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ABSTRACT
Medical image registration and segmentation are two of the most frequent tasks in medical image analysis.
As these tasks are complementary and correlated, it would be beneficial to apply them simultaneously in
a joint manner. In this paper, we formulate registration and segmentation as a joint problem via a Multi-
Task Learning (MTL) setting, allowing these tasks to leverage their strengths and mitigate their weaknesses
through the sharing of beneficial information. We propose to merge these tasks not only on the loss level,
but on the architectural level as well. We studied this approach in the context of adaptive image-guided
radiotherapy for prostate cancer, where planning and follow-up CT images as well as their corresponding
contours are available for training. At testing time the contours of the follow-up scans are not available,
which is a common scenario in adaptive radiotherapy. The study involves two datasets from different
manufacturers and institutes. The first dataset was divided into training (12 patients) and validation (6
patients), and was used to optimize and validate the methodology, while the second dataset (14 patients) was
used as an independent test set. We carried out an extensive quantitative comparison between the quality of
the automatically generated contours from different network architectures as well as loss weighting methods.
Moreover, we evaluated the quality of the generated deformation vector field (DVF). We show that MTL
algorithms outperform their Single-Task Learning (STL) counterparts and achieve better generalization on
the independent test set. The best algorithm achieved a mean surface distance of 1.06± 0.3 mm, 1.27± 0.4
mm, 0.91±0.4 mm, and 1.76±0.8 mm on the validation set for the prostate, seminal vesicles, bladder, and
rectum, respectively. The high accuracy of the proposed method combined with the fast inference speed,
makes it a promising method for automatic re-contouring of follow-up scans for adaptive radiotherapy,
potentially reducing treatment related complications and therefore improving patients quality-of-life after
treatment. The source code is available at https://github.com/moelmahdy/JRS-MTL.

INDEX TERMS Image Segmentation, Deformable Image Registration, Adaptive Radiotherapy, Contour
Propagation, Convolutional Neural Networks (CNN), Multi Task Learning (MTL), Uncertainty Weighting,
Dynamic Weight Averaging.

I. INTRODUCTION

Medical image analysis aims to extract clinically useful in-
formation that aids the diagnosis, prognosis, monitoring and
treatment of diseases [1], [2]. Two of the most common tasks
in such analyses are image registration and segmentation [3].
Image segmentation aims to identify and cluster objects that

prevail similar characteristics into distinctive labels, where
these labels can be used for diagnosis or treatment planning.
Image registration is the task of finding the geometrical
correspondence between images that were acquired at differ-
ent time steps or from different imaging modalities. These
two tasks are complementary, as for example image atlases
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warped by image registration algorithms are often used for
image segmentation [4], [5], while image contours can be
used to guide the image registration method in addition to
the intensity images [6], [7], [8]. Contours are also used for
evaluating the quality of the registration [9], [10]. However,
each of these tasks has its own strengths and weaknesses.
For instance, image segmentation algorithms can directly
delineate images based on texture and surrounding anatomy,
and may therefore be robust to large organ deformations.
However it sometimes has difficulties with low contrast areas
and irregularly shaped organs. On the other hand, image regis-
tration algorithms have the ability to encode prior knowledge
of the patient’s anatomy and therefore may perform better
on low quality images. However, such methods sometimes
have difficulty with large deformations. Therefore, coupling
of image registration and segmentation tasks and modeling
them in a single network could leverage their strengths and
mitigate their weaknesses through the sharing of beneficial
information.

Adaptive image-guided radiotherapy is an exemplar ap-
plication where the coupling of image registration and seg-
mentation is vital. In radiotherapy, treatment radiation dose
is delivered over a course of multiple inter-fraction sessions.
In an adaptive setting, re-imaging of the daily anatomy and
automatic re-contouring is crucial to compensate for patient
misalignment, to compensate for anatomical variations in
organ shape and position, and an enabler for the reduction
of treatment margins or robustness settings [11], [12]. These
have an important influence on the accuracy of the dose deliv-
ery, and improve the treatment quality, potentially reducing
treatment related side-effects and increasing quality-of-life
after treatment [13]. Automatic contouring can be done by
direct segmentation of the daily scan, or by registration of
the annotated planning scan with the daily scan followed by
contour propagation. Image registration has the advantage of
leveraging prior knowledge from the initial planning CT scan
and the corresponding clinical-quality delineations, which
may especially be helpful for challenging organs. On the
other hand, image segmentation methods may better delineate
organs that vary substantially in shape and volume between
treatment fractions, which is often the case for the rectum and
the bladder. In this study, we propose to fuse these tasks at the
network architecture level as well as via the loss function. Our
key contributions in this paper are as follows:

1) We formulate image registration and segmentation as a
multi-task learning problem, which we explore in the
context of adaptive image-guided radiotherapy.

2) We explore different joint network architectures as well
as loss weighting methods for merging these tasks.

3) We adopt the cross-stitch network architecture for seg-
mentation and registration tasks and explore how these
cross-stitch units facilitate information flow between
these tasks.

4) Furthermore, we compare MTL algorithms against
single-task networks. We demonstrate that MTL algo-

rithms outperform STL networks for both segmentation
and registration tasks. To the best of our knowledge this
is the first study to investigate various MTL algorithms
on an architectural level as well as on a loss weighing
level for joint registration and segmentation tasks.

5) We thoroughly investigate the internals of the STL
and MTL networks and pinpoint the best strategy to
merge this information to maximize the information
flow between the two tasks.

Initial results of this work were presented in [14], focusing
on the cross-stitch unit in a proposed joint architecture. In the
current paper we extend this study to the architectural fusion
of these tasks as well as different loss weighting mechanisms.
Moreover, an extensive analysis of the different methodologies
was performed, detailing the effect of architectural choices,
information flow between the two tasks, etc.

