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ABSTRACT In this paper we propose a supervised method to predict registration misalignment using
convolutional neural networks (CNNs). This task is casted to a classification problem with multiple
classes of misalignment: “correct” 0-3 mm, “poor” 3-6 mm and “wrong” over 6 mm. Rather than a direct
prediction, we propose a hierarchical approach, where the prediction is gradually refined from coarse
to fine. Our solution is based on a convolutional Long Short-Term Memory (LSTM), using hierarchical
misalignment predictions on three resolutions of the image pair, leveraging the intrinsic strengths of an
LSTM for this problem. The convolutional LSTM is trained on a set of artificially generated image
pairs obtained from artificial displacement vector fields (DVFs). Results on chest CT scans show that
incorporating multi-resolution information, and the hierarchical use via an LSTM for this, leads to overall
better F1 scores, with fewer misclassifications in a well-tuned registration setup. The final system yields an
accuracy of 87.1%, and an average F1 score of 66.4% aggregated in two independent chest CT scan studies.

INDEX TERMS image registration, registration misalignment, convolutional neural networks, hierarchical
classification

I. INTRODUCTION

MOST image registration techniques do not provide
insight in the local misalignment after registration.

It is common to manually inspect the registration quality
afterwards, which is time-consuming and prone to inter-
observer errors as well as human fatigue. A fast automatic
dense map indicating the misalignment locally has quite a
few applications in medical imaging. This dense misalign-
ment map can be utilized in radiation dosimetry [1], image-
guided interventions [2], for improving the registration qual-
ity automatically [3] or semi-automatically [4]. Moreover, a
fast automatic prediction of registration misalignment could
substantially reduce the manual assessment time.

Several intensity-based and registration-based features
were proposed as a surrogate for registration misalignment.
Park et al. [5] proposed normalized local mutual information
(NMI) and Rohde et al. [6] utilized the local gradient of the
NMI as a surrogate for misregistration. Schlachter et al. [7]

reported that the histogram intersection, which is a distance
measure between the histogram of intensities of a pair of
images [8], performs well as a visual assistant to a human ex-
pert in detecting local registration quality. Although the men-
tioned metrics can represent the registration error, it has been
shown by Rohlfing [9] that image similarities cannot nec-
essarily distinguish accurate from inaccurate registrations.
Hub et al. [10] proposed performing multiple registrations
with perturbations in the B-spline grid ([11]) as a measure of
registration uncertainty. Kybic [12] proposed bootstrapping
over pixels in the cost functions. Other approaches like block
matching [13] and polynomial chaos expansions [14] are
utilized in the context of detecting registration misalignment.
However, these algorithms are very time-consuming.

In probabilistic image registration, an uncertainty map can
be provided after the registration [15, 16, 17]. This uncer-
tainty map commonly is counted as a surrogate for image
registration error. However, Luo et al. [18] reported that
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the uncertainty derived from probabilistic image registrations
might not necessarily correlate with the registration error.

Several machine learning approaches have been used in
assessing the registration quality. Muenzing et al. [19] cast
the problem to a classification task. They extracted several
intensity-based features around a number of distinctive land-
marks in chest CT images. Sokooti et al. [20, 21] extracted
both intensity and registration-based features around a dilated
region of landmarks and trained a regression forest to predict
the registration error. Drawbacks of these methods are that
training is based on a limited number of manual landmarks,
and/or can only be applied to non-rigid registration.

Deep learning-based methods have been presented re-
cently and achieved promising results for medical image
registration [22, 23, 24]. Predicting the registration error
with a CNN-based approach was recently proposed by Ep-
penhof and Pluim [25]. They used a single scale method
and predicted registration misalignment smaller than 4 mm.
de Senneville et al. [26] proposed a deep learning method
to classify brain MR registrations as usable or non-usable.
This method cannot predict misalignment locally, for non-
rigid image registration.

Hierarchical approaches have been used in many tasks in
the field of image classification. Salakhutdinov et al. [27]
proposed a hierarchical classification model, in which objects
with fewer occurrences can borrow statistical strength from
related objects that have many training examples. Ristin
et al. [28] reported that taking into account the hierarchical
relations between categories and subcategories can improve
the performance of classification. Such an approach has also
been used in recent deep learning methods. Redmon and
Farhadi [29] in their proposed method for object detection,
YOLO9000, predict labels in a hierarchical approach using
conditional probability. Chen et al. [30] predict abnormality
labels in chest X-ray images using a similar hierarchical
approach with conditional probability. They added another
stage with unconditional probabilities and reported better
performance in comparison with only a single stage with
conditional probability. Taherkhani et al. [31] reported that
utilizing coarse images can improve weakly supervised fine
image classification performance. Guo et al. [32] reported
that utilizing a convolutional LSTM [33] and predicting the
labels from coarse to fine, can improve the accuracy of
the classification of both coarse and fine labels. In their
method, the CNN and LSTM extract discriminative features
and jointly optimize the fine and coarse labels classification.
A similar hierarchical LSTM approach has been utilized
in music genre classification [34]. In the aforementioned
methods, the hierarchical approach is only applied on the
network outputs (coarse and fine labels), while the inputs are
kept similar in all steps of the hierarchy.

In this work, inspired by the hierarchical classification
idea of [32], we propose a hierarchical convolutional LSTM
approach to densely predict the registration misalignment.
Moreover, we incorporate multi-resolution information for
the inputs as well as the outputs. This way, the LSTM takes

input images from coarse to fine resolution and progressively
predicts output labels from coarse to fine. We propose to use
a pre-trained registration network to encode the input image
pair in a latent space, and utilize an LSTM decoder to predict
the final labels from this latent space. We trained our deep
learning model on image pairs artificially generated from real
data, as a data augmentation step. In this way, in contrast
to [19] and [21], we have access to many training samples
instead of a small number of manually annotated landmarks.
Different from earlier deep learning methods, the proposed
method can be used to predict the registration error for any
registration paradigm, including rigid and non-rigid registra-
tion. Different from [25], the proposed method is capable
of detecting relatively large registration misalignments. The
inference time of the proposed method is approximately 2.8
seconds on a 3D patch of size 205× 205× 205, which is
substantially faster than methods involving multiple registra-
tions like [10, 12, 21].

