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a b s t r a c t 

Predicting registration error can be useful for evaluation of registration procedures, which is important 

for the adoption of registration techniques in the clinic. In addition, quantitative error prediction can be 

helpful in improving the registration quality. The task of predicting registration error is demanding due 

to the lack of a ground truth in medical images. This paper proposes a new automatic method to predict 

the registration error in a quantitative manner, and is applied to chest CT scans. A random regression 

forest is utilized to predict the registration error locally. The forest is built with features related to the 

transformation model and features related to the dissimilarity after registration. The forest is trained and 

tested using manually annotated corresponding points between pairs of chest CT scans in two experi- 

ments: SPREAD (trained and tested on SPREAD) and inter-database (including three databases SPREAD, 

DIR-Lab-4DCT and DIR-Lab-COPDgene). The results show that the mean absolute errors of regression are 

1.07 ± 1.86 and 1.76 ± 2.59 mm for the SPREAD and inter-database experiment, respectively. The overall 

accuracy of classification in three classes (correct, poor and wrong registration) is 90.7% and 75.4%, for 

SPREAD and inter-database respectively. The good performance of the proposed method enables impor- 

tant applications such as automatic quality control in large-scale image analysis. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Image registration is the task of finding the optimal spatial

transformation between two or more images. In most registra-

tion methods, no assessment of the registration quality is pro-

vided, and simply the result is returned. Evaluation of the registra-

tion is devolved to human experts, which is very time-consuming

and prone to inter-observer errors as well as human fatigue

( Murphy et al., 2011b ). Automatic quantitative error prediction of

registration would decrease quality assessment time and can pro-

vide information about the registration uncertainty. Many medical

pipelines are based on registered images and it is important to

know the uncertainty of registration before continuing to a next

phase in order to prevent accumulation of errors. For example, in

online adaptive radiotherapy daily contouring of the tumor and

organs-at-risk can be performed with the help of image registra-

tion ( Thörnqvist et al., 2010 ). In this task, quality assessment (QA)
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s mandatory to ensure patient safety. In addition, the accumula-

ion of delivered dose over several treatment fractions is also im-

acted by the quality of registration ( Murphy et al., 2012; Tilly

t al., 2013; Veiga et al., 2015 ). Registration quality therefore has

o be checked before the treatment starts. Visualizing the error of

egistration can also be directly helpful in medical applications be-

ore making a clinical decision. Smit et al. (2017) localized auto-

omic pelvic nerves by registering a pre-operative MRI scan to an

tlas model that includes nerve information. These nerves are not

isible in the MRI scans and are prone to be damaged during a sur-

ical procedure. Utilizing registration uncertainty yield better visu-

lization of the autonomic nerves. 

Refinement of registration is another important application of

utomatic error prediction. Muenzing et al. (2014) improved reg-

stration by focusing only on regions with high registration error

nd discarding pixels which are aligned correctly. Registration re-

nement can also be done with the feedback of human experts

y manually adding several corresponding landmarks ( Gunay et al.,

017 ). 

Schlachter et al. (2016) did a comprehensive study on visu-

lization of registration quality with the help of three radiation

https://doi.org/10.1016/j.media.2019.05.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2019.05.005&domain=pdf
mailto:h.sokoot_oskooyi@lumc.nl
https://doi.org/10.1016/j.media.2019.05.005
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ncologists on the DIR-Lab-COPDgene data, which has a slice thick-

ess of 2.5 mm. The [average, maximum] TRE of the landmarks

hat were rated to be of acceptable registration quality with the

onventional visualization method (checkerboard visualization and

olor blended) was [2.3, 6.9] mm, while with the best visualization

ethod (histogram intersection) [1.8, 3.3] mm was achieved. 

A few methods have been proposed to detect the misalignment

f a pair of images with the purpose to refine the registration re-

ult. Rohde et al. (2003) proposed to use the gradient of the cost

unction to detect which region in the image pair is poorly regis-

ered and potentially can be improved. Schnabel et al. (2001) sug-

ested to refine the registration by increasing the number of

egistration parameters in regions with high local entropy, or

ith high local variation in the intensity or with relatively steep

ost function. In another work, analyzing the shape of the cost

unction around each voxel was used to estimate the confi-

ence of registration ( Saygili et al., 2016 ). Park et al. (2004) used

ormalized local mutual information to find poorly aligned re-

ions in order to increase the number of registration parameters.

orsberg et al. (2011) utilized the outer product of the intensity

radient as an uncertainty measure in multi-channel diffeomor-

hic Demons registration. Although the mentioned metrics can be

sed to improve the image registration, it has not been shown how

hese metrics are correlated with the image registration error. 

Several methods exploit continuous probabilistic image registra-

ion by utilizing Bayesian inference to achieve an intrinsic transfor-

ation uncertainty measure ( Risholm et al., 2013; Simpson et al.,

015 ). However, it has been shown that there is no clear statis-

ical correlation between transformation uncertainty and registra-

ion uncertainty ( Luo et al., 2017 ). The transformation and corre-

ponding label (of a pair of images) are two random variables and

t is not possible to quantify the uncertainty of the correspond-

ng label by the summary statistics of the transformation. Another

ownside of these methods is that they can only be used for the

pecific paradigm of Bayesian registration. 

Some methods are based on the consistency of multiple reg-

strations between a group of images ( Datteri and Dawant, 2012;

ass et al., 2015 ), but these methods cannot be used in pairwise

egistrations. 

In the stochastic approaches, Kybic (2010) suggested to per-

orm multiple registrations with random sampling of pixels with

eplacement. He found a correlation between the true registra-

ion error and the variation of the 2D translational parameters.

he method was not extended to 3D and to nonrigid registration.

ub et al. (2009) calculated the local mean square intensity differ-

nce multiple times by perturbing the B-spline grid. They showed

hat the maximum change of the dissimilarity metric in a local re-

ion is correlated with the registration error in that region. The

rawback of this method is that it is not efficient in homogeneous

reas ( Hub and Karger, 2013 ). In a related work they showed that

he variance of the final deformation vector field (DVF) is related

o the registration error ( Hub and Karger, 2013 ), using the Demons

lgorithm. However, to find large misalignment a large search re-

ion is needed. 

s  

t

Fig. 1. A block diagram of th
In this paper, we turn our attention to methods capable of

earning the registration error allowing to take advantage of mul-

iple features related to registration uncertainty within a single

ramework. Muenzing et al. (2012) casted the registration assess-

ent task to a classification problem with three categories (wrong,

oor and correct registrations). In their method, they mostly utilize

ntensity-based features, except for the determinant of the Jacobian

f the transformation. Although their training samples consist of

anually selected landmarks, later they showed that assessing reg-

stration in all regions is possible by interpolation ( Muenzing et al.,

014 ). 

