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a b s t r a c t 

Image registration, the process of aligning two or more images, is the core technique of many 

(semi-)automatic medical image analysis tasks. Recent studies have shown that deep learning methods, 

notably convolutional neural networks (ConvNets), can be used for image registration. Thus far train- 

ing of ConvNets for registration was supervised using predefined example registrations. However, obtain- 

ing example registrations is not trivial. To circumvent the need for predefined examples, and thereby 

to increase convenience of training ConvNets for image registration, we propose the Deep Learning Im- 

age Registration (DLIR) framework for unsupervised affine and deformable image registration. In the DLIR 

framework ConvNets are trained for image registration by exploiting image similarity analogous to con- 

ventional intensity-based image registration. After a ConvNet has been trained with the DLIR frame- 

work, it can be used to register pairs of unseen images in one shot. We propose flexible ConvNets de- 

signs for affine image registration and for deformable image registration. By stacking multiple of these 

ConvNets into a larger architecture, we are able to perform coarse-to-fine image registration. We show 

for registration of cardiac cine MRI and registration of chest CT that performance of the DLIR framework 

is comparable to conventional image registration while being several orders of magnitude faster. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Image registration is the process of aligning two or more im-

ages. It is a well-established technique in (semi-)automatic med-

ical image analysis that is used to transfer information between

images. Commonly used image registration approaches include

intensity-based methods, and feature-based methods that use

handcrafted image features ( Sotiras et al., 2013; Viergever et al.,

2016 ). Since recently, supervised and unsupervised deep learning

techniques have been successfully employed for image registration

( Jaderberg et al., 2015; Wu et al., 2016; Miao et al., 2016; Liao et al.,

2017; Krebs et al., 2017; Cao et al., 2017; Sokooti et al., 2017; Yang

et al., 2017; de Vos et al., 2017; Eppenhof et al., 2018 ). 

Deep learning techniques are well suited for image registra-

tion, because they automatically learn to aggregate the informa-

tion of various complexities in images that are relevant for the

task at hand. Additionally, the use of deep learning techniques po-

tentially yields high robustness, because local optima may be of
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esser concern in deep learning methods, i.e. zero gradients are of-

en (if not always) at saddle points ( Dauphin et al., 2014 ). More-

ver, deep learning methods like convolutional neural networks

re highly parallelizable which makes implementation and execu-

ion on GPUs straight-forward and fast. As a consequence deep

earning enhanced registration methods are exceptionally fast mak-

ng them interesting for time-critical applications; e.g. for emerg-

ng image guided therapies like High Intensity Focused Ultrasound

HIFU), the MRI Linear Accelerator (MR-linac), and MRI-guided pro-

on therapy. 

Although not explicitly introduced as a method for image

egistration, the spatial transformer network (STN) proposed by

aderberg et al. (2015) was one of the first methods that exploited

eep learning for image alignment. The STN is designed as part

f a neural network for classification. Its task is to spatially trans-

orm input images such that the classification task is simplified.

ransformations might be performed using a global transforma-

ion model or a thin plate spline model. In the application of an

TN, image registration is an implicit result; image alignment is

ot guaranteed and only performed when beneficial for the classi-

cation task at hand. STNs have been shown to aid classification of

hotographs of traffic signs, house numbers, and handwritten dig-
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Fig. 1. Schematic representation of the deep learning image registration (DLIR) 

framework. The DLIR training procedure is similar to a conventional iterative im- 

age registration framework (blue), but adding a ConvNet in this framework (red) 

allows unsupervised training for image registration. Unlike in conventional image 

registration, where image similarity is used to iteratively update the transform pa- 

rameters directly (large blue arrow), image similarity is used in the DLIR framework 

to update the weights of the ConvNet by back propagation (large red arrow). Conse- 

quently, a trained ConvNet can output a transformation that aligns the input images 

in one shot. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

 

w  

i  

t  

t  

n  

i  

s  

t  

b  

f  

t  

p  

p  

i  

i  

r  

w  

t  

p  

i

 

v  

e  

S  

l  

f  

t  

c  

i  

i  

d  

w  

C  

l  

a  

v  

o  

r  

p  

m  

i  

D

ts, but to the best of our knowledge they have not yet been used

o aid classification of medical images. 

In other studies deep learning methods were explicitly trained

or image registration ( Liao et al., 2017; Miao et al., 2016; Yang

t al., 2017; Sokooti et al., 2017; Krebs et al., 2017; Cao et al.,

017; Hu et al., 2018a; 2018b ). For example, convolutional neural

etworks (ConvNets) were trained with reinforcement learning to

e agents that predicted small steps of transformations toward op-

imal alignment. Liao et al. (2017) applied these agents for affine

egistration of intra-patient cone-beam CT (CBCT) to CT and Krebs

t al. (2017) applied agents for deformable image registration of

nter-patient prostate MRI. Like intensity-based registration, image

egistration with agents is iterative. However, ConvNets can also

e used to register images in one shot. For example, Miao et al.

2016) used a ConvNet to predict parameters in one shot for rigid

egistration of 2D CBCT to CT volumes. Similarly, ConvNets have

een used to predict parameters of a thin plate spline model. Cao

t al. (2017) used thin plate splines for deformable registration of

rain MRI scans and Eppenhof et al. (2018) used thin plate splines

or deformable registration of chest CT scans. Furthermore, in the

ork of Sokooti et al. (2017) it has been demonstrated that a Con-

Net can be used to predict a dense displacement vector field

DVF) directly, without constraining it to a transformation model.

imilarly, Yang et al. (2017) used a ConvNet to predict the momen-

um for registration with large deformation diffeomorphic metric

apping ( Beg et al., 2005 ). Recently, Hu et al. (2018a) presented

 method that employs segmentations to train ConvNets for global

nd local image registration. In this method a ConvNet takes fixed

nd moving image pairs as its inputs and it learns to align the

egmentations. This was demonstrated on global and deformable

egistration of ultrasound and MR images using prostate segmen-

ation. 

While the aforementioned deep learning-based registration

ethods show accurate registration performance, the methods are

ll supervised, i.e. they rely on example registrations for training

r require manual segmentations, unlike conventional image regis-

ration methods that are typically unsupervised. Training examples

or registration have been generated by synthesizing transforma-

ion parameters for affine image registration ( Miao et al., 2016 )

nd deformable image registration ( Sokooti et al., 2017; Eppen-

of et al., 2018 ), or require manual annotations ( Hu et al., 2018a;

018b ). However, generating synthetic data may not be trivial as

t is problem specific. In contrast to supervised methods, training

xamples can be be obtained by using conventional image registra-

ion methods ( Liao et al., 2017; Krebs et al., 2017; Cao et al., 2017;

ang et al., 2017 ). Alternatively, unsupervised deep learning meth-

ds could be employed. Wu et al. (2016) exploited unsupervised

eep learning by employing a convolutional stacked auto-encoder

CAE) that extracted features from fixed and moving images. It im-

roved registration with Demons ( Vercauteren et al., 2009 ) and

AMMER ( Shen and Davatzikos, 2002 ) on three different brain MRI

atasets. However, while the CAE is unsupervised, the extracted

eatures are optimized for image reconstruction and not for image

egistration. Thus, there is no guarantee that the extracted features

re optimal for the specific image registration task. 