The remainder of this paper is organized as follows: Section
II introduces single-task networks, multi-task networks, and
loss weighting approaches. In Section III we introduce the
datasets and details about the implementation as well as
the experiments. In Sections V and VI, we discuss our
results, provide future research directions, and present our
conclusions.

A. RELATED WORK
In the last decade, researchers have been exploring the idea
of fusing image segmentation and registration. Lu et al.
[15] and Pohl et al. [16] proposed modeling these tasks
using a Bayesian framework such that these tasks would
constrain each other. Yezzi [17] proposed to fuse these tasks
using active contours, while Unal et al. [18] proposed to
generalize the previous approach by using partial differential
equations without shape priors. Mahapatra et al. [8] proposed
a Joint Registration and Segmentation (JRS) framework
for cardiac perfusion images, where the temporal intensity
images are decomposed into sparse and low rank components
corresponding to the intensity change from the contrast agent
and the motion, respectively. They proposed to use the sparse
component for segmentation and the low rank component for
registration. However, most of the aforementioned methods
require complex parameter tuning and yield long computation
times.

Recently, deep learning-based networks have shown un-
precedented success in many fields especially in the medical
image analysis domain [19], [20], [21], [22], [23], [24], where
deep learning models perform on par with medical experts
or even surpassing them in some tasks [25], [26], [27], [28].
Several deep learning-based approaches have been proposed
for joint registration and segmentation. The joining mech-
anisms in the literature can be classified in two categories,
namely joining via the loss function and via the architecture
as well as the loss function. Selected exemplar methods of
the first approach are Hue et al. [29], who proposed to join
segmentation and registration via a multi-resolution Dice loss
function. Elmahdy et al. [6] proposed a framework that is
a hybrid between learning and iterative approaches, where a
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CNN network segments the bladder and feeds it to an iterative-
based registration algorithm. The authors integrated domain-
specific knowledge such as air pocket inpainting as well as
contrast clipping, moreover they added an extra registration
step in order to focus on the seminal vesicles and rectum.
Elmahdy et al. [7] and Mahapatra et al. [30] proposed a GAN-
based (Generative Adversarial Network) approach, where a
generative network predicts the correspondence between a pair
of images and a discriminator network for giving feedback
on the quality of the deformed contours. Exemplar methods
of the second category are Xu et al. [31], who presented a
framework that simultaneously trains a registration and a
segmentation network. The authors proposed to jointly learn
these tasks during training, however the networks can be used
independently during test time. This enables prediction of
only the registration output, when the labels are not available
during test time. Estienne et al. [32] proposed to merge affine
and deformable registration as well as segmentation in a 3D
end-to-end CNN network. Recently Liu et al. [33] proposed an
end-to-end framework called JSSR that registers and segments
multi-modal images. This framework is composed of three
networks: a generator network, that synthesizes the moving
image to match the modality of the fixed image, a registration
network that registers the synthesized image to the fixed
image, and finally a segmentation network that segments the
fixed, moving, and synthesized images.

All the previous methods explored the idea of joining
segmentation and registration, where to the best of our
knowledge none have explored how these tasks are best
connected and how to optimize the information flow between
them on both the loss and architectural levels.

II. METHODS
A. BASE NETWORK ARCHITECTURE

The base architecture for the networks in this paper is a 3D
CNN network inspired by the U-Net and BIRNet architectures
[34], [35]. Figure 1a shows the architecture of the base
network. The network encodes the input through 3 × 3 × 3
convolution layers with no padding. LeakyReLU [36] and
batch normalization [37] are applied after each convolutional
layer. We used strided convolutions in the down-sampling
path and trilinear upsampling layers in the upsampling path.
Through the upsampling path, the number of feature maps
increases while the size of the feature maps decreases, and
vice versa for the down-sampling path. The network has three
output resolutions and is deeply supervised at each resolution.
Each resolution is preceded by a 1× 1× 1 fully convolution
layer (Fconv) so that at coarse resolution, the network can
focus on large organs as well as large deformations, while vice
versa at fine resolution. In order to extract the groundtruth for
different resolutions, we perform cropping of different sizes
as well as strided sampling so that for every input patch of
size n3, the sizes of the coarse, mid, and fine resolution are
(n4 − 7)3, (n2 − 18)3, and (n− 40)3, respectively.

B. SINGLE TASK LEARNING
Single-task networks are designed to solve one task and there-
fore require a large amount of labeled training samples, which
are scarce in the medical domain since it takes time and trained
medical personnel to contour these images. The segmentation
and registration networks have the same architecture as the
base network depicted in Figure 1a, but differ in the input
and output layers. Here, single-task networks are considered
baseline networks for comparing with the performance of the
proposed multi-task networks.

1) Segmentation Network
The input to the segmentation network is the daily CT scan,
referred to as the fixed image If , where the network predicts
the corresponding segmentation Spred

f . Spred
f represents the

probability maps for the background, target organs, and
organs-at-risk. The network was trained using the Dice
Similarity Coefficient (DSC) loss, which quantifies the overlap
between the network prediction Spred

f and the groundtruth Sf
as follows:

LDSC = 1− 1

K

K∑
k=1

2 ∗
∑
x S

pred
k (x) · Sk(x)∑

x S
pred
k (x) +

∑
x Sk(x)

, (1)

where K is the number of structures to be segmented, x is the
voxel coordinate, Sk is the ground truth segmentation, and
Spred
k the predicted probabilities. The network has 779,436

trainable parameters.

