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Abstract. The 2019 fastMRI challenge was an open challenge designed
to advance research in the field of machine learning for MR image recon-
struction. The goal for the participants was to reconstruct undersampled
MRI k-space data. The original challenge left an open question as to how
well the reconstruction methods will perform in the setting where there
is a systematic difference between training and test data. In this work we
tested the generalization performance of the submissions with respect to
various perturbations, and despite differences in model architecture and
training, all of the methods perform very similarly.

1 Introduction

The goal of the 2019 fastMRI challenge [9] was to evaluate the performance
of current state of the art machine learning methods for MR image reconstruc-
tion [2–4,7,8,15,19–21,25] on a large-scale standardized dataset [10,23]. The goal
for the participants was to reconstruct images from undersampled MRI k-space
data, and the challenge consisted of three tracks: For 2 tracks, we provided the
original multi-receive channel data from MR scanners, and the tracks differed in
the undersampling rate (R = 4 and R = 8). In the third track, we provided simu-
lated single-channel data, which reduced the computational burden and reduced
the learning curve of working with MR data. We received 33 total submissions,
and during the course of the challenge, we identified the top 4 submissions per
track in terms of structural similarity [18] to the fully sampled ground truth as
finalists. These results of these top 4 finalists were then evaluated in a second
stage of the challenge by clinical radiologists, which ultimately determined the
winners of the challenge. An overview of example results from the finalists of
each track is given in Fig. 1.

The winners presented their methods during the 2019 NeurIPS conference,
and a detailed description of the structure of the challenge, the evaluation criteria
and the results, are presented in [9]. The challenge prompted several follow up
questions that were out of scope of the original evaluation. In particular, the
challenge design did not include any type of domain shift between the training
data and the challenge test data. Therefore, the generalization performance of
the submissions with respect to perturbations was not tested. The presentations
at the 2019 NeurIPS conference also raised the interesting point that in some
test examples, despite providing visually and quantitatively impressive results,
the reconstructions removed important image features.

In this work we systematically investigate the robustness of the approaches of
the challenge finalists with respect to representative domain shifts in the data,
which could occur in real-world clinical use. To this extent, we added certain
perturbations to the challenge test set, and the finalists re-ran the models from
their submissions without re-training. We also provide a more detailed follow-up
analysis of the examples where pathology was missed in the original submissions.
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Fig. 1. Image results for the 2019 fastMRI knee challenge. Example results for the
multicoil track R = 4, are shown in the top two rows, results for multicoil track R = 8
are shown in the middle two rows, and single coil results are shown in the bottom rows.

2 Methods

2.1 Image Perturbations

In the first set of experiments, we evaluate the response of the different methods
to small structural changes in the images by in-painting objects to a proton
density weighted image. We added squares with varying intensities (Fig. 2) and
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a resolution grid (Fig. 3), and then regenerate a simulated k-space from the
perturbed image, which was reconstructed with each model.

To evaluate the effect of a mismatched SNR between the training and test
data on network performance, we added noise to the input k-space of a fat-
saturated data set. The noise level was estimated by calculating the standard
deviation (σ) of voxel intensities from a slice with no anatomy. Two different
amounts of noise were then added to the k-space. Gaussian noise with a standard
deviation of 0.5σ and σ were added to the model input, simulating an SNR of
2/3 and 1/2 of the original SNR of the image.

The next experiment evaluates the robustness of each method when the input
data has a different number of coils. We performed coil compression on the
original 15 channel data, simulating 10 and 5 channel data. Coil compression
was performed using the scipy SVD algorithm.

The final experiments explored two cases in which pathology was removed
in the challenge reconstructions. For each case, the data were retrospectively
under-sampled with two realizations of random under-sampling, including the
original sampling pattern used in the challenge. The sampling patterns were
consistent with R = 4 or R = 8 random under sampling commonly used in com-
pressed sensing. In addition, we sampled 16 lines at the center of k-space.

2.2 Description of 2019 fastMRI Approaches

The network from Philips & LUMC, referred to as Adaptive-CS-Network [12], is
a deep cascade approach that builds on the ISTA-Net model using a multiscale
regularizer. The model consists of 25 unrolled iterations, with different design in
each iteration. It also includes the MR physics priors, such as the phase behaviour
and background identification, which are provided to the model with a “nudge”
approach. The model is trained using a Multiscale-SSIM combined with L1 loss,
and sequential refinement on different data populations.