Unsupervised deep learning has been used to estimate optical

ow ( Yu et al., 2016; Dosovitskiy et al., 2015; Ilg et al., 2017 ) or to

stimate depth ( Garg et al., 2016 ) in video sequences. Such meth-

ds are related to medical image registration, but typically address

ifferent problems. They focus on deformations among frames in

ideo sequences. These video sequences are in 2D, contain rela-

ively low levels of noise, have high contrast due to RGB infor-

ation, and have relatively small deformations between adjacent

rames. In contrast, medical images are often 3D, may contain large

mounts of noise, may have relatively low contrast and aligning

hem typically requires larger deformations. 
We propose a Deep Learning Image Registration (DLIR) frame-

ork: an unsupervised technique to train ConvNets for medical

mage registration tasks. In the DLIR framework, a ConvNet is

rained for image registration by exploiting image similarity be-

ween fixed and moving image pairs, thereby circumventing the

eed for registration examples. The DLIR framework bears similar-

ty with a conventional iterative image registration framework, as

hown in Fig. 1 . However, in contrast to conventional image regis-

ration, the transformation parameters are not directly optimized,

ut indirectly, by optimizing the ConvNet’s parameters. In the DLIR

ramework the task of a ConvNet is to learn to predict transforma-

ion parameters by analyzing fixed and moving image pairs. The

redicted transformation parameters are used to make a dense dis-

lacement vector field (DVF). The DVF is used to resample to mov-

ng image into a warped image that mimics the fixed image. Dur-

ng training, the ConvNet learns the underlying patterns of image

egistration by optimizing image similarity between the fixed and

arped moving images. Once a ConvNet is trained, it has learned

he image registration task and it is able to perform registration on

airs of unseen fixed and moving images in one shot, thus non-

teratively. 

The current paper extends our preliminary study of unsuper-

ised deformable image registration ( de Vos et al., 2017 ) in sev-

ral ways. First, we extend the analysis from 2D to 3D images.

econd, we perform B-spline registration with transposed convo-

utions, which results in high registration speeds, reduces memory

ootprint, and allows simple implementation of B-spline registra-

ion on existing deep learning frameworks. Third, borrowed from

onventional image registration where regularization often is an

ntegral part in transformation models ( Sotiras et al., 2013 ), we

nclude a bending energy penalty term that encourages smooth

isplacements. Fourth, we present ConvNet designs for affine as

ell as deformable registration. Fifth, we introduce multi-stage

onvNets for registration of coarse-to-fine complexity in multiple-

evels and multiple image resolutions by stacking ConvNets for

ffine and deformable image registration. Such a multi-stage Con-

Net can perform registration tasks on fixed and moving pairs

f different size, similarly to conventional iterative intensity-based

egistration strategies. Finally, in addition to evaluation on intra-

atient registration of cardiac cine MR images, we conduct experi-

ents on a diverse set of low-dose chest CTs for inter-patient reg-

stration, and we evaluate the method on the publicly available

IR-Lab dataset for image registration ( Castillo et al., 2009; 2010 ). 



130 B.D. de Vos, F.F. Berendsen and M.A. Viergever et al. / Medical Image Analysis 52 (2019) 128–143 

Fig. 2. A ConvNet design for affine image registration. The network analyzes pairs of fixed and moving images in separate pipelines. Ending each pipeline with global average 

pooling enables analysis of input images of different sizes, and allows concatenation with the fully connected layers that have a fixed number of nodes connected to 12 affine 

transformation parameter outputs. 
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2. Method 

In image registration the aim is to find a coordinate transforma-

tion T : I F → I M 

that aligns a fixed image I F and a moving image I M 

.

In conventional image registration similarity between the images

is optimized by minimizing a dissimilarity metric L : 

ˆ μ = arg min 

μ
{ L (T μ; I F , I M 

) + R (T μ) } , 
where T μ is parameterized by transformation parameters μ and R

is an optional regularization term to encourage smoothness of the

transformation T μ. Several dissimilarity metrics might be used, e.g.

mean squared difference, normalized cross-correlation, and mutual

information. Provided the metric is differentiable, optimal transfor-

mation parameters can be found by performing (stochastic) gradi-

ent descent. In the DLIR framework the ConvNet’s task is to predict

these transformation parameters using I F and I M 

as its inputs: 

μ = f θ(I F , I M 

) , 

where f denotes the ConvNet and θ the ConvNet’s parameters. By

minimizing dissimilarity L , a ConvNet can be trained for image reg-

istration as follows: 

ˆ θ = arg min 

θ

{ L (T μθ
; I F , I M 

) + R (T μθ
) } . 

Note that the parameters θ of the ConvNet are optimized and not

the parameters μ of the mapping function T . The ConvNet predicts

the parameters μ and is trained by the DLIR framework by ex-

ploiting image similarity between pairs of fixed and moving input

images, i.e. image dissimilarity is calculated between the fixed and

the warped moving images and is used as a loss function for Con-

vNet training. While the DLIR framework could work with other

transformation models, below we work out the architectures for

an affine (global) parameterization and a B-spline deformable (lo-

cal) parameterization of the transformation model. In the following

subsections we provide details about the DLIR framework, we de-

scribe specific ConvNet designs for affine and for deformable image

registration, and finally we describe a ConvNet design consisting of

multiple stages to perform multi-resolution and multi-level image

registration. We refer the reader to Sotiras et al. (2013) for an ex-

tensive review on image registration techniques. 

2.1. Affine image registration 

Affine transformation is often the first step in image registra-

tion, since it simplifies the optimization of subsequent more com-

plex image registration steps. Considering that the affine trans-

formation model is global, we designed a ConvNet that analyzes

a pair of input images globally. Considering that medical im-

ages often have different image sizes, the proposed ConvNet an-

alyzes fixed and moving images in separate pipelines. The separate
ipelines analyze input images independently and therefore elimi-

ate the need for cropping or padding of input image pairs to the

ame size. In each pipeline the final feature maps will be of differ-

nt size. Thus global average pooling ( Lin et al., 2014 ) is applied to

utput one feature per feature map by taking the average of each

eature-map. An additional benefit is that global pooling forces the

etwork to encode orientations and affine transformations globally.

ubsequently, the network can be connected to a neural network

ork that will decode the relative orientations of the fixed and

oving images and convert those to 12 affine transformation pa-

ameters: three translation, three rotation, three scaling, and three

hearing parameters. 

Fig. 2 illustrates our ConvNet design for affine image registra-

ion. The two separate pipelines analyze input pairs of fixed and

oving images and each consist of five alternating 3 × 3 × 3 con-

olution layers and 2 × 2 × 2 downsampling layers. The number of

hese layers may vary, depending on task complexity and input im-

ge size. The weights of the layers are shared between the two

ipelines to limit the number of total parameters in the network. 

.2. Deformable image registration 

Deformable transformation models can account for local defor-

ations that often occur in medical images. Deformable image reg-

stration can be achieved with several transformation models. Here

e opt for B-splines ( Rueckert et al., 1999 ) because of their in-

erent smoothness and local support property: a B-spline control

oint only affects a specific area in an image, in contrast to e.g. a

hin plate spline which has global support. In our ConvNet design

e exploit this property by choosing a receptive field that overlaps

he support size of the B-spline basis functions, i.e. at least four

imes the grid spacing for a third order B-spline kernel. The Con-

Net takes patches from fixed and moving images and predicts the

-spline control point displacements within that patch. By using a

ully convolutional patch-based ConvNet design inspired by Long

t al. (2015) , input images of arbitrary dimensions can be analyzed

fficiently. 