In our paper, instead of casting the uncertainty estimation task

o a classification problem, we formulate it as a regression prob-

em. To the best of our knowledge, in the field of continuous pre-

iction of 3D registration error, Lotfi et al. (2013) only tested their

ethod on artificially deformed images. Recently Eppenhof and

luim (2017) estimated the registration error by utilizing convo-

utional neural networks. Only preliminary results were available

or synthetic 3D data. 

We explore several features related to the uncertainty of the

egistration transformation as well as related to intensity. All

eatures are calculated in physical units, i.e. mm, which makes

he system independent of voxel size. Finally, features are com-

ined by using regression forests. The proposed method is applied

nd evaluated on chest CT scans. This work is an extension of

okooti et al. (2016) with updated methodology and substantially

xtended evaluation. 

. Methods 

.1. System overview 

A block diagram of the proposed algorithm is shown in Fig. 1 .

he system has two inputs: a fixed image I F and a moving image

 M 

. Several registration-based and intensity-based features are gen-

rated. A regression forests (RF) is then trained from all features to

stimate the registration error. 

The proposed system is trained to predict residual distances y

registration errors) obtained from a set of semi-automatically es-

ablished corresponding landmarks. During evaluation, the predic-

ion result ˆ y is compared with errors obtained from an indepen-

ent set of ground truth landmarks, using cross-validation. The

roposed system therefore estimates registration errors in phys-

cal units, i.e. mm. More information about the ground truth is

vailable in Section 3.1 . Details of the features are elaborated in

ection 2.3 . 

.2. Registration 

Registration can be formulated as an optimization problem in

hich the cost function C is minimized with respect to T : 

 

 = arg min 

T 
C 
(
T ; I F , I M 

)
, (1) 

here T denotes the transformation. The optimization is usually

olved by an iterative method embedded in a multi-resolution set-

ing. A registration can be initialized by an initial transform T ini . 
e proposed algorithm. 
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Table 1 

An overview of the proposed features. Averages and maxima are taken over boxes of 

diameter [2, 5, 10, 15, 20, 25, 30, 35, 40] mm for the features: MIND, std T , std T L , 

CVH, E ( T ) , E ( T L ) and Jac. Mutual information measures are calculated in boxes 

of [5, 10, 15, 20, 25, 30, 35, 40] mm. SID and GID are computed using Gaussian 

derivatives with standard deviations in the range [0.5, 1, 2, 4, 8, 16] mm. 

Feature N f 

MIND 18 9 average boxes + 9 maxima boxes 

MI 32 NMI, NMIS, PMI, PMIS calculated over 8 boxes 

std T 18 9 average boxes + 9 maxima boxes 

std T L 18 9 average boxes + 9 maxima boxes 

CVH 18 9 average boxes + 9 maxima boxes 

E( T ) 18 9 average boxes + 9 maxima boxes 

E( T L ) 18 9 average boxes + 9 maxima boxes 

Jac 18 9 average boxes + 9 maxima boxes 

NC 8 calculated over 8 boxes 

SID&GID 12 calculated over 6 sigma’s 

Fig. 2. Multiple registrations are performed to create registration-based features. 

Either the initial transformation is varied, or the transformation after the base reg- 

istration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Visualization of std T and CVH in a synthetically deformed image. The de- 

formed image is created by a random deformation vector field which is smoothed 

by a Gaussian kernel similar to Sokooti et al. (2017) . (For interpretation of the ref- 

erences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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2.3. Features and pooling 

The features we used in our system, consist of several

registration-based as well as intensity-based features. Some fea-

tures are intrinsically capable to be calculated over differently

sized local boxes, for others, a pool of features is created by com-

puting local averages and maxima afterwards. The features used in

this paper are listed in Table 1 . We propose the following features:

2.3.1. Registration-based features 

Variation of deformation vector field ( std T ): The final solu-

tion of an iterative optimization problem can be influenced by the

initial parameters. If in a region the cost function has multiple lo-

cal minima or is semi-flat, a slight change in the initial parameters

can lead to a different solution. In contrast, in areas where the cost

function is well-defined, variations in the initial state are expected

to have much less effect on the final solution. A flow chart of the

described feature is available in Fig. 2 (a). Given P random initial

transformations T ini 
i , i ∈ { 1 , . . . , P } , that are used as initializations

of the registration algorithm from Eq. (1) , the variation in the final

transformation results ̂  T i is a surrogate for the precision of the reg-

istration. We propose to use the standard deviation std T of those

final transformations as a feature: 

T = 

1 

∑ ̂ T i , (2)

P p  
td T = 

√ 

1 

P − 1 

∑ ‖ ̂

 T i − T ‖ 

2 
. (3)

n this work, the initial transformations T ini 
i are created by uni-

ormly distributed offsets in the range [ −2 , 2] mm to all B-spline

oefficients. The offset range is chosen to be relatively small in

omparison to the B-spline grid spacing in order to avoid unreal-

stic deformation. An example of std T in a synthetically deformed

mage is given in Fig. 3 (a). 

Instead of perturbing the initial state of the registration, it is

lso possible to first perform the registration without any manip-

lated initial state, resulting in a transformation T b ( Klein et al.,

009 ). Then, random offsets T offset 
i are added to T b after which an-

ther registration is performed, resulting in 

̂ 

T L i . This is close to the

ork of Hub and Karger (2013) , and approximately measures the

oncavity of the cost function. The feature std T L is then derived

kin to Eq. (3) : 

 

L = 

1 

P 

∑ ̂ 

T L i , (4)

td T L = 

√ 

1 

P − 1 

∑ ‖ ̂

 

T L i − T L ‖ 

2 

. (5)

t is expected that std T L is small in regions where the cost func-

ion is concave, as by adding small offsets T offset 
i to the parameters,

t can still move back to the previous optimal point. A flow chart

f std T L is shown in Fig. 2 (b). std T L is calculated using the same

etting as std T , except that only one resolution is used. 