In Section II, we introduce the network architectures (II-A)
and explain the training data generation process (II-B). In
Section III, we describe the data sets used in this study
(III-A), the detailed setup of the experiments (III-B), and the
evaluation measures (III-C). The tuning of hyper-parameters
(III-D) and the results III-E, III-F) are reported afterwards.
Finally, the Discussion (Section IV) and Conclusion (Section
V) are presented.

II. METHODS
A general block diagram of the proposed method is shown
in Fig. 1. The input of the network is a pair of images
consisting of a fixed image IF and a deformed moving image
ID, resulting from an arbitrary registration method. The input
image pair is then downsampled and encoded by a deep
learning registration network at three resolutions. The latent
representations Li are subsequently fed to a decoder (an
LSTM), where the decoder predicts misregistration labels d
for each voxel, corresponding to the local misalignment. The
LSTM not only considers the encodings at the three resolu-
tions, but also considers these in a coarse-to-fine, hierarchical
manner.

A. NETWORK ARCHITECTURES
1) Encoder
In the encoder, an image pair (IF, ID) is encoded to create
a latent representation of the input pair and their spatial
relation. Such an encoder may be trained from scratch, or
a pre-trained architecture can be chosen. Popular examples
of the latter is to use a VGG or a ResNet network trained
on large-scale natural images [36, 37], sometimes also used
to compute a perceptual loss in a downstream task [38]. A
downside of such an approach is that each of the input images
is encoded separately, and subsequently the spatial relation
between the input images is not represented. In addition, as
reported by Raghu et al. [39], for medical imaging tasks a
network trained on similar data is favored over a network
trained on natural images. Instead, we therefore propose
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FIGURE 1: Block diagram of the proposed system. In the
encoder, a pair of images is given as the input. Three RegNet
architectures [35] process the input images over three reso-
lutions (↓4, ↓2, 1) and generate a latent representation (the
encoded feature maps Li) for each resolution. All RegNet
blocks are architecturally identical, but are initialized with
weights from pre-trained networks on different resolutions.
In the LSTM decoder, the latent representations Li are
decoded to labels corresponding to the local misalignment
class d.

to encode the input pair by a pre-trained medical image
registration network, thus allowing the direct encoding of a
pair of images, while also representing the spatial relation
between them.

Any registration network from the literature can be used
here, and we opt for the RegNet architecture [22, 35],
which we previously proposed for the registration of chest
CT scans. Since this network achieved promising results,
it is potentially a good candidate for the task of predicting
registration misalignment as well. The RegNet architecture
is given in Fig. 2. This design is identical to the U-Net-
advanced (Uadv) design proposed in [35]. The last three
layers from the original design are excluded here, and the
high dimensional feature maps from the now last layer are
used as a latent representation of the input pair, and thus
as input for the decoder. As illustrated in Fig. 1, we utilize
three separate encoders, each receives an input image pair at
a different resolution, using a down-sampling factor of four
(↓4), two (↓2) and 1 (i.e. the original resolution). This way
latent representations are built at three different scales.
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FIGURE 2: The RegNet architecture used for encoding the
input image pair. This architecture is identical to the U-Net-
advanced (Uadv) design proposed in [35], with the last three
layers excluded. The number of feature maps and the spatial
size are shown on top and bottom of each layer, respectively.

The RegNet architecture is a patch-based design where
the size of the inputs and output are 101× 101× 101
and 25× 25× 25, respectively. All convolutional layers use
batch normalization [40] and ReLu activation [41], except for
the trilinear upsampling layer, in which a constant trilinear
kernel is used. The total number of parameters in this design
is 737,430.

The weights of the three encoders are initialized with
the pre-trained RegNeti networks (see Fig. 1), that were
previously trained for image registration [35]. Below, we
report experiments both with freezing these weights and with
keeping them trainable. When keeping them trainable, all
layers are kept trainable, as recommended by Tajbakhsh et al.
[42].

2) Decoder

In the decoder, the latent representations at each of the
three resolutions Li are considered to predict three output
labels corresponding to registration misalignment: correct
[0,3) mm, poor [3,6) mm and wrong [6,∞) mm [21]. A
straightforward choice for the decoder is to concatenate the
latent feature maps and feed them to a convolutional neural
network to predict the final labels. This approach is illustrated
in Fig. 3a and is named multi-scale CNN. Instead, we propose
a hierarchical approach using convolutional LSTM (Long
Short-Term Memory) layers similar to [32] as they reported
that predicting the labels from coarse to fine can improve
the overall accuracy of the classification of fine labels in
natural images. The coarse labels usually share a set of
global features and for the fine labels more distinctive local
properties are extracted.

The LSTM unit was first proposed for machine translation
where the input, output, and hidden states are all modeled as
temporal sequences using fully connected units [43]. As this
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approach does not capture the spatial relations in the data,
Shi et al. [33] proposed a convolutional LSTM unit, where
the fully connected (FC) layers are replaced by convolutional
layers. This way the unit is capable of capturing and encoding
spatio-temporal information for visual series. We can imag-
ine inputs and state as vectors standing on a spatial grid. The
future state of a cell in the grid is calculated by the inputs and
past states of its neighbors.

In the proposed LSTM decoder (Fig. 3b), rather than
supplying the three latent representations Li all at once,
they are provided in sequence. Starting with L4, a coarse
prediction of the registration error is first made, predict-
ing only two labels: ‘good‘ registration with an error in
the range [0, θ1) mm, and ‘bad‘ registration with an error
higher than that i.e. [θ1,∞) mm. In the experiments for
example we have used θ1 = 6 mm. In the next time step
of the convolutional LSTM, the L2 features are additionally
considered, combining them with the hidden state of the
previous time step. Now the output predictions are refined
into three classes [0, θ2) mm, [θ2, θ1) mm and [θ1,∞) mm.
We keep all the output probabilities unconditional similar
to [32]. In the last time step, the latent representation L1 is
used and combined with the hidden state, further refining the
output prediction with splitting the previous smallest class
to [0, θ3) mm and [θ3, θ2) mm. This way the predictions are
built up in a hierarchical manner, step-by-step incorporating
the multi-resolution embeddings of the input pair and step-
by-step refining the registration error prediction.