The proposed ConvNet design is shown in Fig. 3 . The ConvNet

xpects a pair of fixed and moving images of equal size that are

oncatenated. Depending on the registration problem, moving im-

ges might have to be pre-aligned first with e.g. affine registra-

ion. After concatenation, alternating layers of 3 × 3 × 3 convolu-

ions (with 0-padding) and 2 × 2 × 2 downsampling are applied.

he user-chosen B-spline grid spacing determines the amount of

equired downsampling. A larger grid spacing implies fewer con-

rol points, and thus a need for more downsampling layers; by

dding more downsampling layers, the receptive field of the Con-

Net simultaneously increases. The two additional 3 × 3 × 3 con-

olution layers after the last downsampling layer enlarge the re-
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Fig. 3. A patch-based ConvNet design for deformable image registration. The ConvNet takes fixed and moving image pairs of equal size as its input–e.g. pre-aligned with 

affine registration–and outputs a B-spline 3D displacement vector for each patch. The patch and B-spline grid dimensions determine the number of downsampling layers, 

thus each specific B-spline grid and image resolution requires a dedicated ConvNet design. The fully convolutional patch-based design efficiently generates a B-spline 3D 

displacement grid of any number of grid points depending on the input images sizes. 
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e  
eptive field to the support size of the third order B-spline con-

rol points. Thereafter, two 1 × 1 × 1 convolutional layers are ap-

lied, and these are connected to the final convolutional output

ayer with three 1 × 1 × 1 kernels that predict the B-spline control

oints in each of the three directions. The final DVF, used for image

esampling, can be generated from the estimated control points by

-spline interpolation. 

B-spline interpolation was implemented efficiently by trans-

osed convolutions, also known as fractionally strided convolutions

r deconvolutions. Transposed convolutions are the back-bone in

onvNet implementations. They are used to backpropagate loss

hrough the convolutional layers. Due to the 2 × 2 × 2 downsam-

ling factors resulting in integer grid spacings we can use fixed

recomputed B-spline kernels to efficiently upsample B-spline con-

rol points to a dense DVF. We use a discrete B-spline kernel as the

onvolution kernel. 

.3. Multi-stage image registration 

Conventional image registration is often performed in multi-

le stages starting with affine registration, followed by coarse-to-

ne stages of deformable image registration using B-splines. This

ierarchical multi-stage strategy makes conventional iterative im-

ge registration less sensitive to local optima and image fold-

ng ( Schnabel et al., 2001 ). We adopted this strategy for the DLIR

ramework by stacking multiple stages of ConvNets, each with its

wn registration task. For example, a ConvNet for affine registra-

ion is followed by multiple ConvNets for coarse-to-fine B-spline

egistration, each ConvNet with a different B-spline grid spacing

nd images of different resolution as inputs. When multi-stage reg-

stration requires varying input resolutions, we propose average

ooling (i.e. windowed averaging), which is a very common build-

ng block in deep learning frameworks. 

Fig. 4 illustrates how such a multi-stage ConvNet can be trained

or multi-resolution and multi-level image registration. Training

ithin the DLIR framework is performed sequentially: each stage is

rained for its specific registration task, while keeping the weights

f ConvNets from preceding stages fixed. After training, the multi-

tage ConvNet can be applied for one-shot image registration, sim-

lar to a single ConvNet. 

.4. Loss function 

The registration ConvNets are trained using mini-batch stochas-

ic gradient descent, hence a differentiable loss is required. Since

e perform mono-modal registration experiments, we use nor-

alized cross correlation. Carefully chosen coarse-to-fine levels of

ulti-stage B-spline registration might prevent image folding and
esult in smooth deformations ( Schnabel et al., 2001 ). Alternatively,

mooth deformations can be encouraged by using a bending en-

rgy penalty as proposed by Rueckert et al. (1999) . The loss func-

ion we propose combines normalized cross correlation and this

enalty: 

 = L NCC + αP , (1)

here L NCC is the negative normalized cross correlation, and P the

ending energy penalty with α = 0 for affine registration, and α
mpirically determined to be 0.05 for all deformable image regis-

ration experiments. The bending energy penalty is defined as fol-

ows: 

 = 

1 

V 

∫ X 

0 

∫ Y 

0 

∫ Z 

0 

[ (
∂ 2 T 

∂x 2 

)
2 + 

(
∂ 2 T 

∂y 2 

)
2 + 

(
∂ 2 T 

∂z 2 

)
2 

+ 2 

(
∂ 2 T 

∂xy 

)
2 + 2 

(
∂ 2 T 

∂xz 

)
2 + 2 

(
∂ 2 T 

∂yz 

)
2 

]
d x d y d z, 

here V is the volume of the image domain, and T the local trans-

ormation. Adding this term during registration minimizes the sec-

nd order derivatives of local transformations of a DVF, thereby

esulting in locally affine transformations, thus enforcing global

moothness ( Staring et al., 2007 ): 

. Data 

Like most deep learning approaches, the DLIR framework re-

uires large sets of training data. Publicly available datasets that

re specifically provided to evaluate registration algorithms, con-

ain insufficient training data for our approach. Therefore, we made

se of large datasets of cardiac cine MRIs for intra-patient reg-

stration experiments, and low-dose chest CTs from the National

ung Screening Trial (NLST) for inter-patient registration exper-

ments. We used manually delineated anatomical structures in

hese datasets for evaluation of the DLIR framework. Manually ob-

ained delineations in the datasets were only used for final eval-

ation of registration performance. In addition, we used the pub-

icly available DIR-Lab dataset. The data set is not sufficiently large

o demonstrate the full potential of the proposed method, but it

oes provide an indication of registration performance and it en-

bles straightforward replication of our work. 

.1. Cardiac cine MRI 

We included publicly available cardiac cine MRI scans from the

unnybrook Cardiac Data ( Radau et al., 2009 ). The data set contains

5 short-axis cine MRI images distributed over four pathology cat-

gories: healthy subjects, patients with hypertrophy, patients with
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Fig. 4. Schematic representation of the DLIR framework applied for hierarchical training of a multi-stage ConvNet for multi-resolution and multi-level image registration. 

The first stage performs affine registration of an image pair and the subsequent stages perform coarse-to-fine deformable image registration. The ConvNet in each stage is 

trained for its specific registration task by optimizing image similarity. The weights of the preceding ConvNets are fixed during training. This procedure prevents exploding 

gradients and conserves memory. Transformation parameters are passed through the network and combined at each stage to create a warped image. The warped image is 

passed to the subsequent stage and is used as the moving image input. 
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heart failure and infarction, and patients with heart failure with-

out infarction. Each scan contains 20 timepoints (i.e. volumes) en-

compassing the entire cardiac cycle, which results in 45 × 20 vol-

umes in total. All scans have a slice thickness and spacing of 8 mm

and an in-plane resolution of 1.25 mm per voxel. All scans are

made with a 256 × 256 matrix and consist of about 10 slices. The

data is separated into training, validation, and evaluation sets, each

containing 15 scans with equally distributed pathology categories.