If the difference between T and T b is relatively large, regions

ndicating a small std T are still potentially regions of low registra-

ion quality. We then consider the bias E( T ) and E( T L ) as comple-

entary features to std T and std T L computed by: 

E( T ) = ‖ T b − T ‖ , 

( T L ) = ‖ T b − T L ‖ . (6)

Coefficient of variation of joint histograms (CVH) : Multiple

egistration results can be used to extract additional information

rom the matched intensity patterns of the images. Given a fixed

mage I F and a registration sub-result I M 

( T i ), we calculate their

oint histogram H i , ∀ i . For identical sub-registrations, all resulting

oint histograms are equal. Variation in the joint histograms im-

lies registration uncertainty as a surrogate for registration error.
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Fig. 4. MIND search region. (a) The green cell indicates the center and darker blue 

cells indicate more accumulated cells in the projection view. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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he coefficient of variation of the joint histograms is calculated by

ividing the standard deviation of all joint histograms over the av-

rage, H , of them. This normalization is done to compensate for

arge differences between the elements of H . We obtain the CVH

n histogram space as follows: 

VH 

B ×B = 

std H 

H + ε
, (7) 

here B is the number of histogram bins, and ε a constant to avoid

ivision by zero. In the experiments we set ε to 5. The CVH 

B × B in

istogram space is subsequently transferred to the spatial domain,

y assigning voxels x with a particular intensity combination ( I F ( x ),

 M 

( T b ( x ))) the corresponding value from CVH 

B × B , resulting in the

nal CVH feature with size equal to the fixed image. Note that the

VH can be used in a multi-modality setting, like the previous fea-

ures. An example of the CVH on a synthetically deformed image

s given in Fig. 3 (b). 

Determinant of the Jacobian (Jac) : Jac measures the relative

ocal volume change. This can point to poor registration quality in

ase of very large (Jac � 1) or very small (Jac � 1) values, or dis-

ontinuous transformations in case of a negative value (Jac < 0). In

he experiments, the determinant of the Jacobian of T b is used. 

.3.2. Intensity-based features 

MIND : The Modality Independent Neighborhood Descriptor

MIND) was introduced by Heinrich et al. (2012) in order to regis-

er multi-modal images. In this local self-similarity metric, a patch

s considered to compare intensities between fixed and moving im-

ges. Finally, the sum of absolute differences between the MIND

ector of I F and that of I M 

( T b ) is computed. We calculate MIND

ith a sparse patch including 82 voxels inside a [7 × 7 × 3] box,

hich is approximately physically isotropic for the data used in the

xperiments (see Fig. 4 ). 

Local normalized mutual information : Mutual information is

sed as an entropy-based similarity measure of two images. Sim-

lar to Muenzing et al. (2012) we use the following definitions for

ocal normalized mutual information: 

MI = 

H(I F ) + H(I M 

( T b )) 

H 

(
I F , (I M 

( T b ) 
) , 

PMI = 

MI 

(
I F , I M 

( T b ) 
)

min 

{ 

H (I F ) , H (I M 

( T b )) 
} . (8) 

oth metrics are calculated over 8 differently sized boxes: [5, 10,

5, 20, 25, 30, 35, 40] mm. Two strategies for the selection of the

umber of bins are used, one uses a constant value B , the other
C 
trategy depends on the number of samples | B | = log 2 (n ) + 1 , in

hich n is the number of samples in each box. The notations NMIS

nd PMIS indicate mutual information calculated with the latter

trategy. 

Modality-dependent features: In addition to the modality-

ndependent features from above, we consider the use of several

odality-dependent features. In the experiments we assess their

ontributed value. Similar to Muenzing et al. (2012) the squared

ntensity difference (SID) and the gradient of intensity difference

GID) are computed using Gaussian (derivative) operators with

tandard deviations of [0.5, 1, 2, 4, 8, 16] mm. Normalized correla-

ion (NC) is calculated within boxes of size [5, 10, 15, 20, 25, 30,

5, 40] mm akin to Muenzing et al. (2012) . 

.3.3. Pooling 

In order to reduce discontinuities and improve interaction with

ther features, the total set of features is increased by generat-

ng a pool from those mother features by calculating averages and

axima over them using differently sized boxes. The features MI,

ID, GID and NC are inherently computed over differently sized lo-

al regions. The features MIND, std T , std T L , CVH, E( T ) , E( T L ) and

ac are calculated in a voxel-based fashion, and then pooled after-

ards. Average and maximum pooling is performed with box sizes

f [2, 5, 10, 15, 20, 25, 30, 35, 40] mm. As a result, for each feature

e obtain a pool of 18 features: 9 from box averages and 9 from

ox maxima. The average-pooling is done efficiently by the help

f integral images introduced by Viola and Jones (2004) . A list of

he proposed mother features together with the number of derived

eatures N f are given in Table 1 . 

.4. Regression forests 

Random forests were introduced by Breiman (2001) by extend-

ng the idea of bagging. The forests consist of several weak learn-

rs (trees) which are combined in an efficient fashion. Each tree

s started from a node and continues splitting until reaching cer-

ain criteria. In contrast to bagging, splitting is performed with a

andom subset of features which makes the training phase faster

nd reduces correlation between trees, consequently decreasing

he forest error rate. The reason that we chose the random for-

st is that it can handle data without preprocessing. For instance

escaling of data, outlier removal and selection of features are not

ecessary in random forests. In addition, random forest are effi-

ient to train and fast at runtime. 

Random forests have the capability to calculate the importance

f each feature with a little additional computation, which shows

he contribution of each feature to the forest. Training of each tree

s based on a bootstrap of all samples, and the so-called out-of-

ootstrap samples � are used to compute the importance of a fea-

ure x i . Importance is then defined as the difference between the

ean square error (MSE) before and after a permutation of this

eature: 

mp (x i ) = 

1 

N t 

N t ∑ 

t=1 

(
MSE 

j∈ �

(
ˆ y πi j , y j 

)
− MSE 

j∈ �

(
ˆ y j , y j 

))
, (9)

here y j is the real value, ˆ y j the predicted value from the regres-

ion, ˆ y πi j 
the predicted value when permuting feature i , and N t the

umber of trees. 

In this work, random forests are trained with different com-

inations of the proposed features (see Table 1 ). The dependent

ariable y is the registration error in mm, which is described in

ection 3.1 . 
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Fig. 5. Example data from the SPREAD dataset. The left column (a,c) shows the 

fixed image with the ground truth registration error overlaid in color. The square 

boxes around each landmark are given the same error as the error at the landmark. 

