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Synopsis
Compliance with RF exposure limits in ultra-high �eld MRI is typically based on “one-size-�ts-all” safety margins to account for the intersubject variability
of local SAR. In this work we have developed a semantic segmentation method based on deep learning, which is able to generate a subject-speci�c body
model for personalized RF exposure prediction at 7T.

Introduction
Ultra-high �eld MRI (B  ≥ 7T) has been shown to produce higher resolution structural and physiological information than at 3T, particularly in the brain.
At ultra-high �eld, parallel transmission (PTx) is a key technology to address the increased non-uniformity of the radiofrequency (RF) �eld distribution.
However, this improved �exibility comes at the cost of an increased uncertainty in the resulting local speci�c absorption rate (SAR). In addition, local SAR
can vary by up to ~50% depending on the anatomy of the particular subject, including aspects such as tissue distribution and positioning within the RF
coil.  PTx systems are therefore operated with overly-conservative safety margins in order to account for these variations, which compromise system
performance and limit utilization. 

We aim to improve SAR estimation by generating a subject-speci�c numerical body model directly from 7T neuroimaging data. Several groups have
previously demonstrated such procedures at 3T using semi-automatic segmentation,  computer vision  or deep learning.  These approaches are
however not directly suited for 7T due to the increased image non-uniformities present, and hence would require either time-consuming manual
corrections or an additional MR examination at 3T. We propose a deep learning-based method which accounts for the image non-uniformities observed
at 7T, to generate a subject-speci�c numerical body model directly from a T -weighted image dataset, enabling seamless integration into the MR
examination work�ow.

Methods
Semi-automatic Segmentation: A multi-contrast MR protocol was acquired at an isotropic spatial resolution of 1mm  in 8 healthy volunteers (4 male, 4
female, age 26.7 ± 8.9) on a Philips Achieva 7T MRI system equipped with a Nova Medical quadrature birdcage head coil and a 32-channel receive coil
array. The image data were segmented into 8 tissues to allow for accurate predictions of local SAR  through a semi-automatic pipeline using Matlab, FSL
and 3D Slicer. The pipeline started with B -based intensity bias-correction  and rigid registration.  Brain tissues were segmented using FSL-FAST  and
the eyes were segmented through a region growing algorithm in 3D Slicer. A body tissue mask and its complementary bone and air segments were
obtained by segmenting proton density-weighted images, followed by manual correction of image artefacts. Fat and water segments were �nally
assigned based on Dixon data. 

Deep Learning Segmentation: The convolutional neural network was based on the ForkNet architecture  and was implemented using Tensor�ow in
Python. The 2D network had a single input and multiple outputs, each corresponding to one of the tissue labels. The network was trained on the semi-
automatic segmentations using randomized slices of the T -weighted images as the input, and corresponding ground truth tissue masks as the training
and validation data. Cross-validation was performed following a leave-one-out strategy in which one subject was removed from the dataset and used for
testing. The network was trained in 20 epochs and used Dice Loss as a loss function. A schematic illustration of the work�ow is shown in Figure 1. 

RF Exposure Prediction: The B  �eld and 10g-averaged SAR distribution (SAR ) in the ground truth and network-generated body models were
simulated in Remcom XFdtd, using a 2-mm isotropic grid within the model. The RF coil model was a 30-cm diameter 16-rung shielded high pass birdcage
structure driven in quadrature mode, which was validated in a head-sized phantom with known properties.  The ground truth body models were
validated using measured B  maps, since the actual SAR  distribution cannot be measured. All RF �eld data were normalized to an accepted power of
1 W, and simulations took around 2 min per body model.

Results
The experimental validation of the ground truth models is shown in Figure 2. As can be seen, the relative B  distribution as well as the peak B
e�ciency is accurately modelled. 

The training of the network took approximately 1 hour using a Tesla K40 GPU, reaching an overall Dice coe�cient value of 0.81±0.09 (mean±standard
deviation) over all segments. The �nal inference of a 3D body model took around 2 s per subject. A comparison between ground truth and network-
generated segmentations is shown in Figure 3. 

Simulated SAR  distributions in the ground truth and network-generated body models are shown in Figure 4. The peak SAR  in the network-
generated body models is within 5% of the peak value obtained in the corresponding ground truth body models for all cases, with an overall mean ±
standard deviation of 0.683±0.106 W/kg. This is well within the expected uncertainty margin of around ~10% for RF exposure predictions.

Discussion and Conclusion
This work demonstrates that a body model for personalized RF exposure prediction can be derived from a T -weighted 7T image dataset, which is often
already included in neuroimaging protocols as a basic anatomical reference. The total RF exposure assessment took under 5 min., with the deep
learning segmentation proposed here only taking 2 s. Future work will therefore aim to reduce the acquisition and RF simulation time required, to
further improve integration into the MR examination work�ow. In a PTx setting, the B  predictions obtained from the RF simulation may also be used in
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subsequent PTx pulse calculations, potentially saving time by avoiding B  calibration procedures. Future work will also include extending the SAR
analysis to PTx excitations using a RF transmit array.
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Fig. 1. Schematic illustration of the segmentation pipeline to obtain a subject-speci�c body model for RF exposure analysis. The semi-automatic
segmentation process involves many steps with elaborate user interaction, while the deep learning approach is able to generate an accurate body
model directly from 7T T -weighted images.

Fig. 2. Validation of the ground truth segmentations by comparing simulated (top) and measured (bottom) B  data. All data were normalized to 1 W of
accepted power.
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Fig. 3. Comparison between ground truth and deep learning-based segmentations in all volunteers. Shown are T -weighted images (top), ground truth
segmentations (middle) and network-generated segmentations (bottom). Despite the severe drop-o� in intensity towards the neck, the deep learning
method is able to segment the neck portion of the model.

Fig. 4. Comparison of simulated SAR  distributions in ground truth (top) and network-generated body models (middle), and corresponding di�erence
maps (bottom). Figure headings denote peak SAR  values (top, middle) and relative di�erence of the peak SAR  (bottom).
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