Provided manual segmentations of left ventricle volumes at end-

diastole (ED) and end-systole (ES) were used for evaluation. 

3.2. Chest CT 

We included 2060 chest CTs that were randomly selected from

a set of scans acquired at baseline in the NLST ( The National

Lung Screening Trial Research Team, 2011 ). The dataset is very

diverse containing scans of fourteen different CT-scanners from

four vendors. All scans were made during inspiratory breath-hold

without ECG synchronization and without contrast enhancement.

Isotropic in-plane resolution of the 512 × 512 axial slices varied

between 0.45 mm to 0.98 mm per voxel. Slice increment ranged

from 0.63 mm to 10.0 mm covering the thorax in 26 to 469 ax-

ial slices. The scans were divided into 20 0 0 scans for training and

50 scans for validation during method development. The remain-

ing 10 scans provided 90 image pairs for quantitative evaluation.

In each scan the entire visible aorta was delineated, including the

ascending aorta, the aortic arch, and the descending aorta. In addi-

tion, ten landmarks were annotated: the carina, the aortic root, the

root of the left subclavian artery, the apex of the heart, the tip of

the xiphoid, the tops of the left and right lungs, the left and right

sterno clavicular joints, and the tip of the spinous process of the

T1 vertebra. 

3.3. DIR-Lab 4D chest CT 

We included publicly available 4D chest CT from DIR-

Lab ( Castillo et al., 2009; 2010 ). The dataset consists of ten 4D

chest CTs that encompass a full breathing cycle in ten timepoints.

Isotropic in-plane resolution of 512 × 512 axial slices ranged from

0.97 mm to 1.98 mm per voxel, with a slice thickness and incre-

ment of 2.5 mm. Because the dataset is of limited size we did

not separate it into seperate training, validation, and test sets. In-

stead, we performed leave-one-out cross-validation during evalua-

tion. Each scan contains 300 manually identified anatomical land-

marks annotated in two timepoints, namely at maximum inspira-

tion and maximum expiration. The landmarks serve as a reference

to evaluate deformable image registration algorithms. 
. Evaluation 

The DLIR framework was evaluated with intra-patient as well as

nter-patient registration experiments. As image folding is anatom-

cally implausible, especially in intra-patient image registration, af-

er registration, we evaluated the topology of obtained DVFs quan-

itatively. For this we determined the Jacobian determinant–also

nown as the Jacobian –for every point p ( i, j, k ) in the DVF: 

et(J(i, j, k )) = 

∣∣∣∣∣∣∣∣∣∣

∂ i 

∂x 

∂ j 

∂x 

∂k 

∂x 
∂ i 

∂y 

∂ j 

∂y 

∂k 

∂y 

∂ i 

∂z 

∂ j 

∂z 

∂k 

∂z 

∣∣∣∣∣∣∣∣∣∣
 Jacobian of 1 indicates that no volume change has occured. A

acobian of > 1 indicates expansion, a Jacobian between 0 - 1 indi-

ates shrinkage, and a Jacobian of ≤ 0 indicates a singularity: i.e. a

lace where folding has occured. By indicating the fraction of fold-

ngs per image and by determining the standard deviation of the

acobian, we can quantify the quality of the DVF. 

Additionally, registration performance was evaluated using

anually delineated anatomical structures and manually indicated

andmarks. By propagating the delineations using obtained DVFs,

egistration performance can be assessed by measuring label over-

ap with the Dice coefficient: 

ice = 

2 | P ∩ R | 
| P | + | R | , 

iven a propagated segmentation ( P ) and a reference segmentation

 R ). 

The surface distance 

(x, R S ) = min 

y ∈ R S 
d(x, y )) , 

here x is a point of the propogated surface and y on the a ref-

rence surface ( R S ), was used to calculate the average symmetric

urface distance (ASD) 

SD = 

1 

| P S | + | R S | 

( ∑ 

x ∈ P S 
d(x, R S ) + 

∑ 

y ∈ R S 
d(y, P S ) 

) 

, 

here x and y are points on the propagated surface P S and refer-

nce surface R S . And we calculated the symmetric Hausdorff dis-

ance: 

D = max { d H (P S , R S ) , d H (R S , P S ) } , 
here 

 H (P S , R S ) = max 
x ∈ P S 

min 

y ∈ R S 
d(x, y )) . 
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Table 1 

Design of deformable image registration (DIR) stages used in single stage and 

multi-stage intra-patient registration of cardiac cine MRI. For multi-stage regis- 

tration experiments DIR-1 and DIR-2 were sequentially applied; for single stage 

experiments one stage equal to DIR-2 was applied. Image resolution, grid spacing, 

and average number of grid points are given in x × y × z order. 

Single Stage Multi-Stage 

DIR DIR-1 DIR-2 

Image resolution (mm) 1.25 × 1.25 × 8 2.50 × 2.50 × 16 1.25 × 1.25 × 8 

Grid spacing (mm) 10 × 10 × 8 20 × 20 × 16 10 × 10 × 8 

Avg. grid points 64 × 64 × 10 32 × 32 × 5 64 × 64 × 10 

Mini-batch size (pairs) 8 16 8 
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For landmarks the registration error was determined as the av-

rage 3D Euclidean distance between transformed and reference

oints. 

. Implementation 

.1. DLIR framework 

All ConvNets were trained with the DLIR framework using the

oss function provided in Section 2.4 . The ConvNets were initialized

ith Glorot’s uniform distribution ( Glorot and Bengio, 2010 ) and

ptimized with Adam ( Kingma and Ba, 2015 ). 

Rectified linear units were used for activation in all ConvNets,

xcept in the output layers. The output of the deformable Con-

Nets were unconstrained to enable prediction of negative B-spline

isplacement vectors. The outputs of affine ConvNets were con-

trained as follows: rotation parameters and shearing parameters

ere constrained between −π and + π, the scaling parameters

ere constrained between 0.5 and 1.5, and translation parameters

ere unconstrained. 

During training, moving images were warped using linear re-

ampling, during evaluation segmentations were warped using

earest neighbor resampling. All experiments were performed in

ython using Pytorch ( Paszke et al., 2017 ) on an NVIDIA Titan-X

PU, an Intel Xeon E5-1620 3.60 GHz CPU with 4 cores (8 threads),

nd 32 GB of internal memory. 

.2. Conventional image registration 

Registration performance of the DLIR framework was compared

ith conventional iterative intensity-based image registration us-

ng SimpleElastix ( Marstal et al., 2016 ). SimpleElastix enables inte-

ration of Elastix ( Klein et al., 2010 ) in a variety of programming

anguages. 

For optimal comparison, settings for conventional registration

nd DLIR experiments were chosen similar. Thus, similar grid set-

ings and NCC were used. Adaptive stochastic gradient descent was

sed for iterative optimization. Registration stages were optimized

n 500 iterations, sampling 2000 random points per iteration. In

ontrast to multi-stage DLIR experiments, a Gaussian smoothing

mage pyramid was used in favor of windowed averaging. 

. Intra-patient registration of cardiac cine MRI 

Intra-patient registration experiments were conducted using

ardiac cine MRIs. The task was to register volumes (i.e. 3D im-

ges) within the 4D scans. Experiments were performed with 3-

old cross-validation. In each fold 30 images were used for train-

ng and 15 for evaluation. Given that each scan has 20 timepoints,

1,400 different permutations of image pairs were available per

old for training. Performance was evaluated using registration be-

ween images at ED and ES by label propagation of manual left

entricle lumen segmentations. In total 90 different registration re-

ults were available for evaluation. 