2) Registration Network
The input to the registration network is the concatenation
of the planning scan, referred to as the moving image Im
and the daily scan If . The network predicts the geometrical
correspondence between the input images. This correspon-
dence is represented by the displacement vector field (DVF),
referred to as φpred. This DVF is then used to warp Im. In
an ideal scenario, the warped moving image Iwarped

m would
be identical to If . The network is trained using Normalized
Cross Correlation (NCC) in order to quantify the dissimilarity
between Iwarped

m and If . Since the images are from a single
imaging modality (CT) with a similar intensity distribution,
NCC is an obvious choice abundantly used in the registration
literature. Moreover, the implementation is straightforward
and efficient when using plain convolution operations. NCC
is defined by the following equation:

LNCC = 1−
∑

x[(If (x)−If )·(I
warped
m (x)−Iwarped

m )]

σIf
σ
I
warped
m

,

(2)
where x is the voxel coordinate, and σIf and σIwarped

m
are

the standard deviation of the fixed and warped images,
respectively. In order to encourage the network to predict
a smooth DVF, a bending energy penalty term is added for
regularization:

LBE =
1

N

∑
x

‖H(φpred(x))‖22, (3)
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FIGURE 1: The proposed network architectures introduced in the paper. (a) is the base STL network architecture for either
segmentation or registration, but also represents the dense parameter sharing MTL network architecture; (b) is the architecture
with a shared encoder, while (c) is the Cross-stitch network architecture. Details about the number of feature maps are presented
in Section III-B.

where H is the Hessian matrix. Now the total registration loss
becomes:

LRegistration = LNCC + w · LBE, (4)

where w is the bending energy weight. For more details on the
selection of w, see Section IV-A. The network has 779,733
trainable parameters.

C. MULTI TASK LEARNING
In Multi-Task Learning (MTL), related tasks regularize each
other by introducing an inductive bias, thus making the model
agnostic to overfitting compared to its STL counterparts [38].
MTL can also be considered as an implicit data augmentation
strategy, since it effectively increases the training sample size
while encouraging the model to ignore data-dependent noise.
Because different tasks have different noise patterns, modeling
these tasks simultaneously enables the model to generalize
well [39]. Moreover, in MTL models, some features can be
more easily learned by one task than another, thus encouraging
information cross-talk between tasks [40].

Also, in real-world scenarios, physicians usually incorpo-
rate knowledge from different imaging modalities or previous
tasks in order to come up with a diagnosis or better under-
standing of the underlying problem. This illustrates that the

knowledge embedded in one task can be leveraged by other
tasks and hence it is beneficial to jointly learn related tasks.

Choosing the architecture of an MTL network is based on
the following two factors [41]: what to share and how to share.
What to share defines the form in which knowledge is shared
between tasks. This knowledge sharing can be done through
hand-crafted features, input images, and model parameters.
How to share determines the optimal manner in which this
knowledge is shared. In this paper, we focus on parameter-
based sharing.

In the following sections, we investigate different MTL
network architectures in order to best understand how seg-
mentation and registration tasks share information on the
architectural level. The investigated networks predict two sets
of contours, one set resulting from the segmentation task and
one from the registration task. In this paper, we select the best
set of contours as the final output, based on the validation
results. More sophisticated strategies are discussed in Section
V.

1) Joint Registration and Segmentation via the Registration
network
The network in this method, dubbed JRS-reg, has the same
architecture as the STL registration network from Section
II-B2, except that this network is optimized using a joint loss
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as presented in Eq. 6.

2) Dense Parameter Sharing
In this architecture both segmentation and registration tasks
are modeled using a single network, where both tasks share
all parameters except for the task-specific parameters in
the output layer, see Figure 1a. The network architecture is
the same as the base network (see Section II-A) except for
the input and output layers. This dense sharing eliminates
overfitting issues since it enforces the parameters to model
all the tasks at once, however it does not guarantee the best
representation for individual tasks [41]. The input to the
network is the concatenation of Im, If , and Sm. The network
predicts the φpred between input images as well as Spred

f . The
network has 781,164 trainable parameters.

3) Encoder Parameter Sharing
Since the input to the segmentation and registration tasks are
both CT scans, this means they both encode similar features
in the down-sampling path of the network. Therefore in this
network both tasks share the encoding path and then splits
into two upsampling task specific decoder paths. We call
this network the Shared Encoder Double Decoder (SEDD)
network. Figure 1b shows the architecture of the network. The
input to the network is the concatenation of Im, If , and Sm.
The network predicts φpred between the input images from the
registration path while predicting Spred

f from the segmentation
path. The network has 722,936 trainable parameters.

4) Cross-stitch network
A flexible approach to share parameters is via a Cross-Stitch
(CS) network [42]. In contrast to the heuristic approach of
manually choosing which layers are shared and which are
task-specific, the CS network introduces a learning-based unit
to determine the amount of feature sharing between tasks. The
CS units learn to linearly combine feature maps from the two
networks, one for segmentation and one for registration, as
shown in Figure 1c. The unit itself is defined as:[

X̄`,k
S

X̄`,k
R

]
=

[
α`,kSS α`,kSR

α`,kRS α`,kRR

][
X`,k
S

X`,k
R

]
, (5)

where X`,k
S and X`,k

R represent the feature maps k at layer l
for the segmentation and registration networks, respectively.
α`,kSS , α`,kSR, α`,kRS , and α`,kRR represent the learnable parameters
of the CS unit. X̄`,k

S and X̄`,k
R are the output feature maps for

the segmentation and registration networks, respectively. The
advantage of CS units is that the network can dynamically
learn to share the feature maps in case this is beneficial in
terms of the final loss value. In case there is no benefit,
an identity matrix can be learned, so that the feature maps
become task-specific. This allows the network to learn a
smooth sharing between the tasks at a negligible increase
in the number of parameters. As suggested by the original
paper, we placed the CS units after the downsampling and

upsampling layers resulting in a total of 4 CS units. The CS
network has 779,000 trainable parameters.