The model submitted by AIRS medical (labelled as AM and JG) is an Auto-
Calibrating Deep Learning Network. It consists of a neural network block and an
auto-calibration block, which were iteratively applied. The neural network block,
based on the U-net, was trained in combined complex image space with l1 loss.
The auto-calibration block enforced the null space constraint Nx = 0, where
N is a convolution operator corresponding to the null space, via the conjugate
gradient method [16]. After the multiple cascade of the blocks, a refinement
U-net processed the complex data and generated magnitude images.

The model originally referred to as MSDC-RNN is a Pyramid Convolutional
RNN (PC-RNN) model [17], which includes three convolutional RNN modules
to iteratively reconstruct images at different scales. The spatial sizes of feature
maps in the three convolutional RNN modules are downsampled by 4×, 2×, 1×,
respectively. Each convolutional RNN module has five iterations. The recon-
structed images in coarse to fine scales are combined by a final CNN module.
The model takes the multiple coils as multi-channel inputs and was trained with
the NMSE loss [23] and the SSIM loss [24] on the coil combined images for 60
epochs.
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Σ-Net [5] by holykspace (Imperial College London) ensembles multiple
learned unrolled reconstruction networks. First, sensitivity networks involving
explicit coil sensitivity maps were trained for a gradient descent, proximal gra-
dient, and variable splitting scheme, followed by style transfer for further fine-
tuning to the reference. Second, parallel coil networks were deployed to learn
the coil combination implicitly. All networks, with a Down-Up Network as back-
bone [22], were unrolled for 10 steps. Training was conducted with a combined
L1+SSIM loss, followed by individual fine-tuning for contrasts and acceleration
factors. Additional networks trained with a GAN loss and a self-supervised app-
roach complete the final ensemble of Σ-Net.

The Amsterdam submission is the i-RIM model [14] an invertible variant
of the RIM [13] for reconstructing accelerated MR-images [11]. The 480-layers
model consists of 12 down-sampling blocks. Except the zero-filled reconstruc-
tion, a 1-hot vector was also given as input for encoding field-strength and
fat-suppression meta-data. For singlecoil data we chose 64 feature layers and
for multicoil 96. For multicoil data, k-space measurements and individual coil
images were stacked, without sensitivity modeling in this context. We cropped
the images to 368 × 368 pixels, and for smaller sizes we applied zero-padding.
Finally, we used the Adam optimizer with learning-rate 10-4, and the SSIM as
loss function.

The Samoyed model utilizes consecutive CNN blocks in the image domain for
de-aliasing [1,6], with interleaved data consistency layers that adopt trainable
regularization parameters [3,15]. Each CNN block comprises 5 dilated convo-
lutional layers with 64 feature maps followed by Leaky Rectified Linear Units.
Every feature map of the 4th convolutional layer in each block is concatenated
to the feature map of the 2nd convolutional layer in the next block (i.e., dense-
connection) to prevent information wash-out. The L1 loss and the SSIM loss were
applied only to the foreground area, so that the learning could be focused on
the anatomical area rather than the background area. The model was separately
trained on each acquisition protocol due to SNR mismatch.

All the finalists methods make use of some sort of data-consistency, demon-
strating the importance of leveraging the data early in the reconstruction chain
compared to techniques that rely solely on the reconstructed images.

3 Results

The performance of the submissions with respect to small structural changes
are shown in Figs. 2 and 3. The first perturbation, which consists of 6 in-painted
squares of varying intensities, appears blurred in all reconstructed images. This is
consistent between tracks and for all submissions. In the multi-coil R = 4 recon-
structions (Fig. 2, top row) the highest and lowest signal intensity squares remain
distinguishable. We observe blurring and ghosting of the in-painted resolution
grids in the R = 4 reconstructions shown in Fig. 3. This effect is more significant
for the lower grid with vertical lines. In the R = 8 reconstructions, the resolution
grids are almost completely removed.
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Fig. 2. Image results for contrast experiments. The perturbation is a set of in-painted
squares with varying intensity. The R = 4, R = 8 and single coil results are shown in
the top, middle and bottom rows respectively.

Fig. 3. Image results for resolution experiments. The perturbation is an in-painted
resolution grid. The R = 4, R = 8 and single coil results are shown in the top, middle
and bottom rows respectively

The performance of the submissions with respect to increased noise is shown
in Fig. 4. A systematic mismatch in SNR between training and test data results
in reconstructed images that appear over-smoothed. The Philips & LUMC recon-
structions have lower SSIM but appear less smooth than reconstructions from
other methods.