.1. ConvNet design and training 

To evaluate the impact of multi-stage image registration,

onvNets were trained for single stage and multi-stage deformable

mage registration. Initial global affine registration was not nec-

ssary, because cardiac cine MRI images only show local defor-

ations between timepoints. Additionally, experiments were per-

ormed to study effect of the bending penalty. 

Deformable registration ConvNets were designed as proposed in

ection 2 . Downsampling was performed using average pooling. To

etain information of the through-plane axis, downsampling was
pplied in the short-axis plane only. Experimental settings are fur-

her detailed in Table 1 . 

All ConvNets were trained with mini-batches consisting of ran-

om permutations of two timepoints taken from the same image.

rior to analysis, image intensities were linearly scaled from 0 to 1

ased on the minimum intensity and 99 th percentile of the maxi-

um intensity. During training fixed and moving image pairs were

orrespondingly augmented by random in-plane rotations of 90,

80, and 270 degrees and random in-plane cropping of at maxi-

um ± 16 voxels. Registration stages were trained in 10,0 0 0 iter-

tions. Each fold was trained in approximately 5 hours for single

tage registration and 8 hours for multi-stage registration. Fig. 5

hows the development of training and validation NCC between

mage pairs during training of one of the folds. Overfitting did not

ccur in the experiments, instead the training error was higher

han the validation error due to the random croppings applied on

he training set only. 

.2. Results 

Fig. 6 shows single stage image registration results of regis-

ering images at ES to ED. The obtained Jacobians show that the

ending penalty mitigates image folding of the DLIR framework.

urthermore, quantitative analysis, as shown in Fig. 7 , reveals that

he DLIR framework is not affected by image folding as much as

onventional image registration. Nevertheless, even though nearly

bsent in the DLIR framework, image folding is further reduced by

dding a bending penalty. On the other hand, multi-stage registra-

ion seems to have no effect on image folding in the DLIR frame-

ork, while having a large effect on folding outliers in conven-

ional image registration. However, the label propagation results,

hown in Fig. 8 , show that the DLIR framework also benefits from

ulti-stage image registration. It improved label overlap as indi-

ated by the increased Dice and decreased ASD. The Hausdorff dis-

ance appears to be similar across experiments. 

Fig. 9 provides additional insight into registration performance

f DLIR vs. conventional image registration. The spread shows that

here is no correlation between frameworks with respect to regis-

ration results of image pairs; some image pairs were well aligned

ith DLIR and poorly with the conventional approach, and vice

ersa. 

Table 2 provides an overview of all results. Statistical analy-

es with the Wilcoxon signed rank test indicated that the multi-

tage DLIR with bending penalty had significantly less folding and

ower standard deviation of the Jacobians ( p � 0.0 0 01) compared

o other methods. Dice and ASD were as high as conventional im-

ge registration and significantly better compared to single stage

xperiments. Interestingly, the multi-stage DLIR is approximately

50 times faster than the single stage conventional image regis-

ration experiments, and takes only 39 ms for multi-stage image

egistration, including intermediate and final image resampling. 
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Fig. 5. Learning curves showing the negative NCC during training of single stage and multi-stage ConvNets with or without bending penalty (BP) for intra-patient registration 

of cardiac cine MRI. Learning curves are taken from the one of the folds used in 3-fold cross validation. Augmentations were only applied to training data resulting in a 

relatively higher training NCC loss. 

Fig. 6. Top row: Cardiac cine MRI of a patient with left ventricular hypertrophy. Center axial slices are taken from the end-diastolic time point (Fixed) and end-systolic 

(Moving) timepoints. For visualization purposes fixed and moving images are cropped to the heart. Middle row: Registration results with superpositioned deformation grids. 

Bottom row: Colormap of the Jacobian with singularities (folding) indicated in bright red. From left to right results are shown for SimpleElastix (SE) and DLIR, with and 

without the bending penalty (BP). 



B.D. de Vos, F.F. Berendsen and M.A. Viergever et al. / Medical Image Analysis 52 (2019) 128–143 135 

Fig. 7. Boxplots showing (a) the volume of singularities and (b) the standard deviation of the Jacobian determinants to evaluate the topology of the DVFs obtained from reg- 

istration experiments between end-diastole and end-systole cardiac cine MRI. Conventional registration experiments were performed using SimpleElastix (SE) and compared 

with DLIR registration. Both SE and DLIR experiments were conducted with and without the bending penalty (BP). The necessity of using a mask for conventional registration 

is illustrated by the results in shown in the single stage experiments. For visualization purposes large outliers are indicated with an arrow with their values annotated. 

Table 2 

Table listing the results of cardiac cine MRI registration experiments. Single stage and multi-stage conventional and DLIR registration are compared 

with and without bending penalties (BP). Given that the results are not following a normal distribution, median ± interquartile ranges are provided. 

Execution times are provided as mean (standard deviation). Note that the bending penalty is only applied to the DLIR framework during training, 

thus during application it does not limit execution time. 

Dice HD ASD Fraction folding Std. dev. Jacobian CPU time (s) GPU time (s) 

Before registration 0.70 ± 0.30 15.46 ± 4.50 4.66 ± 4.26 – – – –

Single stage SE 0.86 ± 0.18 9.76 ± 4.78 1.14 ± 1.40 0.08 ± 0.16 0.15 ± 0.08 13.49(3.27) –

SE + BP 0.86 ± 0.17 9.64 ± 4.15 1.13 ± 1.38 0.07 ± 0.15 0.15 ± 0.08 14.89(3.07) –

DLIR 0.87 ± 0.18 9.47 ± 5.26 0.98 ± 1.12 0.03 ± 0.06 0.14 ± 0.04 1 . 71(0 . 45) 0.03 ± 0.01 

DLIR + BP 0.86 ± 0.18 9.10 ± 4.26 1.01 ± 1.42 0.00 ± 0.01 0.09 ± 0.03 

Multi-stage SE 0.89 ± 0.17 9.18 ± 5.42 0.88 ± 1.25 0.08 ± 0.17 0.17 ± 0.11 15.51(3.67) –

SE + BP 0.89 ± 0.16 9.01 ± 5.23 0.89 ± 1.21 0.05 ± 0.16 0.16 ± 0.11 20.06(3.68) –

DLIR 0.89 ± 0.18 9.84 ± 5.93 0.93 ± 0.97 0.05 ± 0.08 0.15 ± 0.06 2 . 35(0 . 60) 0.04(0.01) 

DLIR + BP 0.88 ± 0.14 9.01 ± 3.89 0.97 ± 1.14 0.002 ± 0.03 0.11 ± 0.04 
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. Inter-patient registration of low-dose chest CT 

Inter-patient registration was performed with chest CT scans of

ifferent subjects from the NLST. In this set large variations in the

eld of view were present, which were caused by differences in

canning protocol and by the different CT-scanners that were used.

ecause of these variations, and the variations in anatomy among

ubjects, affine registration was necessary for initial alignment.

herefore, multi-stage image registration was performed with se-

uential affine and deformable image registration stages. The test-

cans provided 90 registrations for evaluation. Manual delineation
 s  
f the aorta and 10 landmarks were used to assess registration per-

ormance. 