D. LOSS WEIGHTING
The loss function for the MTL networks is defined by:

L = w0·LNCC+w1·LDSC−R+w2·LDSC−S+w3·LBE, (6)

where wi are the loss weights. They are chosen based on
the relative contribution of their corresponding tasks, so that
different tasks would learn at the same pace. These weights
can be chosen manually based on empirical knowledge, or
automatically. A simple choice would be to weigh the losses
equally with a fixed weight of 1. Following are some exemplar
algorithms for choosing the loss weights automatically. Chen
et al. proposed GradNorm [43] to weigh different tasks by
dynamic tuning of the gradient magnitudes of the tasks. This
tuning is achieved by dynamically changing the learning
rate for each task so that all tasks would be learning at the
same speed. The drawback of this approach is that it requires
access to the internal gradients of the shared layers which
could be cumbersome. Moreover, one needs to choose which
shared layer to back propagate to in case of multiple shared
layers. Kendall et al. [44] proposed to weigh each task by
considering the homoscedastic uncertainty of that task, so
that tasks with high output variance will be weighted less than
tasks with low variance. This approach only adds few trainable
parameters, namely equal to the number of loss functions.
Inspired by GradNorm, Liu et al. proposed Dynamic Weight
Averaging (DWA) [45], where each task is weighted over time
by considering the rate of change of the relative loss weights.
Contrary to GradNorm, DWA only requires the numerical
values of the loss functions rather than their derivatives. In
this paper, we compared equal weights versus homoscedastic
uncertainty and DWA. For all the experiments, we set the
weight of the bending energy to a fixed value of 0.5 (for more
details see Section IV-A) instead of a trainable one. This is
to prevent the network to set it too low in order to improve
the DSC of the deformed contours on the account of the
smoothness of the predicted DVF.

1) Homoscedastic Uncertainty
Homoscedastic uncertainty was proposed as a loss weighting
method by Kendall et al. [44]. This is a task-dependant
uncertainty which is not dependant on the input data but rather
varies between tasks. The authors derived their finding by
maximizing the Gaussian likelihood while considering the
observational noise scalar σ that represents the homoscedastic
uncertainty term related to each task. The following equation
describes the weight loss using homoscedastic uncertainty,
where σ is a trainable parameter:

Lhomoscedastic =

T∑
i=1

1

σ2
i

Li + log σi, (7)

where T is the number of tasks. The higher the uncertainty of
task i, the lower the contribution of its associated lossLi to the
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overall loss. The log term can be viewed as a regularization
term, so that the network would not learn a trivial solution by
setting the uncertainty of all tasks to extreme values.

2) Dynamic Weight Averaging
Dynamic Weight Averaging (DWA) was proposed by Liu
et al. [45]. Similar to GradNorm [43], DWA weights the
losses via the rate of change of the loss of each task over
the training iterations t. In contrast to GradNorm, DWA does
not require access to the internal gradients of the network, but
only requires the numerical loss values. According to DWA,
the weight w of the loss L associated with the task k is defined
as:

wk(t) =
K exp(rk(t− 1)/tmp)∑
i exp(ri(t− 1)/tmp)

, rk(t− 1) =
Lk(t− 1)

Lk(t− 2)
,

(8)
where rk is the relative loss ratio and tmp is the temperature
that controls the smoothness of the the task weighting. Here,
we set tmp = 1 as suggested by the original paper. For the
initial two iterations, rk(t) is set to 1.

III. DATASETS, IMPLEMENTATION, AND EVALUATION
A. DATASETS
This study involves two datasets from two different institutes
and scanners for patients who underwent intensity-modulated
radiotherapy for prostate cancer. The first dataset is from
Haukeland Medical Center (HMC), Norway. The dataset has
18 patients with 8-11 daily CT scans, each corresponding
to a treatment fraction. These scans were acquired using a
GE scanner and have 90 to 180 slices with a voxel size of
approximately 0.9 × 0.9 × 2.0 mm. The second dataset is
from Erasmus Medical Center (EMC), The Netherlands. This
dataset consists of 14 patients with 3 daily CT scans each.
The scans were acquired using a Siemens scanner, and have
91 to 218 slices with a voxel size of approximately 0.9 ×
0.9 × 1.5 mm. The target structures (prostate and seminal
vesicles) as well as organs-at-risk (bladder and rectum) were
manually delineated by radiation oncologists. All datasets
were resampled to an isotropic voxel size of 1 × 1 × 1 mm.
All scans and corresponding contours were affinely registered
beforehand using elastix [46], so that corresponding
anatomical structures would fit in the network’s field of view.
The scan intensities were clipped to [-1000, 1000] .

B. IMPLEMENTATION AND TRAINING DETAILS
All experiments were developed using Tensorflow (version
1.14) [47]. The convolutional layers were initialized with
a random normal distribution (µ = 0.0, σ = 0.02). All
parameters of the Cross-stitch units were initialized using a
truncated normal distribution (µ = 0.5, σ = 0.25) in order to
encourage the network to share information at the beginning of
the training. In order to ensure fairness regarding the number
of parameters in all the networks, the number of filters for the
Cross-stitch network were set to [16, 32, 64, 32, 16], while for
the other networks the numbers were scaled by

√
2 resulting

in [23, 45, 91, 45, 23] filtermaps. This results in approximately
7.8×105 trainable parameters for each network. The networks
were trained using the RAdam optimizer [48] with a fixed
learning rate of 10−4. Patches were sampled equally from
the target organs, organs-at-risk and torso. All networks were
trained for 200K iterations using an initial batch size of 2. The
batch size is then doubled by switching the fixed and moving
patches so that the network would warp the fixed patch to the
moving patch and vice versa at the same training iteration.