In the final convolutional layers of both decoder designs,
the softmax activation is used. For other convolutional layers
in the CNN-based decoder, batch normalization and ReLu
activation are utilized. In the LSTM design, cell outputs,
hidden states, and gates (input, forget, output) have similar
settings as in [33]. An additional output is allocated for
each coarse label. For instance, in Fig. 3b, six outputs are
available, four of them for fine labels and two for coarse
labels. We perform experiments for various values of θi,
where i ∈ {1, 2, 3} and θ1 ≥ θ2 ≥ θ3.

B. TRAINING DATA GENERATION
In order to train the networks, we propose to artificially
generate image pairs from the available real data. The main
advantage of artificial generation is that numerous num-
ber of training samples can be obtained in an inexpensive
way. Moreover, a dense ground truth is made, which is not
achievable with other forms of ground truth such as manual
landmarks or segmentation maps.

We use a similar approach as in [35] to artificially gener-
ate the DVFs and deformed image. Four types of artificial
deformation are applied:
single frequency: This type of DVF is generated by perturb-

ing B-spline grids. Since the grid knots are uniformly
spaced, the generated DVF has only one random spatial
frequency.

mixed frequency: A combination of the single frequency
DVF filtered by a Gaussian kernel with a smaller sigma.

respiratory motion: Simulating the respiratory motion by
expansion of the chest in the transversal plane, transition
of the diaphragm in craniocaudal direction [10]. Finally,
a random “single frequency” deformation is added.

identity transform: This type represents no misalignment
between the images.

After creating the deformed images with the generated
DVFs, to make the deformed images more realistic, several
intensity augmentations are performed:
Gaussian noise: Gaussian noise with a standard deviation of

σN = 5 is added to the deformed image.
Sponge model: Multiplying the intensity of the deformed

moving image by the inverse of the determinant of the
Jacobian of the transformation. This is an approximation
based on the theory of mass preservation in the lung
during breathing [44].

By applying the proposed artificial DVF generations, many
image pairs can be generated for each image, by varying the
hyper-parameters corresponding to each category.

III. EXPERIMENTS AND RESULTS
A. DATA
Experiments are performed using three chest CT studies: The
DIR-Lab-COPDgene [45], the DIR-Lab-4DCT [46] and the
SPREAD [47] studies.

In the DIR-Lab-COPDgene study, ten cases are available
in inhale and exhale phases. The average image size
and the average voxel size are 512× 512× 120 and
0.64× 0.64× 2.50 mm, respectively. 300 corresponding
landmarks are manually annotated in each case.

In the DIR-Lab-4DCT study, ten cases with varying res-
piratory phases are available. We selected the maximum
inhalation and maximum exhalation phases, as more manual
landmarks are available in these phases (300 landmarks). The
size of the images is approximately 256× 256× 103 with an
average voxel size of 1.10× 1.10× 2.50 mm.

In the SPREAD study, 21 cases are available. Each case
consists of a baseline and a follow-up image, in which the
follow-up is taken after about 30 months. Both baseline
and follow-up are acquired in the maximum inhale phase.
The size of the images is about 446 × 315 × 129 with a
mean voxel size of 0.78× 0.78× 2.50 mm. About 100 well-
distributed corresponding landmarks were previously se-
lected [44] semi-automatically on distinctive locations [48].
Two cases (12 and 19) are excluded because of the high
uncertainty in the landmark annotations [44].

B. EXPERIMENTAL SETUP
1) Training data
In the SPREAD study, 10 , 1, and 8 cases are used for the
training, validation, and test sets, respectively. The DIR-Lab-
COPD study is used for training and validation only, where
9 cases are used for training and the remaining case for
validation. The entire DIR-Lab-4DCT database (10 cases) is
used as an independent test set. The validation set is mainly
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FIGURE 3: The decoder. The latent representations Li of the three resolutions ↓4, ↓2 and 1 are merged and the final output
predicts three misalignment labels: correct [0,3) mm, poor [3,6) mm and wrong [6,∞) mm. In the CNN decoder (a), merging
is done using concatenation. In the LSTM decoder (b), the latent representations Li are given in sequence and the misalignment
labels are gradually refined in a hierarchical manner. The labels inside the shaded boxes in the top-right of the figure represent
the auxiliary labels.

used for tuning the hyper-parameters and selecting the best
approach. Since we initialized the weights of RegNet from
the study of [35], we kept the training, validation, and test
sets identical to that study, to avoid data leakage.

To generate training pairs, we use the artificial generations
introduced in Section II-B. The maximum magnitude of the
DVF in each axis is set to 10 mm, so the maximum vector
magnitude is about 17 mm. For each single image, 28 artifi-
cial DVFs and deformed images are generated by assigning
random values to the variables of the single frequency, the
mixed frequency and the respiratory motion deformations.
Thus, in the training phase, a total number of 1064 artificially
generated image pairs are used. All images are resampled to
an isotropic voxel size of 1.0× 1.0× 1.0 mm.

In the training phase, the patches are balanced based on
the magnitude of the artificial DVFs. The probabilities of
selecting patches in the range [0, 3), [3, 6) and 6,∞) mm
are 60%, 20% and 20%, respectively. This balancing is
performed to make the training set more similar to the real
world scenarios as the distribution of landmarks in the first
range is usually higher.

2) Real image pairs

In this experiment, we estimate the registration error after
registration in cases from the test set and compare it with
the ground truth landmarks. Both fixed and moving images
are taken from the same patient at different time points. In
order to create a generic evaluation study, we collect samples
by performing affine and four various conventional non-
rigid registrations using 20, 100, 500, and 2000 iterations

corresponding to overall poor registration quality to overall
high quality registration. The common registration settings
are: metric: mutual information, optimizer: adaptive stochas-
tic gradient descent, transform: B-spline ([11]), number of
resolutions: 3. After performing registration on the original
fixed and moving images, the fixed and the deformed moving
image after the registration are given as inputs to the pro-
posed misalignment estimation method.