.1. ConvNet design and training 

Inter-patient chest-CT registration requires initial alignment of

atient scans. Thus, we implemented a multi-stage ConvNet con-

isting of an affine registration stage, followed by coarse-to-fine

eformable image registration. The full Hounsfield Unit range of CT

umbers (-10 0 0 to 3095) was used to rescale input image inten-

ities from 0 to 1. Memory limitations imposed by hardware and
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Fig. 8. Label propagation results of manual left ventricle lumen annotations of intra-patient cardiac cine MRI registration. Boxplots of (a) Dice, (b) Hausdorff distance, 

and (c) average surface distance are shown for conventional image registration with SimpleElastix (SE) and the DLIR framework. Single stage and multi-stage registration 

experiments were performed for conventional registration and DLIR with and without the bending penalty (BP). The large outlier in (b) was indicated with an arrow to 

improve visualization. 
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software limited the deformable image registration to three stages

and a final image resolution of 2 mm. In-plane slice sizes ranged

from 115 × 115 to 250 × 250 voxels and the number of slices

ranged from 109 to 210. All ConvNets were designed with 32 ker-

nels per convolution layer, but downsampling was performed with

strided convolutions with 2 × 2 × 2 downsampling and 4 × 4 × 4

kernels instead of the favorable average pooling ( de Vos et al.,

2017 ) to further limit memory consumption. The affine registra-

tion ConvNet was designed as shown in Fig. 2 , but with three

downsampling layers in the pipelines. The separate pipelines in the
ffine registration ConvNet allowed analysis of a fixed and a mov-

ng image having different dimensions. The affine ConvNet regis-

ers the moving image to the fixed image space. As a result, the

xed and moving pairs can be concatenated and used for sub-

equent deformable image registration ConvNets, which were de-

igned as specified in Fig. 3 . 

The multi-stage ConvNet was trained in mini-batches consist-

ng of randomly selected image pairs. Given that the training set

onsisted of 20 0 0 scans, almost four million possible permuta-

ions of image pairs were available for training. Not all permu-
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Fig. 9. Scatter plots showing a comparison of Dice scores obtained with the DLIR framework and conventional inter-patient cardiac cine MRI registration. The plots show a 

correlation, but the dispersion of the points indicate that the registration tasks are not equally difficult for the DLIR framework and conventional registration framework. 

Table 3 

Experimental settings of the DLIR framework for training a multi-stage ConvNet for inter- 

patient registration of chest CT. The ConvNet consists of an affine image registration (AIR) 

stage, and three deformable image registration (DIR) stages. Image resolution, grid spacing, 

and average number of grid points are given in x × y × z order. 

Stage AIR DIR-1 DIR-2 DIR-3 

Input image resolution (mm) 8 × 8 × 8 8 × 8 × 8 4 × 4 × 4 2 × 2 × 2 

Grid spacing (mm) – 64 × 64 × 64 32 × 32 × 32 16 × 16 × 16 

Avg. grid points – 5 × 5 × 5 11 × 11 × 10 21 × 21 × 20 

Mini-batch size (pairs) 16 8 4 2 

Fig. 10. Learning curves during sequential training of the four registration stages of a ConvNet for inter-patient registration of chest CT. 
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ations were seen during training, but on average each scan was

nalyzed 674 times. Additionally, random augmentations were per-

ormed by randomly cropping 32 mm in any direction. The multi-

tage ConvNet was trained in 18 hours using the settings listed in

able 3 . The loss curves shown in Fig. 10 show no signs of overfit-

ing. The third and fourth stages analyze higher resolution images

nd output finer B-spline grids. As a consequence the dissimilarity

ncreases and the finer deformations increase the bending penalty,

esulting in higher starting losses, compared to previous registra-

ion stages. 

.2. Results 

Ten images with manually segmented aortas resulted in 90

ermutations of fixed and moving image pairs that were used

or evaluation. Fig. 11 shows that the affine stage correctly aligns
wo images from the evaluation set. The coarse-to-fine deformable

tages gradually improves upon this alignment. However, final

VFs obtained in these experiment show some folding, as is vi-

ualized in the examples of Fig. 12 . 

Quantitative analysis, shown in Fig. 13 , of the deformable reg-

stration DVFs reveals that only the final registration stage is ham-

ered by folding. While in conventional image registration fold-

ng gradually increases with each deformable registration stage,

he DLIR framework shows zero to limited folding in the first two

tages and a large increase in the final stage. A similar pattern

s seen in the standard deviations of the Jacobians. The Wilcoxon

igned-rank test indicated that for each stage the results were sig-

ificantly different between conventional image registration and

he DLIR framework. 

Fig. 14 shows that Dice and ASD are similar for affine regis-

ration with conventional image registration and DLIR. The first



138 B.D. de Vos, F.F. Berendsen and M.A. Viergever et al. / Medical Image Analysis 52 (2019) 128–143 

Fig. 11. Example results of inter-patient registration of two chest CTs from the NLST test set. The moving image is shown on the left and the target fixed image is shown 

on the right. Intermediate registration results for each stage are shown in between. The rows show center slices of resp. axial, coronal, and sagittal planes, with in between 

corresponding heatmaps of the absolute difference with respect to the fixed image. This qualitatively shows increasing alignment at each registration stage. The full scale of 

Hounsfield units cannot be visualized. Window and level is set to visualize the aorta. As a consequence, complexity of the lungs is not visible in this example. 
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two deformable registration stages have slightly lower Dice and

higher ASD. In contrast, HD is lower for DLIR, mean that segmen-

tations registered with DLIR have less deviations from the refer-

ence than segmentations registered with conventional image reg-

istration. In the last stage, registration performance is similar for

DLIR and conventional registration, but DLIR has less outliers. The

Wilcoxon signed-rank test indicated that for the final registration

stage, Dice and ASD were not significantly different between con-

ventional registration and DLIR. 

Table 4 gives an overview of all registration results and exe-

cution times. It shows that registration with the DLIR framework

achieves quick registrations. Including image resampling, registra-

tion was took approximately 0.43 s per image pair on a GPU. 

Fig. 15 , shows that a correlation between conventional image

registration and DLIR registration with respect to registration qual-

ity of image pairs. However, some registrations are more diffi-
 r
ult for conventional image registration, while being correctly per-

ormed with DLIR, and vice versa. 

. Intra-patient registration of 4D chest CT 

Current registration benchmark datasets unfortunately do not

rovide sufficient scans to train a ConvNet using the DLIR frame-

ork. Nevertheless, to give further insight in the method’s perfor-

ance and especially to enable reproducing our results, we per-

ormed experiments using the publicly available DIR-Lab data. The

sed dataset consists of ten 4D chest CTs that encompass a full

reathing cycle in 10 timepoints. For each scan, 300 manually

dentified anatomical landmarks in the lungs in two timepoints–at

aximum inspiration and maximum expiration–are provided. The

andmarks serve as a reference for evaluating deformable image

egistration algorithms. 
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Fig. 12. The rows show four inter patient chest-CT registration results. The columns show fixed images, warped images with a deformation grid, moving images, and a 

colormap of the Jacobian with singularities (folding) indicated in bright red. 