The right column (b,d) shows the moving image after registration with the regis- 

tration error predicted by the proposed method overlaid in color. (c) and (d) are 

zoomed in versions of (a) and (b). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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3. Experiments and results 

3.1. Materials and ground truth 

The SPREAD ( Stolk et al., 2007 ) DIR-Lab-4DCT ( Castillo et al.,

2009 ) and DIR-Lab-COPDgene ( Castillo et al., 2013 ) databases have

been used in this study. In the SPREAD study, there are 21 pairs of

3D follow-up lung CT images. Each patient in this database has a

baseline and a follow-up image (which is taken after 30 months)

both in inhale phase. The age of the patients ranges from 49 to

78 years old. The average size of the images is 446 × 315 × 129

with an average voxel size of 0.78 × 0.78 × 2.50 mm. In each pair of

images, about 100 well-distributed corresponding landmarks were

previously selected ( Staring et al., 2014 ) semi-automatically on dis-

tinctive locations ( Murphy et al., 2011a ). 

From the DIR-Lab-4DCT data, five cases (4DCT1 to 4DCT5) are

selected with each five phases between maximum inhalation and

exhalation. The average image size is 256 × 256 × 103 with an av-

erage voxel size of 1.10 × 1.10 × 2.50 mm. Each scan has 75 cor-

responding landmarks annotated. Ten cases with severe breath-

ing disorders are available via the DIR-Lab-COPDgene database. The

images are taken in inhale and exhale phases. In total, 300 land-

marks are annotated. The average image size and the average voxel

size are 512 × 512 × 120 and 0.64 × 0.64 × 2.50 mm, respectively. 

Accuracy of the registration can be defined as the residual Eu-

clidean distance after registration between the corresponding land-

marks: 

y = ‖ T b ( x F ) − x M 

‖ 2 , (10)

with x F and x M 

the corresponding landmark locations. Based on

the idea that the registration error is smooth, we include voxels

from a small local neighborhood around the landmarks to increase

the total set of available landmarks. In this small neighborhood

we assume that the registration error is equal to the error at the

center of the neighborhood. This assumption seems reasonable for

smooth transformations and within a small region. The neighbor-

hood size is chosen as 10 × 10 × 7.5 mm, which is approximately

equivalent to the final grid spacing of the B-spline registration (see

Fig. 5 (a)). 

The core software is written in Python. The feature pooling is

performed with a C ++ program ( Glocker et al., 2014 ) and the re-

gression forest is calculated with the help of the Scikit-learn pack-

age ( Pedregosa et al., 2011 ). All registrations are performed by

elastix ( Klein et al., 2010 ). Detailed registration setting can be

found in the elastix parameter file database ( elastix.isi.uu.nl ,

entry par0049). The code is publicly available via github.com/

hsokooti/regun . 

3.2. Evaluation measures 

In the SPREAD database, we employ 10 cross-validations by ran-

domly splitting the data in 15 image pairs for training and the re-

maining 6 pairs for testing. To evaluate the regression performance,

the mean absolute error (MAE) of the real registration error y i and

the estimated one ˆ y i is calculated over the neighborhood of the

landmarks by: 

MAE = 

1 

N 

N ∑ 

i =1 

| ̂  y i − y i | . (11)

To further detail the regression performance, the MAE is subdi-

vided into three categories: MAE c , MAE p and MAE w 

with y in [0,3),

[3,6) and [6, ∞ ) mm, corresponding to correct, poor and wrong

registration, similar to Muenzing et al. (2012) . We then do the

same for ˆ y i , and report the accuracy and F1 score for classifying

the registration error in these three categories. 
.3. Parameter selection 

The RF is trained using 100 trees with a maximum tree depth

f 9, while at least 5 samples remain in the leaf nodes. At each

plitting node, m features are randomly selected. We set m to the

quare root of the total number of features in that experiment,

hich performed slightly better than m = (number of features) / 3

 Liaw et al., 2002 ). The total number of registrations P is chosen as

0 to ensure that the estimation of std T does not change consid-

rably when increasing the number of registrations ( Sokooti et al.,

016 ). 

.4. Reference registration error set 

For the SPREAD and the DIR-Lab-4DCT study, registrations are

ased on free-form deformations by B-splines ( Rueckert et al.,

999 ). The cost function is mutual information, which is optimized

y adaptive stochastic gradient descent. We used three resolutions

ith a final B-spline grid spacing of [10,10,10] mm. We collect sam-

les by performing four different registrations using 20, 100, 500

nd 20 0 0 iterations, respectively. All other registration settings re-

ain the same in these registrations. By varying the number of

terations we increase the variation in the samples, as well as the

raining size. Table 2 gives the distribution of reference registra-

ion errors in each database. As expected, increasing the number

f iterations shifts the distribution towards the “correct” registra-

ion category. The maximum registration error is 81.8 mm in the

PREAD database, 17.6 mm in the DIR-Lab-4DCT database. 

Since the a priori distribution of registration errors is imbal-

nced, with much more samples in the “correct” category, we

erform the following balancing step during training. For land-

arks that fall in the category “correct”, we only add samples

rom a smaller neighborhood of 5 × 5 × 2.5 mm instead of the

0 × 10 × 7.5 mm neighborhoods used for landmarks in the cate-

http://elastix.bigr.nl/wiki/index.php/Parameter_file_database
https://github.com/hsokooti/regun
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Table 2 

Distribution of the reference registration errors in each database, used during testing. 

Database-iters correct poor wrong total 

SPREAD 20 848789 (84.1%) 102837 (10.2%) 58059 (5.8%) 1009685 

SPREAD 100 904796 (89.6%) 66467 (6.6%) 38422 (3.8%) 1009685 

SPREAD 500 925840 (91.7%) 51910 (5.1%) 31935 (3.2%) 1009685 

SPREAD 20 0 0 935676 (92.7%) 46170 (4.6%) 27839 (2.8%) 1009685 

SPREAD together 3615101 (89.5%) 267384 (6.6%) 156255 (3.9%) 4038740 

DIR-Lab-4DCT 20 521481 (84.5%) 71282 (11.5%) 24543 (4.0%) 617306 

DIR-Lab-4DCT 100 540989 (87.6%) 61131 (9.9%) 15186 (2.5%) 617306 

DIR-Lab-4DCT 500 553757 (89.7%) 53067 (8.6%) 10482 (1.7%) 617306 

DIR-Lab-4DCT 20 0 0 561909 (91.0%) 46679 (7.6%) 8718 (1.4%) 617306 

DIR-Lab-4DCT together 2178136 (88.2%) 232159 (9.4%) 58929 (2.4%) 2469224 

DIR-Lab-COPD ANTsBSplineSyN 2643 (88.1%) 184 (6.1%) 173 (5.8%) 30 0 0 

DIR-Lab-COPD elastix-advanced 2420 (80.7%) 259 (8.6%) 321 (10.7%) 30 0 0 

Table 3 

Distribution of the reference registration errors, used during training. 