We define the target registration error (TRE) as the Eu-
clidean distance after registration between the corresponding
ith landmarks:

TREi = ‖xi
F − xi

D‖2, (1)

where xF and xD are the corresponding landmark locations
on the fixed and deformed moving images, respectively. A
misalignment label is then assigned to each landmark, based
on the magnitude of the TRE. The misalignment labels are
defined based on the TRE value.

3) Network optimization
Optimizing the neural networks is done by the Adam opti-
mizer [49] with a constant learning rate of 0.001. A stochastic
mini-batch method is used with a batch size of 10. The
cross-entropy loss is used for all experiments. In the LSTM
design, the cross-entropy loss is applied to unconditional
probabilities for all steps similar to [32]. The loss function
is defined as follows:

loss = − 1

N

N∑
i=1

( S∑
s=1

∑
c∈Cs

1{xsi = c} log pc
)
, (2)
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where N is the total number of voxels in a mini-batch, S
denotes the number of steps, Cs represents the classes at
step s, and pc is the probability of class c in the output. The
training is performed for 30 epochs by an NVidia RTX6000
with 24GB memory.

4) Software
The convolutional neural networks are implemented in Ten-
sorflow [50], and image handling and artificial training data
generation is implemented with SimpleITK [51]. elastix
[52] is used to perform the conventional image registrations.

5) Additional methods
For further comparisons, two additional CNN methods are
added: single-scale CNN and RegNet-t. In the single-scale
CNN, only the encoded feature maps of the original res-
olution L1 is used. The weights of the encoder are kept
trainable similar to the multi-scale CNN. In the RegNet-t
experiment, first a three-resolution registration is performed
by RegNet over the input pair [35]. The registration is per-
formed over scales four, two and one in sequence, in which
the input of each resolution is the fixed and deformed moving
image of the previous resolution. Then, the magnitude of
the predicted displacement vector field (DVF) is calculated
and thresholded in the following ranges: [0,3), [3,6) and
[6,∞) mm. Finally, the labels “correct”, “poor” and “wrong”
are assigned to them, respectively.

In addition, the proposed multi-stage hierarchical LSTM
design is compared to a conventional learning-based method
using random forests (RF), published earlier [21]. The ran-
dom forests were trained on several hand-crafted intensity-
based and registration-based features extracted from land-
mark neighborhoods. The output of the random forests pre-
dicted the registration error in mm. Three classes were gen-
erated by quantizing the regression results within the ranges
[0,3), [3,6), and [6,∞) mm, similar to the current study.

C. EVALUATION MEASURES
All evaluations are computed only from the landmark lo-
cations to maximize the quality of the ground truth. The
misalignment labels are defined as correct, poor and wrong,
when the TRE is in range [0,3), [3,6) and [6,∞) mm, re-
spectively, similar to [21]. We report the following statis-
tics: overall accuracy, F1 score for each label separately,
the average F1 of the separate F1 scores, the number of
misclassifications between the wrong and the correct label
(two categories apart called cw misclassification), and finally
Cohen’s kappa coefficient (κ) of the confusion matrix. The
accuracy may be biased to the labels with a higher number
of samples, whereas the F1 and κ coefficient are more robust
for imbalanced distributions.

D. RESULTS ON THE VALIDATION SET
This experiment is mainly designed for tuning the hyper-
parameters, i.e. the splitting values for the LSTM and to

choose between the trainable and the frozen weights ap-
proach. We experiment with the two decoder architectures
introduced in Section II-A2: the multi-scale CNN decoder
and the hierarchical LSTM decoder. The encoding architec-
ture is kept identical in all experiments and all weights are
initialized from the pre-trained RegNet [35]. The results are
reported for both frozen and trainable encoder weights. In
the trainable experiment, the weights of all layers are kept
trainable. Additionally, three different splitting values for the
LSTM designs are tested as well.

Table 1 gives the results on the training and validation sets
for the decoders with similar encoder design with frozen
and trainable approaches. Please note that the training was
performed on the artificial image pairs. However, these re-
sults are reported over real images pairs on the landmark
locations. Total number of landmarks for all five registrations
in SPREAD (cases 1 to 11) and DIR-Lab COPDgene studies
are 5455 and 15000, respectively.

First, we compare the encoding parts between frozen and
trainable approaches. In this evaluation, the splitting values
of the LSTM design are set to 6, 3, 1 for θ1, θ2 and θ3,
respectively. As is shown in the top four rows of Table 1,
based on F1, κ coefficient and the number of misclassifica-
tions between the wrong and the correct label (cw misclass),
a consistent improvement can be achieved by utilizing a
trainable encoder. The improvement of F1 in the SPREAD
study is from 73.9% to 78.3% and 76.9% to 79.6%, and in
the DIR-Lab COPDgene study from 72.0% to 72.9% and
67.4% to 73.2% for the multi-scale CNN and the hierarchical
LSTM architecture, respectively. Accuracy (Acc) is more
biased towards category c, as the number of samples for this
label is much higher than for the other labels. In the SPREAD
dataset, F1c and the accuracy of the trainable encoders are
better. However, in the DIR-Lab COPDgene set, F1c and the
accuracy of the frozen encoders are slightly better. On the
other hand, the number of outliers significantly decreases
in the DIR-Lab COPDgene study. All in all, we select the
trainable approach for the encoder in the remainder of the
paper.

Comparing the two decoders (with trainable encoder), the
LSTM design obtained better performance in terms of F1, κ
coefficient, the number of outliers, and accuracy, compared to
the CNN, on both datasets. We keep both designs for further
experiments on the independent test data.