The networks were trained and optimized on the HMC
dataset, while the EMC dataset was used as an independent
test set. Training was performed on a subset of 111 image
pairs from 12 patients, while validation and optimization was
carried out on the remaining 50 image pairs from 6 patients.

From each image, 1,000 patches of size 96 × 96 × 96
voxels were sampled. The size of the patch was chosen so that
it would fit in the GPU memory, while still producing a patch
size of 173 at the lowest resolution, which is a reasonable
size to encode the deformation from the surrounding region.
Losses from the deeply supervised resolutions were weighted
equally, 1

3 each. Training was performed on a cluster equipped
with NVIDIA RTX6000, Tesla V100, and GTX1080 Ti GPUs
with 24, 16 and 11 GB of memory, respectively. The source
code is available at https://github.com/moelmahdy/JRS-MTL.

C. EVALUATION METRICS
The automatically generated contours are evaluated geomet-
rically by comparing them against the manual contours for
the prostate, seminal vesicle, rectum, and bladder. The Dice
similarity coefficient (DSC) measures the overlap between
contours:

DSC =
∑ 2 | Sf ∩ Sg |
| Sf | + | Sg |

, (9)

where Sg is the generated contour from either the segmen-
tation or the registration network. The distance between the
contours is measured by the Mean Surface Distance (MSD)
and Hausdorff Distance (HD) defined as follows:

MSD =
1

2

(
1

N

n∑
i=1

d (ai, Sg) +
1

M

m∑
i=1

d (bi, Sf )

)
, (10)

HD = max

{
max
i
{d (ai, Sg)} ,max

j
{d (bi, Sf )}

}
, (11)

where {a1; a2; . . . ; an} and {b1; b2; . . . ; bm} are the
surface mesh points of the manual and generated contours,
respectively, and d (ai, Sg) = minj ‖bj − ai‖. For all the
experiments, we apply the largest connected component
operation on the network prediction.

In order to evaluate the quality of the deformations, we
calculate the determinant of the Jacobian matrix. A Jacobian
of 1 indicates that no volume change has occurred; a Jacobian
> 1 indicates expansion, a Jacobian between 0 and 1 indicates
shrinkage, and a Jacobian ≤ 0 indicates a singularity, i.e.
a place where folding has occurred. We can quantify the
smoothness and quality of the DVF by indicating the fraction
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of foldings per image and by calculating the standard deviation
of the Jacobian alongside the MSD of the segmentation.

A repeated one-way ANOVA test was performed using
a significance level of p = 0.05. P-values are only stated
for the comparisons between the best network with the other
networks.

IV. EXPERIMENTS AND RESULTS
In the paper we present two single-task networks dubbed
Seg and Reg networks (see Sections II-B1 and II-B2 for
more details). Moreover, we investigated multiple multi-
task networks, namely JRS-reg, dense, SEDD, and Cross-
stitch (see Sections II-C1, II-C2, II-C3, and II-C4 for more
details). We compared our proposed methods against three
state-of-the-art methods that were developed for prostate
CT contouring. These methods represent three approaches,
namely an iterative conventional registration method, a deep
learning-based registration method, and a hybrid method. For
the iterative method, we used elastix software [46] with
the NCC similarity loss using the settings proposed by Qiao et.
al. [49]. In the deep learning method proposed by Elmahdy et.
al. [7], a generative network is trained for contour propagation
by registration, while a discrimination network evaluates the
quality of the propagated contours. Finally, we compare our
methods against the hybrid method proposed by Elmahdy et.
al. [6], where a CNN network segments the bladder and then
feeds it to the iterative registration method as prior knowledge.

Following, we optimize some of the network settings on the
validation set (HMC), in order to investigate the influence
of the bending energy weight, network inputs, weighting
strategy and network architecture on the results. Then, on the
independent test set, we present the final results comparing
with methods from the literature.

A. BENDING ENERGY WEIGHT
We compared the single-task registration, the JRS-reg method
and the Cross-stitch network for a set of bending energy
weights, see Equations (4) and (6), while the weights of
the other loss functions are set to 1. Figure 2 shows the
performance of the aforementioned methods using different
bending energy weights. The optimal performance of the
registration network occurs at a bending weight of 0.5, while
the optimal bending weight for both JRS-reg and Cross-stitch
network is much lower but with higher standard deviation of
the Jacobian. Therefore, for the remainder of the paper we set
the weight of the bending energy to 0.5 since it achieves the
best compromise between the contour performance in terms
of MSD and the registration performance in terms of the std.
of the Jacobian determinant.

B. OPTIMIZATION OF THE NETWORKS INPUTS
During training, validation, and testing, we have access to
the fixed image If , the moving image Im, and the moving
segmentation Sm. In Table 1 we compared different sets of
inputs on the validation dataset. This experiment helps to
better understand how these network interpret and utilize these
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FIGURE 2: The performance of the registration, JRS-
registration and Cross-stitch networks with different bending
energy weights on the validation set (HMC), in terms of mean
MSD averaged over the four organs. The annotation at each
point represents the standard deviation of the determinant of
the Jacobian.

inputs and how this would reflect on the network outcome
represented by the MSD metric. For this experiment we used
equal loss weights for the MTL networks.

Feeding Sm to the segmentation network improves the
results substantially compared to only feeding If , especially
for the seminal vesicles, while feeding Im deteriorates the
results. For the registration and JRS-reg networks, feeding
Sm alongside If and Im resulted in a similar performance
compared to not feeding it. Since the Cross-stitch network is
composed of two networks, one for segmentation and the other
for registration, we experimented with various combinations
of inputs. The results are very consistent with our previous
findings on the single-task networks on the effect of using Sm
as an input.