Database correct poor wrong total 

SPREAD together 589854 (58.0%) 270523 (26.6%) 156881 (15.4%) 1017258 

DIR-Lab-4DCT together 328055 (53.0%) 232499 (37.5%) 58929 (9.5%) 619483 

Table 4 

Regression results for single features on the SPREAD database. The columns indicate the number of features ( N f ), 

the mean absolute error (MAE), the accuracy (Acc) and the F1 score. The sub-indices c, p and w correspond to 

correct [0,3), poor [3,6) and wrong [6, ∞ ) mm classes, respectively. 

N f MAE MAE c MAE p MAE w Acc F1 c F1 p F1 w 

MIND 18 1.10 ± 1.97 0.76 ± 0.72 1.59 ± 1.39 6.50 ± 5.88 89.8 94.9 34.1 83.0 

MI 32 1.20 ± 1.88 0.89 ± 0.71 1.53 ± 1.14 6.30 ± 5.58 87.9 93.9 30.1 79.9 

std T 18 1.59 ± 2.79 1.15 ± 1.78 2.98 ± 4.06 7.60 ± 6.12 85.5 92.7 22.4 64.4 

std T L 18 1.51 ± 2.40 1.11 ± 1.34 2.49 ± 3.05 7.32 ± 5.79 86.7 93.4 18.3 70.7 

CVH 18 1.93 ± 3.29 1.49 ± 2.22 1.82 ± 2.00 9.80 ± 7.19 75.2 87.2 16.9 37.0 

E( T ) 18 2.00 ± 2.80 1.61 ± 1.76 2.18 ± 3.12 8.52 ± 6.48 69.8 82.8 17.0 43.5 

E( T L ) 18 1.68 ± 2.85 1.19 ± 1.71 3.19 ± 3.28 8.34 ± 6.74 84.4 92.6 11.7 54.8 

Jac 18 2.15 ± 3.15 1.72 ± 1.90 1.91 ± 2.27 10.03 ± 6.97 68.2 83.7 13.0 31.4 

NC 8 1.38 ± 2.89 0.90 ± 0.71 1.70 ± 1.68 9.41 ± 9.15 88.2 94.3 28.5 77.0 

SID&GID 12 1.30 ± 2.12 0.94 ± 0.90 1.82 ± 1.63 6.95 ± 6.02 89.9 95.1 24.9 74.3 
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ories “poor” and “wrong”. The distribution of reference registra-

ion errors of the training samples is shown in Table 3 . 

For the DIR-Lab-COPDgene study, more advanced settings of the

egistration are used. In this experiment, samples are taken only on

he landmark locations. More details are given in Section 3.5.8 . The

aximum registration error in this data is 31.5 mm. 

.5. Experiments 

.5.1. Single feature performance in SPREAD 

The proposed features are described in Section 2.3 and summa-

ized in Table 1 . To investigate the strength of the individual fea-

ures, we trained the random forest with only a single feature with

ooling. By comparing the MAE results in Table 4 , it can be seen

hat MIND, std T L and SID & GID are the best single features in the

ategories Intensity, Registration and Modality-dependent, respec-

ively. 

.5.2. Combined features performance 

Instead of using only a single feature, several combinations of

eatures are used to build the RFs: 

• Intensity: Combination of all modality-independent intensity

features: MIND and MI (50 features). 
• Registration: Combination of all registration features: std T ,

std T L , CVH, E( T ) , E( T L ) and Jac (108 features). 
• Combined: Combination of both intensity and registration fea-
tures (158 features). s  
All results are available in Table 5 . By combining features from

oth the registration and modality-independent intensity category,

mprovements were obtained in all evaluation measures. 

The result of the regression with combined features is detailed

n Fig. 6 (a), which shows the real error (solid blue line) against the

redicted error, sorted from small to large. In Fig. 6 (b) we grouped

he real errors in the three categories, each category showing a

ox-plot of the predicted errors. Intuitively, a smaller overlap be-

ween the boxes represents a better regression. 

.5.3. Including modality-dependent features 

We consider adding the combination of three modality-

ependent features to the combined feature set (Combined+MD):

C, SID and GID. In both databases, if we add the modality-

ependent features (see Table 5 ), negligible differences are ob-

erved. Therefore, to keep the feature set small and modality-

ndependent, we select the “combined features” class without the

odality-dependent features as the final system in the remainder

f this paper. 

.5.4. The effect of pooling 

To examine the effect of pooling, we perform an experiment

ithout pooling on the combined feature set. We only calcu-

ate PMIS within a box size of 15 mm in this experiment. From

able 5 the benefit of pooling can be observed. 

.5.5. Alternative regression methods 

In this section, we compare RF regression with linear regres-

ion (LR) and neural networks (NN). Feature normalization is done
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Table 5 

Regression results for groups of features on the SPREAD database. The columns indicate the number of features ( N f ), the 

mean absolute error (MAE), the accuracy (Acc) and the F1 score. The sub-indices c, p and w correspond to correct [0,3), poor 

[3,6) and wrong [6, ∞ ) mm classes, respectively. MD, NN and LR stands for modality dependent, neural networks and linear 

regression, respectively. 

N f MAE MAE c MAE p MAE w Acc F1 c F1 p F1 w 

Intensity 50 1.09 ± 1.88 0.77 ± 0.68 1.49 ± 1.26 6.20 ± 5.68 90.3 95.1 35.7 83.6 

Registration 108 1.32 ± 2.35 0.90 ± 1.04 2.10 ± 2.71 7.76 ± 6.01 90.0 95.1 31.5 78.4 

Combined 158 1.07 ± 1.86 0.76 ± 0.65 1.47 ± 1.22 6.12 ± 5.64 90.7 95.4 38.1 84.4 

Combined-no pooling 8 1.24 ± 2.22 0.85 ± 0.73 1.72 ± 1.64 7.39 ± 6.62 89.4 94.8 32.6 79.1 

Combined + MD 178 1.07 ± 1.83 0.76 ± 0.65 1.46 ± 1.20 5.95 ± 5.59 90.7 95.4 38.3 84.5 

Combined (LR) 158 1.86 ± 2.03 1.58 ± 1.34 2.47 ± 2.21 6.12 ± 4.97 77.3 87.3 17.0 67.6 

Combined (NN) 158 1.13 ± 2.07 0.74 ± 0.70 1.81 ± 1.67 7.08 ± 5.88 89.8 95.0 31.2 79.6 

Fig. 6. Real ( y ) vs predicted registration error ( ̂ y ) for Combined features in the SPREAD database. (a) The real error (solid blue line y ) against the predicted error ( ̂ y ), sorted 

from small to large. In (b) we grouped the real errors in the three categories, each category showing a box-plot of the predicted errors. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Feature importance of the SPREAD combined experiment. White areas correspond to box averages, while shaded areas correspond to box maxima. 
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for both regressors. We utilized neural networks with three hidden

layers of 1024, 512 and 256 units each. ReLU is used as an activa-

tion function and Huber is utilized as a loss function. Table 5 gives

the results of these experiments. The performance of neural net-

works is on par with random forests. However, the results of lin-

ear regression are not comparable to that of random forests, both

in MAE and accuracy. 