We additionally experiment with the hierarchical splitting
approach of the LSTM design, using various splitting values
θi: 6-3-1, 12-6-3 and 6-3-3. We keep the misalignment labels
of the last step equal to [0, 3), [3, 6) and [6,∞) mm by
merging the auxiliary labels. Therefore, in the LSTM design
with the 6-3-1 splitting approach, labels [0, 1), [1, 3) are
merged into a single label [0, 3), and in the LSTM design
with the 12-6-3 splitting approach, labels [6, 12), [12,∞) are
merged into a single label [6,∞). The results are given in the
bottom two rows in Table 1. Based on the F1, κ coefficient
and the number of cw misclassifications, the hierarchical
splitting with values 6-3-1 achieved better performance. The
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TABLE 1: Landmark-based results on the training and validation set for tuning hyper-parameters. We report the mean values
over all five registration settings: affine and B-spline registration after affine with 20, 100, 500, and 2000 iterations. The sub-
indices c, p, and w correspond to the correct [0,3), poor [3,6), and wrong [6,∞) mm classes. The best method is shown in bold
and the second best method is shown in green. Total number of landmarks for all five registrations in SPREAD (cases 1 to 11)
and DIR-Lab COPDgene studies are 5455 and 15000, respectively

SPREAD (case 1 to 11) DIR-Lab COPDgene (case 1 to 10)

encoder decoder F1c F1p F1w F1 Acc κ cw misclass F1c F1p F1w F1 Acc κ cw misclass

frozen multi-scale CNN 85.8 52.5 83.5 73.9 78.1 0.58 39 77.6 52.5 85.8 72.0 77.0 0.60 387
trainable multi-scale CNN 90.0 62.5 82.3 78.3 83.1 0.66 32 72.2 61.4 85.1 72.9 75.8 0.60 209
frozen LSTM 6-3-1 92.4 54.9 83.3 76.9 85.5 0.68 52 76.9 38.5 86.9 67.4 76.2 0.59 391
trainable LSTM 6-3-1 93.0 63.6 82.3 79.6 86.3 0.71 25 74.6 59.4 85.6 73.2 76.1 0.61 148

trainable LSTM 12-6-3 83.0 54.2 84.5 73.9 75.6 0.56 15 56.7 56.3 84.6 65.8 71.9 0.53 368
trainable LSTM 6-3-3 88.7 58.9 83.6 77.1 81.5 0.64 28 60.6 56.4 84.2 67.1 71.9 0.53 253

F1w score of LSTM 12-6-3 in the SPREAD study are rel-
atively high. On the other hand, the F1c of LSTM 6-3-1
is higher than the other LSTM designs. This indicates that
utilizing an auxiliary label in a specific range can improve
the performance in that range. All in all, we select the LSTM
with 6-3-1 splitting values for the remainder of the paper.

E. RESULTS ON THE INDEPENDENT TEST SET

In this section, we investigate the performance of the pro-
posed decoders in unseen test sets, i.e. the SPREAD study
cases 13 to 21 and the DIR-Lab 4DCT cases 1 to 10. The total
number of landmarks for each registration in SPREAD (case
13 to 21) and DIR-Lab 4DCT studies are 783 and 3000, re-
spectively. For further comparisons, two additional methods
are added in this experiment: single-scale CNN and RegNet-t
(see Section III-B5). The landmark-based results are reported
in Table 2 within five various registration settings (similar
to the validation experiment): affine transformation, B-spline
transformation with 20, 100, 500, and 2000 iterations. The
B-spline registrations are performed after the initial affine
transformation. The aggregation of all five registrations are
presented in the “total” row.

As seen in Table 2, among the classification networks,
in the “total” row, the multi-scale CNN and LSTM 6-3-1
achieved better results in terms of F1 score and the number
of cw misclassifications. This demonstrates that utilizing
information from different scales can improve the perfor-
mance. The LSTM design performed better in the SPREAD
study based on all of the measures in this table F1c, F1p,
F1w, F1, accuracy (Acc), κ coefficient and the number of
cw misclassifications. In the same evaluation in the DIR-Lab
4DCT study, there is no consistent superiority among the
multi-scale classification networks. In terms of F1, the multi-
scale CNN gained slightly better results i.e. 75.9% in com-
parison with single-scale CNN (73.9%) and LSTM (73.1%).
All in all, based on the number of cw misclassifications, the
multi-scale CNN and the LSTM design performs better than
the single-scale CNN.

Strikingly, direct quantization of the RegNet encoder
(method RegNet-t) performs quite well for affine registration

and for coarse B-spline registration with a small number of
iterations (20 and 100), leading to improved kappa values
compared to the other three classification networks. For in-
stance, for affine registration, RegNet-t achieved the highest
F1 score of 78.2% and 83.4% for SPREAD and DIR-Lab
4DCT, respectively. However, for more realistic B-spline reg-
istration with a larger number of iterations, the LSTM and the
multi-scale CNN methods perform better. For example for B-
spline registration with 2000 iterations, a F1 score of 68.9%
and 63.9% were obtained for the LSTM on the SPREAD and
DIR-Lab 4DCT datasets, respectively. Notably, the LSTM
decoder performs much better in terms of the number of cw
misclassifications compared to RegNet-t, especially for the
DIR-Lab 4DCT dataset where this number decreases from
197 to 77 in the “total” row. The inference time on a 3D patch
of size 205× 205× 205 was approximately 2.4, 0.7, 1.3,
and 2.8 seconds for RegNet-t, single-scale CNN, multi-scale
CNN, and LSTM, respectively.

Detailed results for the LSTM 6-3-1 decoder are reported
in Tables 3 and 4. Table 3 shows the confusion matrix for
the three classes correct, poor, and wrong, for the results
aggregated over all registration settings (the “total” row in
Table 2). The vast majority of misclassifications is one cat-
egory off, with only 0.23% (9/3915) and 0.51% (77/15000)
of the misclassifications two categories off, for the SPREAD
(case 13 to 21) and DIR-Lab 4DCT studies, respectively.
The intermediate hierarchical prediction results for each of
the LSTM time steps are given in Table 4. Such results are
not available for the CNN-based decoder, as that architecture
lacks the possibility for gradual refinement. In step 1, only
low resolution latent representations are available (L4), with
a prediction in two classes only: [0, 6) mm and above 6 mm.
This results in F1 scores of 92.4% and 60.1% for these
two classes, for the SPREAD data. The results are gradually
refined, by adding higher resolution representations and by
predicting more fine-grained registration error classes, see
Table 4. It can be seen that as the LSTM refines its results, the
F1p and F1w scores are gradually improved in both studies.
From step2 to step3-merged all F1 measures improve, in
particular for the DIR-Lab 4DCT study.
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TABLE 2: Landmark-based results on the test set. We report metrics over all five registration settings: affine and B-spline
registration after affine with 20, 100, 500, and 2000 iterations. The sub-indices c, p and w correspond to the correct [0,3),
poor [3,6) and wrong [6,∞) mm classes. The best method is shown in bold and the second best method is shown in green.
Total number of landmarks for each registration in SPREAD (cases 13 to 21) and DIR-Lab 4DCT studies are 783 and 3000,
respectively.