Most of the methods appear to be robust to a mismatch in the number of
coils between the training and test data. The image quality is very similar for the
reconstructions of 5, 10 and 15 channel data. The exception is the Amsterdam
model, for which sensitivity maps were not included during training, but rather
each coil image was treated as a separate channel. Results of the coil compression
experiments for R = 8 are shown in Fig. 5.
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Fig. 4. Image results for noise experiments. Gaussian noise was added to the input k-
space. The R = 4, R = 8 and single coil results are shown in the top, middle and bottom
rows respectively

Fig. 5. Image results for R = 8 coil compression experiments. The network input was
5, 10 and 15 coils

Two cases from the original challenge where readers identified missing or less
visible pathology in the reconstructed images were under-sampled with a differ-
ent random sampling pattern with equivalent acceleration. The first case was a
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Fig. 6. Image results for two different sampling patterns. The original sampling pat-
terns (rows 1 and 3) resulted in removed pathology. The pathology is more visible with
the modified sampling pattern (rows 2 and 4). The original (1) and new (2) sampling
patterns for each case are shown on the left of rows 2 and 4.

proton density weighted image with an acceleration of R = 4, the reconstructions
using the original sampling pattern and new sampling pattern are shown in the
first and second rows of Fig. 6, respectively. The pathology, indicated by the
arrow in the ground truth image is more visible on the new reconstructions. The
second case is a fat saturated image with acceleration R = 8. The reconstructions
using the original and new sampling patterns are shown in the third and fourth
row of Fig. 6 respectively. In this example the meniscal tear (indicated by the
arrow in the ground truth image) is much more clear with the second sampling
pattern than the original.

4 Discussion and Conclusion

In this work we evaluate the robustness of deep learning reconstruction methods
submitted to the 2019 fastMRI challenge. All of these methods achieved high
image quality but their robustness to possible domain shifts between training and
test data remained an open question. In real world clinical use, the images may
have unique features not seen in the training data, and they may vary in terms
of SNR and coil configuration. Our results show that all of the methods remove
small structures not seen in the training data and generate over smoothed images
when the model input has lower SNR. They all appear to be robust to data with
different coil configurations. We performed a follow-up analysis of the examples
where pathology was missed in the original challenge reconstructions. Using a
new realization of a random undersampling pattern with matched acceleration
factors, the pathology was preserved. This suggests that the choice of sampling
pattern can make a substantial difference in the clinical value of the image.

All DL reconstruction methods discussed in this work provide impressive
results in the absence of a domain shift between training and test data. Our
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results show that all methods perform remarkably similarly in the presence of
several perturbations despite differences in network architecture and training as
well as showing the importance of the right sampling pattern for the reconstruc-
tion quality.
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Self-supervised learning of physics-guided reconstruction neural networks without
fully sampled reference data. Magn. Reson. Med. 84(6), 3172–3191 (2020)

20. Yang, G., et al.: DAGAN: deep de-aliasing generative adversarial networks for
fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6),
1310–1321 (2017)

21. Yang, Y., Sun, J., Li, H., Xu, Z.: Deep ADMM-Net for compressive sensing MRI.
In: Advances in Neural Information Processing Systems, pp. 10–18 (2016)

22. Yu, S., Park, B., Jeong, J.: Deep iterative down-up CNN for image denoising. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops (2019)

23. Zbontar, J., et al.: fastMRI: an open dataset and benchmarks for accelerated MRI.
arXiv preprint arXiv:1811.08839 (2018)

24. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for neural networks for
image processing. arXiv (2015)

25. Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction
by domain-transform manifold learning. Nature 555(7697), 487–492 (2018)

https://doi.org/10.1002/mrm.24751
http://arxiv.org/abs/1912.00543
http://arxiv.org/abs/1811.08839

	.26em plus .1em minus .1emEvaluation of the Robustness of Learned MR Image Reconstruction to Systematic Deviations Between Training and Test Data for the Models from the fastMRI Challenge*-6pt
	1 Introduction
	2 Methods
	2.1 Image Perturbations
	2.2 Description of 2019 fastMRI Approaches

	3 Results
	4 Discussion and Conclusion
	References