For the remainder of this paper, we chose to use If as input
for the segmentation network, and If and Im as inputs for the
registration network. Although adding Sm proved to be better
especially for the segmentation network, here we exclude
it, since these two methods act as a baseline and this is the
standard setting in single-task networks. For dense, SEDD,
and JRS-reg networks, we select a concatenation of Im, If ,
and Sm for the final network. For the Cross-stitch network, we
select If for the segmentation network and the concatenation
of Im, If , and Sm for the registration network.
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TABLE 1: The effect of network input for the different architectures on the validation set (HMC) in terms of MSD (mm). Lower
values are better. Here, ⊕ is the concatenation operation, and ·‖· represents the inputs to the segmentation network (left of ‖)
and the inputs to the registration network (right of ‖). Stars denote one-way ANOVA statistical significance with respect to the
Cross-stitch network with If || If ⊕ Im ⊕ Sm as inputs.

Prostate Seminal vesicles Rectum Bladder
Network Input Output path µ± σ median µ± σ median µ± σ median µ± σ median

Seg

If 1.49± 0.3∗ 1.49 2.50± 2.6 2.09 3.39± 2.2 2.73 1.60± 1.1∗ 1.13
If ⊕ Sm 1.31± 0.4 1.23 1.63± 0.9 1.26 2.88± 3.4 2.06 1.12± 0.5 0.97
If ⊕ Im 3.06± 0.6∗ 3.01 5.36± 4.4 3.71 14.57± 9.4∗ 11.58 1.46± 1.3 1.12

If ⊕ Im ⊕ Sm 1.26± 0.4 1.20 2.08± 2.2 1.27 2.79± 1.6 2.45 1.05± 0.4 0.97

Reg If ⊕ Im 1.43± 0.8∗ 1.29 1.71± 1.4∗ 1.37 2.44± 1.1∗ 2.17 3.40± 2.3∗ 2.71
If ⊕ Im ⊕ Sm 1.91± 1.3 1.59 1.92± 1.5 1.44 2.58± 1.1 2.33 3.88± 2.5 3.16

JRS-reg If ⊕ Im 1.16± 0.3 1.16 1.32± 0.6 1.11 2.08± 1.0 1.82 2.57± 2.0 2.04
If ⊕ Im ⊕ Sm 1.20± 0.4 1.13 1.35± 0.7 1.16 2.08± 1.0 1.82 2.63± 2.3 1.90

Cross-stitch

If || If ⊕ Im
Segmentation 1.47± 0.3∗ 1.48 2.93± 3.0∗ 2.08 2.93± 2.0∗ 2.25 1.19± 1.0 0.89
Registration 1.10± 0.3 1.07 1.38± 0.7 1.17 2.12± 1.0 1.89 2.55± 2.1 1.89

If || If ⊕ Im ⊕ Sm
Segmentation 1.06± 0.3 0.99 1.27± 0.4 1.15 1.76± 0.8 1.47 0.91± 0.4 0.82
Registration 1.10± 0.3 1.06 1.30± 0.6 1.13 2.00± 1.0 1.75 2.45± 2.1 1.81

If ⊕ Sm || If ⊕ Im ⊕ Sm
Segmentation 2.05± 0.7∗ 2.00 3.66± 4.4∗ 2.19 2.44± 1.0∗ 2.35 1.09± 0.5∗ 0.93
Registration 1.40± 0.4 1.35 1.31± 0.6 1.17 2.27± 1.0 2.02 2.56± 1.9 1.96

If ⊕ Im ⊕ Sm || If ⊕ Im ⊕ Sm
Segmentation 1.08± 0.3 1.05 1.54± 0.9∗ 1.28 1.88± 1.0 1.61 1.01± 0.7 0.82
Registration 1.20± 0.3 1.18 1.35± 0.7 1.16 2.12± 1.1 1.87 2.54± 2.2 1.80

TABLE 2: MSD (mm) values for the different networks and loss weighting methods for the HMC dataset. Lower values are better.
Stars and daggers denote one-way ANOVA statistical significance for inter-network experiments with respect to Homoscedastic
weights and intra-network experiments with respect to Cross-stitch with Equal weights, respectively. Grey numbers represent the
values of the worst path between the segmentation and registration paths, while bold numbers represent the best results.

Prostate Seminal vesicles Rectum Bladder
Network Weight Output path µ± σ median µ± σ median µ± σ median µ± σ median

JRS-reg
Equal Registration 1.20± 0.4 1.13 1.35± 0.7 1.16 2.08± 1.0 1.82 2.63± 2.3∗ 1.90
Homoscedastic Registration 1.20± 0.3 1.20 1.22± 0.5 1.07 2.05± 1.0 1.81 2.34± 2.2 1.60
DWA Registration 1.22± 0.3 1.18 1.37± 0.7∗ 1.20 2.29± 1.1∗ 2.04 3.18± 2.4∗ 2.43

Dense

Equal Segmentation 1.14± 0.4 1.06 1.73± 2.1 1.12 1.91± 0.9 1.64 1.04± 0.7 0.87
Registration 1.20± 0.3 1.11 1.33± 0.7∗ 1.10 2.16± 1.1 1.85 2.56± 1.9 1.90

Homoscedastic Segmentation 1.09± 0.3 1.04 1.51± 1.2 1.13 1.86± 0.8 1.69 0.99± 0.4 0.91
Registration 1.17± 0.3 1.15 1.31± 0.6 1.13 2.17± 1.0 1.96 2.63± 2.0∗ 1.95

DWA Segmentation 1.12± 0.3∗† 1.04 1.74± 2.0 1.13 1.99± 0.9∗ 1.77 1.00± 0.4 0.85
Registration 1.14± 0.3 1.14 1.27± 0.6 1.07 2.24± 1.1∗ 1.97 2.72± 1.9 2.13