SPREAD (case 13 to 21) DIR-Lab 4DCT (case 1 to 10)

registration decoder F1c F1p F1w F1 Acc κ cw misclass F1c F1p F1w F1 Acc κ cw misclass

Affine RegNet-t 70.5 72.1 92.1 78.2 83.9 0.70 0 88.4 70.2 91.6 83.4 85.7 0.77 12
single CNN 41.3 51.5 87.8 60.2 75.1 0.49 7 86.1 59.8 90.7 78.9 83.1 0.72 9
multi CNN 47.8 71.2 92.1 70.3 81.6 0.66 0 88.5 66.6 85.6 80.2 81.0 0.71 2
LSTM 6-3-1 65.5 67.1 91.0 74.5 81.5 0.66 0 88.6 58.4 79.3 75.4 76.1 0.64 9

B-spline 20 RegNet-t 89.6 67.7 82.8 80.0 83.0 0.69 2 92.0 67.3 88.7 82.7 85.5 0.77 15
single CNN 77.1 47.1 65.5 63.2 66.3 0.47 37 89.7 56.7 87.4 77.9 82.4 0.73 29
multi CNN 83.7 64.4 82.1 76.7 77.4 0.62 2 90.2 64.0 82.2 78.8 80.5 0.71 6
LSTM 6-3-1 88.4 65.6 82.1 78.7 81.2 0.67 2 91.2 57.3 77.8 75.4 78.5 0.67 6

B-spline 100 RegNet-t 95.0 51.4 75.3 73.9 90.0 0.60 8 92.7 61.7 84.8 79.8 85.0 0.74 25
single CNN 84.6 30.6 53.0 56.0 73.2 0.36 42 88.6 47.4 83.9 73.3 80.1 0.67 55
multi CNN 91.8 48.8 76.4 72.3 85.1 0.55 8 91.0 57.3 73.7 74.0 78.9 0.66 9
LSTM 6-3-1 95.6 56.1 75.6 75.8 90.4 0.65 3 92.3 54.0 71.1 72.5 79.2 0.65 17

B-spline 500 RegNet-t 96.7 48.5 68.2 71.1 92.7 0.58 4 93.3 55.5 65.7 71.5 82.8 0.64 56
single CNN 86.5 25.1 43.0 51.5 76.0 0.30 51 88.7 36.4 75.4 66.8 77.6 0.59 81
multi CNN 93.7 43.8 73.8 70.5 88.3 0.52 10 91.4 53.3 62.8 69.2 79.0 0.61 17
LSTM 6-3-1 95.7 44.4 83.0 74.4 91.4 0.57 2 93.3 50.8 60.8 68.3 81.1 0.61 23

B-spline 2000 RegNet-t 96.7 27.3 56.2 60.1 93.0 0.41 7 93.2 46.3 43.6 61.0 81.7 0.54 89
single CNN 86.9 16.4 41.1 48.1 76.6 0.25 50 89.3 35.6 71.7 65.5 79.0 0.57 127
multi CNN 93.6 24.1 72.7 63.5 87.7 0.39 8 92.8 50.1 57.6 66.8 81.2 0.59 41
LSTM 6-3-1 96.2 30.6 80.0 68.9 92.2 0.50 2 93.6 42.9 55.3 63.9 81.9 0.56 22

total RegNet-t 94.2 63.4 87.9 81.8 88.5 0.76 21 92.4 61.6 83.2 79.1 84.1 0.73 197
single CNN 83.3 39.1 74.6 65.7 73.4 0.54 187 88.7 48.7 84.4 73.9 80.4 0.68 301
multi CNN 90.3 59.2 87.7 79.1 84.0 0.70 28 91.2 59.2 77.3 75.9 80.1 0.68 75
LSTM 6-3-1 93.6 60.4 87.8 80.6 87.4 0.75 9 92.3 53.8 73.2 73.1 79.4 0.66 77

TABLE 3: Confusion matrix of the landmark-based results
on the test set, for the trainable LSTM 6-3-1 decoder. We
report the aggregated values over all five registration settings:
affine and B-spline registration after affine with 20, 100, 500,
and 2000 iterations. The sub-indices c, p and w correspond to
correct [0,3), poor [3,6) and wrong [6,∞) mm classes. P and
A refer to the predicted and actual labels for each class. Total
number of landmarks for all five registrations in SPREAD
(case 13 to 21) and DIR-Lab 4DCT studies are 3915 and
15000, respectively.

SPREAD (case 13 to 21)
Ac Ap Aw

Pc 2441 117 3
Pp 209 371 72
Pw 6 88 608

DIR-Lab 4DCT (case 1 to 10)
Ac Ap Aw

Pc 7526 680 70
Pp 492 1757 1656
Pw 7 188 2624

Visual examples of the predictions for LSTM 6-3-1,
single CNN, multi CNN, and RegNet-t are illustrated in
Fig. 4. The ground truth misalignment on the landmark loca-
tions are dilated for better visualization. The color bar in the
top center image indicates the target registration error. For all
predictions, a three-label output is illustrated i.e. correct [0,3)

(green), poor [3,6) (yellow) and wrong [6,∞) mm (red). An
example of registration with affine and B-spline with 2000
iterations is given in Fig. 4a. LSTM 6-3-1 achieved the best
performance among the others with only one misclassifica-
tion out of 5 landmarks in this slice, where it incorrectly
predicted poor (yellow) label for the correct (green) land-
mark in the right lung (left side of this image). RegNet-t
underpredicted in this slice and misclassified in the wrong
(red) regions. Another example with only affine registration
is given in Fig. 4b. In this slice LSTM 6-3-1 and RegNet-t
predicted all four landmarks correctly.