3.5.6. Feature importance 

The feature importance, see Eq. (9) , is displayed in Fig. 7 . It

shows that MIND and MI are the features contributing most to the

RF performance, followed by std T , std T L and CVH. 

The feature importance using a different number of iterations is

shown in Fig. 8 . The contribution of all intensity features stay the

same in all experiments, while some of the registration features

contribute differently with respect to the number of iterations. For

instance, the importance of std T and CVH increase with increas-

ing the number of iterations. The features std T L and E( T L ) play

important roles when the number of iterations is not enough for

registration convergence. 
.5.7. Excluding a single feature 

To further investigate the importance of the several features,

e additionally perform an experiment where we leave one fea-

ure out of the combined feature set. The results are reported in

able 6 . In these experiments, feature redundancy can be found.

or instance, MI has a large importance values in random forests,

ut if we leave that feature out, other features can compensate for

hat. 

.5.8. Inter-database validation 

To study the generalizability of the proposed system, instead

f cross-validation on a single database, we perform training on

he DIR-Lab-4DCT database and test it on the SPREAD database.

s mentioned before, the SPREAD database consists of only inhale

mages but the DIR-Lab-4DCT database has images from inhale

o exhale phases. Therefore, this makes the DIR-Lab-4DCT more

uitable for training. The result of this experiment is available in

able 7 . Once more, we can draw the conclusion that by combining

oth intensity and registration-based features, the regression per-

ormance can be improved. In contrast to the SPREAD experiment,
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Fig. 8. Feature importance of the SPREAD combined experiment with different iterations. The contribution of all intensity features stay the same in all experiments, while 

some of the registration features contribute differently with respect to the number of iterations. White areas correspond to box averages, while shaded areas correspond to 

box maxima. 
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his time it is observed that the registration features perform bet-

er than the intensity features. 

To further evaluate the generalizability of the proposed method,

e test it for different registration methods on a third indepen-

ent test set, the DIR-Lab-COPDgene dataset. The regression forest

s trained on a combination of the SPREAD and DIR-Lab-4DCT data.

e evaluate two registration algorithms that achieved excellent

erformance in the EMPIRE10 challenge ( Murphy et al., 2011b ), i.e.

he ANTs registration package ( Avants et al., 2009; Tustison et al.,

013 ) and elastix with advanced settings ( Staring et al., 2010 ). 
Prior to deformable registration we perform an affine registra-

ion using 5 resolutions and utilizing torso masks. For the de-

ormable registration we use settings similar to the ones used in

he EMPIRE10 challenge, specifically: 

ANTs-BSplineSyN: With respect to the EMPIRE10 challenge we

ncreased the number of iterations to 10 0 0 for each of the 4 reso-

utions, using a 10% sampling rate. This improved the performance

n our data and considerably reduced the calculation time. As sug-

ested in Tustison et al. (2013) , several preprocessing steps are

sed, including masking out the lungs, and inverting the image in-



118 H. Sokooti, G. Saygili and B. Glocker et al. / Medical Image Analysis 56 (2019) 110–121 

Table 6 

Leave one feature out results of SPREAD data. The columns indicate the number of features ( N f ), the mean absolute error (MAE), the accu- 

racy (Acc) and the F1 score. The sub-indices c, p and w correspond to correct [0,3), poor [3,6) and wrong [6, ∞ ) mm classes, respectively. 

N f MAE MAE c MAE p MAE w Acc F1 c F1 p F1 w 

Combined 158 1.07 ± 1.86 0.76 ± 0.65 1.47 ± 1.22 6.12 ± 5.64 90.7 95.4 38.1 84.4 

−MIND 140 1.18 ± 1.96 0.83 ± 0.66 1.56 ± 1.50 6.70 ± 5.69 90.2 95.1 36.2 83.0 

−MI 126 1.10 ± 1.98 0.75 ± 0.67 1.54 ± 1.30 6.66 ± 5.84 90.6 95.3 37.0 84.2 

−std T 140 1.08 ± 1.86 0.76 ± 0.65 1.46 ± 1.18 6.14 ± 5.65 90.7 95.3 38.1 84.3 

−std T L 140 1.08 ± 1.89 0.76 ± 0.65 1.46 ± 1.22 6.21 ± 5.73 90.6 95.3 38.3 83.7 

−CVH 140 1.07 ± 1.81 0.75 ± 0.65 1.46 ± 1.21 6.06 ± 5.98 90.7 95.4 38.4 84.3 

−E( T ) 140 1.07 ± 1.86 0.76 ± 0.65 1.46 ± 1.21 6.13 ± 5.64 90.7 95.4 38.2 84.5 

−E( T L ) 140 1.08 ± 1.85 0.76 ± 0.65 1.47 ± 1.22 6.12 ± 5.61 90.6 95.3 37.5 84.3 

−Jac 140 1.08 ± 1.87 0.76 ± 0.65 1.49 ± 1.31 6.06 ± 5.72 90.7 95.4 37.9 84.8 

Table 7 

Regression results for the SPREAD data trained on the DIR-Lab-4DCT data with elastix using 20, 100, 500 and 2000 iterations. The 

columns indicate the number of features ( N f ), the mean absolute error (MAE), the accuracy (Acc) and the F1 score. The sub-indices c, p and 

w correspond to correct [0,3), poor [3,6) and wrong [6, ∞ ) mm classes, respectively. 

N f MAE MAE c MAE p MAE w Acc F1 c F1 p F1 w 

Intensity 50 1.90 ± 3.63 1.56 ± 1.49 1.26 ± 1.01 10.83 ± 14.32 71.0 82.8 21.7 48.0 

Registration 108 1.62 ± 3.59 1.23 ± 0.88 1.13 ± 0.81 11.53 ± 14.60 77.1 87.4 27.7 53.9 

Combined 158 1.73 ± 3.56 1.36 ± 0.97 1.14 ± 0.83 11.30 ± 14.49 77.2 87.2 26.0 59.9 

Table 8 

Regression results for the DIR-Lab-COPDgene data with elastix-advanced and ANTs-BSplineSyN registrations trained on the SPREAD 

and DIR-Lab-4DCT data. The columns indicate the number of features ( N f ), the mean absolute error (MAE), the accuracy (Acc) and the F1 

score. The sub-indices c, p and w correspond to correct [0,3), poor [3,6) and wrong [6, ∞ ) mm classes, respectively. 