Fig. 13. Boxplots showing in (a) the volume fraction of folding and in (b) the standard deviation of the Jacobian determinants of the deformable stages of inter-patient chest 

CT registration. Conventional registration experiments were performed using SimpleElastix (SE) and compared with DLIR registration both using a bending penalty (BP). 
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Fig. 14. Label propagation results of manual aorta delineations of inter-patient chest CT registration. Boxplots of (a) Dice, (b) Hausdorff distance, (c) average surface distance, 

and (d) landmark registration error are shown for conventional image registration with SimpleElastix (SE) and the DLIR framework. Left boxplots: results before image 

registration. Right boxplots: results of multi-stage image registration. 

Table 4 

Results of the inter patient chest-CT registration experiments. DLIR is compared with conventional image registration using SimpleElastix. Results 

are given for all stages as median ± interquartile range. Execution times are presented as mean (standard deviation) in seconds. 

Dice HD ASD Fraction folding (%) Std. dev. Jacobian CPU time (s) GPU time (s) 

Before registration 0.31 ± 0.21 32.62 ± 12.21 9.21 ± 4.53 – – – –

SE AIR 0.60 ± 0.19 25.81 ± 15.34 4.89 ± 2.36 – – 3.73(0.26) –

DIR-1 0.69 ± 0.11 20.30 ± 13.26 3.39 ± 1.11 0.00 ± 0.00 0.19 ± 0.11 11.67(1.07) –

DIR-2 0.75 ± 0.08 21.26 ± 11.31 2.67 ± 0.87 0.00 ± 0.08 0.27 ± 0.13 14.83(3.37) –

DIR-3 0.77 ± 0.08 20.83 ± 11.81 2.45 ± 0.89 0.04 ± 0.19 0.30 ± 0.15 20.36(8.41) –

DLIR AIR 0.58 ± 0.16 26.79 ± 13.05 5.24 ± 2.19 – – 1.02(0.29) 0.17(0.05) 

DIR-1 0.64 ± 0.11 21.68 ± 13.09 3.86 ± 1.74 0.00 ± 0.00 0.16 ± 0.09 3.85(0.99) 0.18(0.05) 

DIR-2 0.70 ± 0.10 19.95 ± 13.30 3.21 ± 1.15 0.00 ± 0.00 0.19 ± 0.10 8.18(2.03) 0.30(0.07) 

DIR-3 0.75 ± 0.08 19.34 ± 13.41 2.46 ± 0.80 0.75 ± 1.08 0.45 ± 0.21 15.41(4.38) 0.43(0.10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Experimental settings of the DLIR framework for training a multi-stage ConvNet 

for intra-patient registration of 4D chest CT from DIR-Lab data. The ConvNet 

consists of four deformable image registration (DIR) stages. 

Stage DIR-1 DIR-2 DIR-3 

Input image resolution (mm) 4 × 4 × 5 2 × 2 × 2.5 1 × 1 × 2.5 

Grid spacing (mm) 32 × 32 × 40 16 × 16 × 20 8 × 8 × 10 

Mini-batch size (pairs) 8 4 2 

D  
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i  
8.1. ConvNet design and training 

Because the number of scans is very limited, we performed a

leave-one-out cross-validation experiments, where one scan was

used for evaluation and the nine remaining scans were used for

training. The dataset size was too limited to train a ConvNet for

affine registration, thus only ConvNets for deformable image reg-

istration were trained. Image intensities were clamped between

-10 0 0 and -200 HU and scaled between 0 and 1. This allowed

the ConvNet to mainly focus on the anatomy of the lungs. Con-

vNets were trained for intra-patient registration by taking ran-

dom timepoints per patient as fixed and moving images. This re-

sulted in only 810 fixed and moving image permutations that were

available for training. Ten ConvNets of similar design as used in

inter-patient chest CT registration were trained in 15 hours each.
 m
etailed experimental settings are are provided in Table 5 . The

onvNets were trained by taking random spatially corresponding

mage patches of 128 × 128 × 64 voxels from fixed and moving im-

ge pairs to limit memory consumption. Nevertheless, during test-

ng, scans six to ten had to be cropped to the chest to further limit

emory consumption. 
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Table 6 

Mean (standard deviation) of the registration error in mm determined on DIR-Lab 4D-CT data. From 

left to right: initial landmark distances (i.e. prior to registration), results of conventional image reg- 

istration ( Berendsen et al., 2014 ), results of supervised deep learning method ( Eppenhof et al., 2018 ), 

and registration results our proposed multi-stage DLIR. Individual registration results are shown for 

all ten scans. We refer the reader to https://www.dir-lab.com/Results.html for a list providing results 

of other registration methods. 

Berendsen Eppenhof DLIR 

Scan Initial et al. (2014) et al. (2018) Stage 1 Stage 2 Stage 3 

Case 1 3.89(2.78) 1.00(0.52) 1.65(0.89) 2.34(1.76) 1.72(1.37) 1.27(1.16) 

Case 2 4.34(3.90) 1.02(0.57) 2.26(1.16) 2.28(1.52) 1.61(1.31) 1.20(1.12) 

Case 3 6.94(4.05) 1.14(0.89) 3.15(1.63) 3.89(1.77) 2.32(1.58) 1.48(1.26) 

Case 4 9.83(4.85) 1.46(0.96) 4.24(2.69) 3.78(1.95) 2.49(1.90) 2.09(1.93) 

Case 5 7.48(5.50) 1.61(1.48) 3.52(2.23) 3.51(2.28) 2.66(2.15) 1.95(2.10) 

Case 6 10.89(6.96) 1.42(1.71) 3.19(1.50) 7.58(6.46) 6.04(6.64) 5.16(7.09) 

Case 7 11.03(7.42) 1.49(1.06) 4.25(2.08) 5.05(2.36) 3.90(2.46) 3.05(3.01) 

Case 8 14.99(9.00) 1.62(1.71) 9.03(5.08) 8.57(3.55) 6.99(4.52) 6.48(5.37) 

Case 9 7.92(3.97) 1.30(0.76) 3.85(1.86) 6.12(2.79) 3.51(2.02) 2.10(1.66) 

Case 10 7.30(6.34) 1.50(1.31) 5.07(2.31) 3.76(2.36) 2.85(2.11) 2.09(2.24) 

Total 8.46(6.58) 1.36(1.01) 4.02(3.08) 5.12(4.64) 3.40(4.17) 2.64(4.32) 

Fig. 15. Scatter plot showing a comparison between Dice scores obtained with the 

DLIR framework and conventional intra-patient registration of chest CT. The plots 

show a correlation, but the dispersion of the points indicates that the registration 

tasks are not equally difficult for the DLIR framework and conventional registration 

framework. 
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.2. Results 

The results are listed in Table 6 , which also shows re-

ults of conventional image registration method based on Elastix

 Berendsen et al., 2014 ) and a supervised deep learning based

ethod ( Eppenhof et al., 2018 ). The final average registration error

as 2.64 mm with a standard deviation of 4.32. The error is highly

nfluenced by outliers, likely caused by the limited dataset size.

arge initial landmark distances were scarcely available for train-

ng, which influenced registration performance, as illustrated in

ig. 16 . By removing 10% of the landmarks with the largest initial

egistration error more than 17.7 mm—of which 1.47% is coming

rom scan 8—an adjusted registration error is obtained of 1.63 mm

ith a standard deviation of 1.67. The average registration time

as 0.63 s for multi-stage image registration, including interme-

iate and final image resampling. 