F. COMPARISON WITH RANDOM FOREST METHOD

The proposed multi-stage hierarchical LSTM design is com-
pared to a conventional learning-based method using random
forests (see Section III-B5 for details). We compare this
method on the SPREAD (cases 13 - 21 ) and DIR-Lab 4DCT
(cases 1 to 5) studies, i.e. we excluded cases 6 to 10 from
DIR-Lab 4DCT as these cases were not present in the test
set of [21]. Since the random forest method was designed to
only predict non-rigid registration error, in this experiment
we only included B-spline registrations with 20, 100, 500,
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Fixed image Deformed moving image RegNet-t

single CNN multi CNN LSTM 6-3-1

(a) DIR-Lab 4DCT study, case 6 after affine and B-spline registration with 2000 iterations

Fixed image Deformed moving image RegNet-t

single CNN multi CNN LSTM 6-3-1

(b) DIR-Lab 4DCT study, case 7 after affine registration

FIGURE 4: Examples of the prediction output on entire image pairs registered using conventional registration techniques. The
ground truth misalignment on the landmark locations are overlaid in the deformed moving images. These landmarks are dilated
in this figure for a better visualization. The color bar indicates the target registration error, which is added on the top center
image. For all predictions, a three-label output is illustrated i.e. correct [0,3) (green), poor [3,6) (yellow) and wrong [6,∞) mm
(red). (a) Results on the case 6 from the DIR-Lab 4DCT study. The deformed moving image is obtained after an affine and
a B-spline registration with 2000 iterations. (b) Results on the case 7 from the DIR-Lab 4DCT study. The deformed moving
image is obtained after an affine transformation.

and 2000 iterations, thus excluding the affine registration.
The results are reported in Table 5. In terms of F1, the

proposed LSTM design achieved significantly better results

in both studies. On all F1 measures on both datasets, the
LSTM method outperforms the random forest method, ex-
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TABLE 4: Detailed hierarchical results of the landmark-
based results on the test set, for the trainable LSTM 6-3-
1 decoder. We report the aggregated values over all five
registration settings: affine and B-spline registration after
affine with 20, 100, 500, and 2000 iterations. The sub-indices
c, p and w correspond to correct [0,3), poor [3,6) and wrong
[6,∞) mm classes. The shaded cells represent a combination
of several fine-grained labels, as in earlier steps more coarse
classes are predicted.

time F1c 0-1 F1c 1-3 F1p F1w F1 Acc κ

SPREAD (case 13 to 21)

step 1 92.4 60.1 77.1 89.9 0.55
step 2 94.3 53.0 68.9 72.1 83.9 0.66
step 3 23.2 64.6 60.4 87.8 59.0 60.6 0.44
step 3-merged 93.6 60.4 87.8 80.6 87.4 0.75

DIR-Lab 4DCT (case 1 to 10)

step 1 84.2 14.9 49.6 73.3 0.11
step 2 83.6 28.0 22.9 44.8 61.6 0.32
step 3 53.8 67.2 53.8 73.2 62.0 63.3 0.50
step 3-merged 92.3 53.8 73.2 73.1 79.4 0.66

TABLE 5: Landmark-based results on the overlapping part
of the test set, comparing LSTM to the random forests
method (RF) [21]. The results include B-spline registration
with 20, 100, 500, and 2000 iterations. The sub-indices c,
p and w correspond to correct [0,3), poor [3,6) and wrong
[6,∞) mm classes.

method F1c F1p F1w F1 Acc
SPREAD (case 13 to 21)

RF 96.9 40.0 62.4 66.4 92.7
LSTM 93.6 60.4 87.8 80.6 87.4

DIR-Lab 4DCT (case 1 to 5)
RF 88.2 42.3 34.7 55.1 77.3
LSTM 94.0 56.4 66.7 72.4 84.2

cept for the F1c score on the SPREAD study, which were
93.6% vs 96.9% for LSTM vs RF. A compelling advantage
of the LSTM method is that it can be applied to affine
registrations as well as non-rigid registrations. Another major
advantage of the LSTM method is that the inference time is
about 22 seconds (for an image size of 410× 410× 410 mm)
compared to 3 hours for the random forests, where a lot of the
time is spent in the feature calculation (registration and local
normalized mutual information).

IV. DISCUSSION
We proposed a deep learning-based method to predict regis-
tration misalignment, using a hierarchical LSTM approach
with gradual refinements. We performed a wide range of
quantitative evaluations on multiple chest CT databases.

The performance of the compared decoders in Table 2
are not consistent in all registration settings. The B-spline
registration with 2000 iterations represents the most common

setting, as this represents an accurate registration. In this
case the proposed hierarchical LSTM method achieved the
best result in terms of F1, κ coefficient and the number
of cw misclassifications. In the “total” row, the number cw
misclassifications of the LSTM method is much smaller than
that of the RegNet-t. In the validation set in Table 1, the
LSTM design achieved slightly better results in comparison
to the multi-scale CNN design based on the F1, κ coeffi-
cient and the number of cw misclassifications, showing that
utilizing both the multi-resolution approach and hierarchical
refinements can improve the misalignment predictions.

The proposed encoding mechanism using RegNet showed
to be effective, as it achieved promising results even with a
simple thresholding ‘decoder’ as used in RegNet-t. In pre-
dicting the misalignment of the affine registration, RegNet-t
outperformed all other decoders. Since RegNet-t resamples
images after each stage, potentially it can capture larger
registration misalignment. We experimented with a similar
setup using the LSTM approach, resampling after each step.
However, the results of this experiment were not promising
on the validation set. Another difference is that the RegNet
was trained on artificial data with a maximum deformation of
20 mm in each direction for the course resolution (RegNet4),
whereas the the maximum deformation in this study is set to
10 mm in each direction (about 17 mm in vector magnitude).
It should be noted that in terms of the total number of cw
misclassifications, the LSTM and CNN designs are still more
in favor, which are reported as 9, 2, and 12 for the LSTM,
multi-scale CNN and RegNet-t, in order (see the first four
rows in Table 2).

