a suitable metric to evaluate
the local accuracy of the proposed HdMM+ framework, such
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as the performance of missing branch detection for exam-
ple; conduct a comprehensive analysis of the effect of λ

on registration accuracy; and qualitatively and quantitatively
assess the outlier removal mechanism employed in TMM+
and HdMM+, using manual outlier screening via variogram
analysis [14] for example.

Conclusion

Clinical applications benefit from an accurate and inher-
ently robust registration method, able to accommodate large
proportions of outliers, missing data, and morphological
variations in vasculature. We treated vessel registration as
a point matching problem and formulated a hybrid mix-
ture model-based rigid and nonrigid registration framework.
By incorporating a correspondence refinement step to deal
with missing data, the proposed HdMM/HdMM+ registra-
tion framework was shown to significantly outperform the
state-of-the-art, in terms of registration accuracy. We vali-
dated our approach using data from intraoperative brain shift
compensation, and longitudinal analysis of pulmonary vas-
culature. The presented results demonstrate the ability of
the HdMM/HdMM+ framework to model complex vascular
structures acquired from different anatomical regions. The
fidelity of the proposed framework is thus compelling for its
use in a variety of clinical applications.
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