N f MAE MAE c MAE p MAE w Acc F1 c F1 p F1 w 

elastix-advanced 
Intensity 50 2.17 ± 2.34 1.69 ± 1.35 2.81 ± 2.66 5.15 ± 4.44 64.2 77.9 20.8 64.6 

Registration 108 1.84 ± 2.50 1.31 ± 1.66 2.22 ± 2.12 5.36 ± 4.29 76.0 87.6 29.9 57.6 

Combined 158 1.86 ± 2.05 1.50 ± 1.16 1.92 ± 1.80 4.48 ± 4.21 75.3 86.9 29.5 66.1 

ANTs-BSplineSyN 

Intensity 50 2.03 ± 2.01 1.80 ± 1.25 2.20 ± 2.27 5.30 ± 5.38 57.3 71.6 14.2 62.7 

Registration 108 1.71 ± 2.39 1.43 ± 1.98 2.56 ± 2.01 5.06 ± 4.67 72.8 85.5 17.3 38.5 

Combined 158 1.73 ± 1.80 1.52 ± 1.23 2.22 ± 2.27 4.45 ± 4.40 76.5 87.3 20.4 59.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Scatter plot of real and predicted registration errors in the DIR-Lab- 

COPDgene database using elastix-advanced and ANTs-BSplineSyN registration. 

In total, 30 0 0 landmarks are shown for each registration. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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i  

c

tensities and rescaling them between 0 and 1. Further settings in-

clude: registration model: symmetric diffeomorphic; dissimilarity

metric: local cross correlation; number of resolutions: 4; maximum

number of iterations: 10 0 0; sampling: 10% random samples; con-

vergence threshold: 1e-6. The average TRE on DIR-Lab-COPDgene

is 1.90 ± 2.86 mm. 

elastix-advanced : Settings are adopted from Staring

et al. (2010) . The most important ones are: registration model: B-

spline; dissimilarity metric: normalized correlation; number of res-

olutions: 6; number of iterations: 10 0 0; sampling: 20 0 0 random

samples; B-spline grid spacing: [5, 5, 5] mm. The average TRE with

this setting is 3.39 ± 4.30 mm on the DIR-Lab-COPDgene dataset. 

Detailed parameter files for both registration methods are avail-

able via elastix.isi.uu.nl (entry par0049) and github.com/hsokooti/

regun . The calculation time of ANTs was about 60 hours per regis-

tration, comparing to 12 minutes for elastix . 
In this experiment, the evaluation is performed only on the

landmarks locations, where Table 2 displays the distribution of

reference registration errors during testing. The results of the

experiments are given in Table 8 . A scatter plot is also de-

picted in Fig. 9 . Similar to the previous inter-database experi-

ment ( Table 7 ), the MAE and accuracy of the registration features

are slightly better than the MAE and accuracy of the intensity-

based features. However, intensity features obtained better classi-

fication score in the wrong category. We conclude that the pro-

posed method indeed generalizes to different settings of the same

method ( elastix-advanced ), as well as registration methods

with quite a different underlying transformation model (ANTs-

BSplineSyN, which uses a symmetric diffeomorphic model). 
. Discussion 

A system for quantitative error prediction of medical image reg-

stration is proposed and it is quantitatively evaluated on multiple

hest CT datasets. 

http://elastix.bigr.nl/wiki/index.php/Parameter_file_database
https://github.com/hsokooti/regun
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.1. Features 

In the intra-database (SPREAD) validation, it is observed that

he single MIND feature can perform almost as good as the over-

ll combined system. By adding MI and registration features, the

esults slightly improved. Muenzing et al. (2012) did not consider

IND in their feature set and found that the most important single

eatures in their classification experiments are mutual information

nd Gaussian intensity, whereas, based on Table 4 these features

re less important than MIND in our experiments. Furthermore,

he calculation time of MI for the whole image is about 3 h, as

pposed to the calculation time of MIND, which is about 8 min

 ∼ 3 min MIND + ∼ 5 min pooling). Although less accurate, it is

ossible to reduce the calculation time of the MI feature by cal-

ulating it over a single window and then aggregate by pooling. 

The modality-dependent intensity features do not increase re-

ression accuracy on the data used in our paper. Consequently

ore generally applicable modality-independent features can be

sed, even for mono-modal problems. 

Tables 5 , 7 , 8 together suggests that features in the intensity

nd registration categories provide complementary information,

nd that a better system can be obtained in terms of MAE and ac-

uracy by considering both intensity and registration-derived fea-

ures. 

The intensity features were better predictors than the regis-

ration features in the intra-database experiment. However, in the

nter-database experiment, the registration features outperform in-

ensity features in terms of total accuracy and MAE. The same

bservation can be made for the average F1 score in the inter-

atabase experiments using elastix (see Table 7 , 8 ). For ANTs

 Table 8 ), the average F1 score of the intensity-based features was

lightly higher than that of the registration-based features. 

The registration features contribute differently with respect to

he number of iterations (See Fig. 8 ). The features std T L and

( T L ) play important roles when the number of iterations is

ot enough for convergence. When the number of iterations in-

reases, the contribution of std T and CVH go up. In the work

f Muenzing et al. (2012) , only one registration feature, Jac, was

sed and they reported that the impact of this feature is relatively

ow in comparison with intensity-based features. We observed the

ame result for Jac, but it should be pointed out that the range of

ac in our database was [0.3, 3.9] so voxels with negative or very

arge values were not encountered. 

Feature pooling improves the regression results in all evaluation

easures, due to the addition of contextual information. In some

eatures like std T , average pooling contributed more to the regres-

ion performance, while in features like CVH, maximum pooling

ad a higher importance value (See Fig. 8 (d)). 

As can be seen in Table 6 , the proposed combined system has

edundant features. Hence, by removing a single feature, the sys-

em is still able to predict the registration error with almost equal

AE as the total system. However, removing these features may

ecrease the generalizability of the system. For example, looking

t the feature E( T L ) in Fig. 7 we see that its contribution is rela-

ively small overall. However, in Fig. 8 it can be seen that while it

s less important for better registration results (10 0, 50 0 and 20 0 0

terations), it is still important for poor registration results (20 it-

rations). 