The distribution of the labels “correct”, “poor” and
“wrong” are highly imbalanced in image registration. For
instance, in the test set within five registration settings, the
distribution of samples are 67.8%, 14.7%, 17.5% in the
SPREAD study and 53.5%, 17.5%, 29.0% in the DIR-Lab
4DCT for the labels correct, poor and wrong, respectively.
In order to mimic the same distribution during training, the
probability of selecting patches in the range [0,3), [3,6) and
[6,∞) mm are set to 60%, 20% and 20%, respectively (see
Section III-B1). However, this can influence the first step
of the LSTM training as the sampling becomes imbalanced
again in this step.

A comparison to previous methods for predicting registra-
tion misalignment is not trivial due to differences in approach
(classification, regression) as well as the use of different
test datasets. Table 6 gives an overview of several methods
from the literature. A classification-based approach to esti-
mate registration misalignment was also presented in [19].
They proposed a classical learning-based approach using
several hand-crafted features. Muenzing et al. [19] reported
F1 scores of 95.3%, 73.8% and 86.6% in the labels [0,2),
[2,5) and [5,∞) mm. It is not trivial to compare our results
to this method because the evaluation is done on different
data and using different thresholds for labels. When it comes
to the dense prediction for an entire image, calculating those
hand-crafted features become quite time-consuming. In the

10 VOLUME 1, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3074124, IEEE Access

Sokooti et al.

TABLE 6: A summary of some of the earlier approaches for estimating registration misalignment. For simplification, results
are averaged over all reported test data. RF refers to a random forest and NA refers to “not available”.

article output method data training testing result

Hub et al. [10], 2009 continuous,
local perturbing input chest CT,

in-house NA artificial DVF NA

Muenzing et al. [19], 2012 classification,
local

cascade classifiers with
intensity based features

chest CT,
in-house

landmarks in real
data

landmarks in real
data F1 85.2%

Sokooti et al. [21], 2019 regression,
local

RF using intensity and
registration based features

chest CT,
in-house + public

landmarks in real
data

landmarks in real
data

MAE 1.42 mm,
F1 60.75%

Saygili [13], 2020 regression,
local block matching + RF chest CT, public landmarks in real

data
landmarks in real
data

MAE 2.0 mm,
Acc 81.8%

Eppenhof and Pluim [25],
2018

regression,
local CNN chest CT, public artificial DVF

under 4 mm
landmarks in real
data RMSD 0.66 mm

de Senneville et al. [26],
2020

classification,
global

CNN + linear regression
(classifier) brain MR, public artificial affine

DVF real data Binary Acc
96.0%

Proposed method classification,
local ConvLSTM chest CT,

in-house + public
artificial DVF
under 17 mm

landmarks in real
data F1 76.5%

CNN-based approaches, Eppenhof and Pluim [25] proposed
a regression network to predict registration misalignment.
They trained on the odd-numbered images from the DIR-
Lab-4DCT and the COPDgene data sets and tested on the
even-numbered scans, and on two additional chest CT stud-
ies. They reported a root-mean-square deviation (RMSD) of
0.66 mm between the ground truth TRE and the predicted
one for landmarks with ground truth TRE below 4 mm.
The main limitation is that the method predicts registration
misalignment smaller than 4 mm only. Since our proposed
method has one label corresponding to misalignment in the
range [6,∞) mm, a quantitative comparison is not feasible.
In Section III-E, we drew a comparison between the pro-
posed LSTM method and a random forests regression method
[21]. We kept the experiment settings as similar as possible.
However, some minor differences still exist. For instance, the
voxel size in the LSTM method is resampled to an isotropic
size of [1, 1, 1] mm, whereas in the random forests method,
resampling is not applied. Since one of the proposed features
in [21] was the variation of the transformations with respect
to the initial states of the B-spline grid, it is not possible to
use this approach for affine registration.

In this study, we proposed to use RegNet [35] to en-
code a pair of images using a multi-resolution approach
to high-dimensional feature maps. Although the experiment
with a simple decoder as RegNet-t reveals that encoding
with RegNet is quite powerful, potentially, any registration
network can be used instead of RegNet. It could therefore
be interesting to perform a comparison between different
network architectures. The proposed method is designed with
three resolutions of the input given in three steps to the
LSTM block. At the third resolution, the receptive field of the
network is usually larger than an entire chest CT image (with
a spacing of 1 mm). Thus, potentially no further contextual
information can be achieved by increasing the number of res-
olutions. However, varying the number of steps in the LSTM
block can be an interesting experiment. We experimented
with three steps, but with various splitting values in Section
III-D. The number of steps of the LSTM can be increased

even with identical inputs, similar to [32].
The proposed method is expected to be sensitive to

anatomical changes like tumor growth. Thus, it may detect
those regions as a suboptimal local registration. This limi-
tation may potentially be addressed by adding a new type
of deformation to the artificial training data strategy, which
mimics such anatomical changes. For example, in this study
we modelled respiratory motion specifically designed for
lungs (see Section II-B), as we performed all experiments
on chest CT scans. This may be extended with additional
realistic artificial data generation types, for other use cases.
However, the proposed training and prediction methods are
generic and independent of the image type. In future work,
the proposed method could be evaluated on other modalities
and anatomical sites as well. Although all non-rigid exper-
iments in this study are performed using B-spline registra-
tion, potentially, the proposed method is independent of the
registration paradigm and can be applied to other non-rigid
registration methods.

V. CONCLUSION

We proposed a framework for classifying registration mis-
alignment using deep learning, consisting of encoding rele-
vant features in a latent space and a hierarchical and gradually
refining LSTM decoder for the prediction. Multi-resolution
contextual information is incorporated in the design. The net-
work is fully trained over artificially generated images, while
the evaluation is performed over realistic chest CT scans.
The proposed decoder is compared with two other CNN-
based decoders and a method based on the output of a deep
learning based registration RegNet-t. A comprehensive study
is performed on two independent test sets (SPREAD case 13
to 21, and DIR-Lab 4DCT) with various registration settings.
In the B-spline registration with 2000 iterations, the proposed
method achieved an F1 and number of cw misclassifications
of 68.9%, 2 and 63.9%, 22 in the SPREAD and the DIR-
LAB 4DCT studies, respectively. In the aggregation of all
registration settings, the proposed LSTM design obtained the
least number of cw misclassifications. At the inference time,
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the proposed method can predict a dense map in about 22
seconds.
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