. Discussion 

We have presented a new framework for unsupervised training

f ConvNets for 3D image registration: the Deep Learning Image

egistration (DLIR) framework. The DLIR framework exploits im-
ge similarity between fixed and moving image pairs to train a

onvNet for image registration. Labeled training data, in the form

f example registrations, are not required. The DLIR framework can

rain ConvNets for hierarchical multi-resolution and multi-level im-

ge registration and it can achieve accurate registration results. 

Essentially the DLIR-framework can be viewed as an unsuper-

ised training framework for STNs. The DLIR framework shares

any elements with a conventional image registration framework,

s is shown in Fig. 1 . In both frameworks pairs of fixed and moving

mages are registered by predicting transformation parameters. In

oth frameworks transformation parameters are inputs for a trans-

ormation model that warps the moving image. In both frame-

orks image similarity between the fixed and the warped mov-

ng image is used to improve transformation parameter prediction.

owever, while a conventional image registration framework is al-

ays used during application, the DLIR framework is only used

uring training of a ConvNet for image registration. After train-

ng the ConvNet can be applied for one-shot image registration of

nseen images. The DLIR framework allows unsupervised training

f ConvNets for affine and deformable image registration. By com-

ining multiple ConvNets, each with its own registration task, a

ulti-stage ConvNet can be made that is able to perform complex

egistration tasks like inter-patient image registration. 

In this study three multi-stage ConvNets were trained within

he DLIR framework for intra-patient registration of cardiac cine

RI, for inter-patient registration of chest CT, and for intra-patient

egistration of 4D chest CT. In all registration experiments the

ethod showed registration results that are similar to conventional

mage registration but within exceptionally short execution times,

hich is especially desirable in time-critical applications. 

The DLIR framework matched registration performance of the

onventional method in intra-patient cardiac MR registration. Even

hough evaluation was performed with image pairs having max-

mum deformation between them, because evaluation pairs were

aken from ES and ED time-points; while training was performed

ith image pairs having limited deformation between them, be-

ause training pairs were randomly taken from the full cardiac

hase. Results would likely improve by training a ConvNet with

 representative data-set of larger deformations, e.g. more im-

ge pairs taken from ES and ED timepoints. However, to accom-

lish this, the number of training scans should be substantially in-

reased. Likewise conclusions can be drawn for 4D chest CT regis-

ration experiments with DIR-Lab data. Performance would likely

e improved when using a larger data-set with representative

raining data. Nevertheless, even with this very limited training set

ize, adequate registration results were obtained within 0.63 s. 

https://www.dir-lab.com/Results.html
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Fig. 16. Scatterplots with joint histograms illustrate that large initial deformations are underrepresented in the DIRLab dataset and that the ConvNet is unable to correctly 

align those with the first registration stage as shown in (a). As a consequence the ConvNet was unable to correct this in later stages as shown in (b). Nevertheless, the 

majority of landmarks were registered adequately by the ConvNet. 
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In inter-patient registration experiments the DLIR framework

had a similar performance as the conventional image registration

method in the first stages, most notably in affine registration. How-

ever the DLIR framework was slightly outperformed by the conven-

tional method at later stages. This might (partially) be caused sub-

optimal ConvNet design choices imposed by memory limitations,

e.g. the use of strided convolutions for downsampling. Nonetheless,

the DLIR framework achieves accurate registration results with lim-

ited outliers while performing registrations faster than the conven-

tional iterative method. 

Performance of the DLIR framework is highly related to the in-

terplay between the number of training image (or patch) pairs

and registration problem complexity. For deformable registration

ConvNets training is patch-based, while for affine registration Con-

vNets training is image based. Hence, deformable registration Con-

vNets allow extraction of multiple training samples from image

pairs, while for affine registration ConvNets each image pair is one

training sample. In intra-patient registration of cardiac MRI and

inter-patient registration of chest CT the balance between num-

ber of training samples and problem complexity was adequate

to match performance of conventional image registration. As ex-

pected with the DIR-Lab experiments, conventional image regis-

tration outperformed DLIR. Most likely caused by the amount of

available representative training data. The employed augmenta-

tions were insufficient, and large deformations were not corrected

by DLIR. Possibly by adding more training data results will im-

prove. 

Addition of a bending energy penalty mitigated occurrence of

folding. In conventional image registration the penalty is used dur-

ing application and as consequence it increases execution time.

In DLIR the penalty is applied only during training. While it in-

creased memory consumption and therefore in our experiments

limited the number of registration stages to three, it had no effect

on execution time. Yet, like in conventional image registration, full

elimination of folding is not guaranteed. Nevertheless, folding was

within acceptable ranges. Additional regularization during training

might enforce diffeomorphism ( Staring et al., 2007 ), with no extra

cost to execution time. 

The last stage of DLIR was subject to increased amounts of

folding. Possibly small misregistrations of preceding stages influ-
nced later stages, which ultimately introduced singularities. Fine-

uning the full multi-stage DLIR pipeline end-to-end might reduce

his. But, owing to memory limitations, imposed by hardware and

oftware, end-to-end training of the multi-stage ConvNets was im-

ossible. Instead, a hierarchical training approach was used where

eights of the ConvNets from preceding stages were fixed. Fix-

ng these weights during training drastically limited memory con-

umption, which enabled training of large multi-stage ConvNets.

urthermore, end-to-end training of a multi-stage ConvNet could

rove to be difficult: exploding gradients hampered end-to-end

raining in preliminary experiments using highly downsampled

ata. In future work stringent regularization might allow full end-

o-end training of large multi-stage ConvNets, when memory is-

ues have been dealt with. 

This work employed coarse-to-fine image registration experi-

ents such that in each registration stage maximum deformations

ere within the capture range of the B-spline. Given, that Con-

Nets were designed such that the receptive fields coincided with

he B-spline capture range, the receptive fields also captured maxi-

um deformations. In future work it would be interesting to study

ow DLIR would behave when dealing with deformations that are

utside the receptive field and how this would affect registration

f areas of uniform intensity. 

The DLIR framework is able to recast conventional intensity-

ased image registration into a learning problem. Thus, the frame-

ork can be extended with techniques from conventional image

egistration and deep learning. Features from conventional image

egistration, such as different transformation models like thin plate

plines or direct DVF estimation can be readily implemented. Addi-

ionally, different image similarity metrics could be implemented;

hile in the current paper DLIR was employed on same-modality

R and CT data, the framework readily supports multi-modality

mage registration, i.e. by replacing the similarity metric for mu-

ual information ( Pluim et al., 2003 ). In our experiments we have

sed a simple ConvNet design with a limited memory footprint

o demonstrate feasibility of the proposed DLIR framework. More

omplex ConvNet designs could be used, but complex designs are

ften at the cost of memory. Nevertheless, a large range of designs

ould be implemented in the proposed framework. In future stud-

es we will investigate impact of other conventional image registra-
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ion and deep learning techniques on image registration robustness

nd accuracy. 

0. Conclusion 

We presented the Deep Learning Image Registration framework

or unsupervised affine and deformable image registration with

onvolutional neural networks. We demonstrated that the DLIR

ramework is able train ConvNets without training examples for ac-

urate affine and deformable image registration within very short

xecution times. 
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