Considering the results in both intra and inter-database experi-

ents ( Tables 5, 7, 8 ), the conclusion to be drawn is that the pro-

osed combined feature sets is general and robust. 

.2. Quantitative validation 

Commonly, in image registration tasks, the distribution of reg-

stration errors is not balanced as can be seen in Table 3 . 
In the SPREAD experiment, Table 5 reports that in the com-

ined experiment, the MAE of the correct and poor classes are

.76 ± 0.65 and 1.47 ± 1.22, respectively. On the contrary, the MAE

f the wrong class is 6.12 ± 5.64. It is expected that the regression

rror of values of the wrong class is relatively larger than that of

he other classes. However, it should be emphasized that only 3.9%

f samples are available to make a regression model between 6

nd 81.8 mm. We tried to add more samples and make the dis-

ribution more balanced by performing registrations with different

umber of iterations, but there is still room for improvement for

he wrong class by adding more samples and data. 

In terms of classification, we obtained F1 scores of 95.4%, 38.1%

nd 84.4% in the classes correct, poor and wrong, respectively

 Table 5 ). For the wrong class, which is arguably most impor-

ant for clinical application, the precision and recall are 84.6% and

4.3%, respectively. This means that 84.6% of all samples predicted

o be over 6 mm are correct and the proposed method caught

4.3% of larger registration errors. Muenzing et al. (2012) obtained

1 scores of 95.3%, 73.8% and 86.6% in the classes [0,2), [2,5) and

5, ∞ ) mm. They achieved a better F1 score in the poor class and

hey also reported zero overlap between the correct and wrong

lasses. However, the comparison between the two methods is not

asy because of the differences in the data. For example, the slice

hickness in SPREAD is 2.5 mm, while it is 1 mm for Muenzing’s

ata, which may affect the performance especially in the poor

lass. Moreover, we generated the classes by thresholding the re-

ression values. Thus, the forests are optimized for regression not

or classification. 

.3. Qualitative validation 

Muenzing et al. (2014) generated an uncertainty map by spa-

ial interpolation of landmark-based quality estimates. On the con-

rary, our proposed system, which is trained on landmark loca-

ions, can be applied in all regions of the image. We showed this

or two example images, see Fig. 5 . It can be easily visualized that

n the blue region, images are matched correctly. On the other

and, by tracking the vessels in the red region misalignment can

e seen. Another note about the prediction is that there are no

brupt changes, and error varies smoothly from blue to yellow and

hen red, even though the error is predicted for each voxel inde-

endently. 

Another example is given in Fig. 10 (a–d). Although all land-

arks indicate that the registration error is small in this slice, the

uantitative results found several misregistered regions, which im-

lies that few landmarks may not be sufficient to assess the reg-

stration quality of the whole image. In Fig. 10 (e, f), it can be ob-

erved that the performance in the homogeneous area (left side

f the images) is as good as the performance in the area with

tructure. The main reason of acceptable performance in the ho-

ogeneous area is that the training samples consist of landmarks

s well as their neighborhood region, which can be homogeneous.

hus, the system is trained both for homogeneous regions and re-

ions with structure. 

Another example is given in Fig. 10 (g, h), where the proposed

ystem is not able to predict the registration error correctly be-

ause of a shift in the slice direction. 

.4. Limitations 

Discrete optimization: If the optimization method is less or not

ependent on the initial state, for instance for discrete optimiza-

ion methods ( Glocker et al., 2008; Heinrich et al., 2016 ), many of

he proposed registration features, which are generated by varying

he initial transformation of the registration, are not informative

nymore. In such cases, instead of std T or std T L , other measures
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Fig. 10. Several samples from the SPREAD dataset. The left column shows the fixed 

image with the ground truth registration error overlaid in color. The right column 

shows the moving image after registration with the registration error predicted 

by the proposed method overlaid in color. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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can be used. For example, by utilizing the adaptive mean-shift al-

gorithm, the local standard deviation of the displacement distribu-

tion can be calculated ( Heinrich et al., 2016 ). 

Anatomical changes: The proposed method is trained in such

a way that any dissimilarity between the fixed and moving im-

ages is counted as misalignment in registration. In case of anatom-

ical changes this assumption may be invalid, but typically prior

knowledge of the underlying anatomy is required to determine

which regions are allowed to be ”misaligned” because of anatom-

ical changes and which are not ( Muenzing et al., 2018 ). The pro-
osed method highlights all changes, coming from misalignment

r from anatomical change. 

.5. Future work 

In the proposed method we predict the misalignment as an Eu-

lidean distance in millimeters, rather than a 3D vector represent-

ng residual displacement. This is mostly because the features used

n the system are not direction-wise, especially the local intensity

eatures. The use of features that include directional information

ay help the system to be used in predicting the registration er-

or in each direction, which is then effectively a new registration

ethod. 

The proposed method was tested on chest CT scans. Since the

roposed features are generic and modality-independent, the over-

ll method can in principle be applied to other modality data from

ther anatomical regions. The performance in such cases however

emains to be investigated. 

The uncertainty of affine registration is not measured in this

ork. Defining a gold standard for this mid-phase result is a com-

lex task. However, extending the experiments to other databases

here only affine transformations are applicable can be done in

he future. 

Instead of manually defined features, it is possible to use

onvolutional neural networks, which can learn features automat-

cally. Eppenhof and Pluim (2017) predicted the Euclidean distance

f registration error. Our own work on CNNs for registration

 Sokooti et al., 2017 ) can also be modified to predict registra-

ion uncertainty in a direction-wise manner. Both methods are

rained only based on intensity, where the current paper shows

hat registration-derived information still contributes to a better

egression. Thus, adding registration information to the neural

etworks should probably be considered as well. 

A larger set of corresponding points annotated more densely

hroughout the scan could potentially also benefit training of the

egression forest. In addition, experimenting on multi-modality

ata and investigating the contribution of all introduced features

n them are future plans of this work. 

Finally, the uncertainty map produced by the proposed method

ay be exploited to improve local registration results. 

. Conclusion 

In this paper we proposed a method based on random regres-

ion forests to predict registration accuracy on chest CT scans from

egistration-based as well as intensity-based features. We intro-

uced the variation in registration result from differences in ini-

ialization (std T ) and CVH, which showed high feature importance

n several experiments. Registration-based features provided addi-

ional information on registration error with respect to intensity-

ased features. 

The regression method was evaluated on data from the SPREAD

tudy and predicted the registration error with a mean abso-

ute error of 1.07 ± 1.86 mm. The proposed method gained promis-

ng results on inter-database validation with a regression error of

.76 ± 2.59 mm. 
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