SEDD

Equal Segmentation 1.47± 0.6∗† 1.31 2.81± 4.6 1.34 1.97± 1.0 1.59 1.21± 1.0 0.94
Registration 1.28± 0.4∗ 1.19 1.50± 0.9∗ 1.26 2.26± 1.1∗ 1.94 2.61± 2.1∗ 1.83

Homoscedastic Segmentation 1.15± 0.3† 1.14 1.47± 1.0 1.22 2.12± 1.1 1.91 0.99± 0.2 0.94
Registration 1.19± 0.3 1.21 1.23± 0.5 1.13 2.15± 1.0 1.92 2.31± 2.0 1.64

DWA Segmentation 1.22± 0.3∗† 1.18 1.44± 0.8 1.21 2.12± 1.4 1.73 1.10± 0.6 0.93
Registration 1.22± 0.3 1.22 1.32± 0.6∗ 1.10 2.30± 1.1∗ 2.01 2.86± 1.9∗ 2.41

Cross-stitch

Equal Segmentation 1.06± 0.3 0.99 1.27± 0.4 1.15 1.76± 0.8 1.47 0.91± 0.4 0.82
Registration 1.10± 0.3∗ 1.06 1.30± 0.6 1.13 2.00± 1.0∗ 1.75 2.45± 2.1 1.81

Homoscedastic Segmentation 1.23± 0.3† 1.16 1.51± 1.2 1.17 2.37± 1.0 2.09 0.92± 0.2 0.89
Registration 1.24± 0.3 1.24 1.32± 0.6 1.13 2.12± 1.0 1.89 2.45± 1.9 1.97

DWA Segmentation 1.34± 0.4∗† 1.27 1.75± 1.7 1.29 2.32± 0.9† 2.11 1.17± 0.8∗ 0.91
Registration 1.22± 0.3 1.19 1.27± 0.6 1.09 2.21± 1.0∗ 2.00 2.93± 2.3∗ 2.27

C. OPTIMIZATION OF LOSS WEIGHTING STRATEGY

In this experiment we investigate the performance of the
various loss weighting strategies introduced in Section II-D in
order to select the best weighting method for the underlying
tasks.

Table 2 shows the results of the different weighting
strategies for the MTL networks in terms of MSD. For
the JRS-reg network architecture, weighting the losses with

homoscedastic uncertainty achieved comparable results to
using equal weights, while DWA scored somewhat less. For
the dense and SEDD architectures, homoscedastic weighting
achieved a slightly better performance, while equal weights
was best for the Cross-stitch network. For these architectures
(dense, SEDD, and Cross-stitch), the segmentation output path
showed improvement over the registration output path.

Figure 3 illustrates the evolution of the loss weights wi
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FIGURE 3: The evolution of the loss weights during training for different multi-task networks on the validation dataset (HMC).

FIGURE 4: The evolution of the Cross-stitch units weights
during training using equal weights. CS#1 and CS#2 are
placed in the down-sampling path, while CS#3 and CS#4
are placed in the upsampling path. The solid lines represent
the mean of the weights across the diagonal of the CS unit,
while the dashed lines represent the mean of the off-diagonal
weights.

during training, for different multi-task network architectures
and weighting strategies.

For the remainder of this paper and based on the previous
findings, we chose the homoscedastic uncertainty weighting
strategy for the JRS-reg, dense and SEDD networks, while
using equal weights for the Cross-stitch network.

D. ANALYSIS OF CROSS-STITCH UNITS
Analysis of the behavior of the Cross-stitch units during
training facilitates the understanding of how the segmentation
and registration networks interacts in the MTL settings. Figure
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FIGURE 5: The effect of the bladder volume deviation from
the planning volume on the performance of the Seg, Reg, and
Cross-stitch networks for the validation set (HMC).

4 shows the mean of the CS units across the diagonal and off-
diagonal (See Equation (5)). Higher weights on the diagonal
means that the network tends to separate the task-specific
feature maps, while higher weights off-diagonal means that
the network tends to share the corresponding feature maps.

E. EFFECT OF THE BLADDER FILLING
For the HMC dataset, which was used for training and
validation, a bladder filling protocol was in place, meaning
that the deformation of the bladder between daily and planning
scans is not large. However, this is not the scenario for the
EMC dataset, the test set.

Figure 5 and 6 illustrates the effect of the bladder volume
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FIGURE 6: The effect of the bladder volume deviation from
the planning volume on the performance of the STL and the
Seg, Reg, and Cross-stitch networks for the independent test
set (EMC).

variation from the planning scan on the performance of the
Seg, Reg, and Cross-stitch networks. The Cross-stitch network
is resilient to bladder filling for both the HMC and EMC
datasets.

F. EVALUATION OF THE QUALITY OF THE DVF
The smoothness of the predicted DVF is an important parame-
ter to evaluate the predicted deformation field. Table 5 shows a
detailed analysis of the DVF in terms of the standard deviation
of the determinant of the Jacobian as well as the folding
fraction for the registration path of the different networks.

G. COMPARISON AGAINST THE STATE-OF-THE-ART
Table 3 and 4 show the results for the validation set (HMC) and
test set (EMC), respectively. The first two networks in each
table are single-task networks. For both sets, the registration
network outperformed the segmentation network for all organs
except the bladder. The mean MSD for the independent test
set is higher than the corresponding numbers in the validation
set for most organs. However, the median values are on par.
For the MTL networks, the segmentation path of the networks
achieved better performance than the registration path on
both datasets except for the seminal vesicles. The Cross-stitch
network achieved the best results compared to the other MTL
networks.

The proposed STL and MTL networks were compared
against other state-of-the-art methods that were evaluated
using the HMC dataset. For the validation set, the STL
network achieved comparable results, while the Cross-stitch
network outperformed these methods for both output paths.
On the test set, elastix [49] and the Hybrid method [6]
performed better except for the bladder, although the median
values of the MTL networks were better.

For the quality of the predicted contours, Figure 7 and 8
show example contours from the HMC and EMC datasets
for the Seg, Reg, and Cross-stitch networks. The examples
show that the Cross-stitch network achieves better results

compared to the Seg and Reg networks especially for the
seminal vesicles and rectum with large gas pockets.

V. DISCUSSION
In this study, we proposed to merge image registration and
segmentation on the architectural level as well as the loss, via
a multi-task learning setting in order to leverage their strengths
and mitigate their weaknesses through the sharing of benefi-
cial information. We studied different network architectures
and loss weighting methods in order to explore how these tasks
interact, and thereby leverage the shared knowledge between
them. Moreover, we carried out extensive quantitative analysis
in the context of adaptive radiotherapy, and compared the
proposed multi-task methods to their single-task counterparts.
In this paper, a substantial number of experiments were
executed, where we explored the following methodological
choices: the bending energy weight, the input to the STL
and MTL networks, and the loss weighting method. We also
performed a thorough analysis on how Cross-stitch units and
loss weights evolve during training. Finally, we compared our
proposed methods against state-of-the-art methods.

In all the experiments we fixed the weight of the bending
energy weight so that the network would not set it too low in
order to improve the DSC of the deformed contours on the
account of the smoothness of the predicted DVF. As shown in
Figure 2 low bending energy weights result in better contour
quality on the account of the smoothness of the predicted
DVF.

For the inputs to the STL networks, additionally feeding
Sm to the segmentation network resulted in a statistically
significant improvement especially for the seminal vesicles.
Apparently the network considers Sm as an initial estimation
for Sf and subsequently uses it as a guidance for its final
prediction. When feeding Im the results deteriorated; this may
confuse the network as If and Im have the same anatomy
but with different shapes and local positions. The addition
of both Im and Sm performed similar to the addition of only
Sm, which indicates that the networks learned to ignore Im.
For the registration network, the addition of Sm resulted in a
sub-optimal result, since the Sm contours on its own does not
represent the underlying deformation well.

For the inputs to the MTL networks, in the JRS-reg
network, feeding Sm alongside If and Im resulted in a similar
performance compared to not feeding it. This indicates that
the incorporation of Sm via the DSC loss, already enables the
JRS-reg network to exploit this extra information, and that
additionally adding Sm as a network input does not provide
further benefits. In the Cross-stitch network, we found that
adding Sm to the registration network results in a statistically
significant improvement. Furthermore, feeding Sm to one
of the networks is sufficient, proving that segmentation and
registration networks communicate their knowledge efficiently
through the Cross-stitch units.

We selected the STL networks with If (for segmentation)
and If alongside Im (for registration) as input to our baseline
methods. Between these two networks, the registration net-
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TABLE 3: MSD (mm) values for the different networks on the validation set (HMC). Lower values are better.

Prostate Seminal vesicles Rectum Bladder
Network Output path µ± σ median µ± σ median µ± σ median µ± σ median
Seg Segmentation 1.49± 0.3 1.49 2.50± 2.6 2.09 3.39± 2.2 2.73 1.60± 1.1 1.13
Reg Registration 1.43± 0.8 1.29 1.71± 1.4 1.37 2.44± 1.1 2.17 3.40± 2.3 2.71
JRS-reg Registration 1.20± 0.3 1.20 1.22± 0.5 1.07 2.05± 1.0 1.81 2.34± 2.2 1.60

Dense Segmentation 1.09± 0.3 1.04 1.51± 1.2 1.13 1.86± 0.8 1.69 0.99± 0.4 0.91
Registration 1.17± 0.3 1.15 1.31± 0.6 1.13 2.17± 1.0 1.96 2.63± 2.0 1.95

SEDD Segmentation 1.15± 0.3 1.14 1.47± 1.0 1.22 2.12± 1.1 1.91 0.99± 0.2 0.94
Registration 1.19± 0.3 1.21 1.23± 0.5 1.13 2.15± 1.0 1.92 2.31± 2.0 1.64

Cross-stitch Segmentation 1.06± 0.3 0.99 1.27± 0.4 1.15 1.76± 0.8 1.47 0.91± 0.4 0.82
Registration 1.10± 0.3 1.06 1.30± 0.6 1.13 2.00± 1.0 1.75 2.45± 2.1 1.81

Elastix [49] Registration 1.73± 0.7 1.59 2.71± 1.6 2.45 3.69± 1.2 3.50 5.26± 2.6 4.72
Hybrid [6] Registration 1.27± 0.3 1.25 1.47± 0.5 1.32 2.03± 0.6 1.85 1.75± 1.0 1.26
JRS-GAN [7] Registration 1.14± 0.3 1.04 1.75± 1.3 1.44 2.17± 1.1 1.89 2.25± 1.9 1.54

TABLE 4: MSD (mm) values for the different networks on the independent test set (EMC). Lower values are better. Results for
JRS-GAN are not available for this dataset.

Prostate Seminal vesicles Rectum Bladder
Network Output path µ± σ median µ± σ median µ± σ median µ± σ median
Seg Segmentation 3.18± 1.8 2.57 9.33± 10.1 5.82 5.79± 3.4 5.18 1.88± 1.5 1.50
Reg Registration 2.01± 2.5 1.18 2.86± 5.2 1.18 2.89± 2.5 2.23 5.98± 4.7 4.44
JRS-reg Registration 1.94± 2.6 1.16 2.48± 4.8 1.01 2.67± 2.4 2.05 4.80± 4.6 2.12

Dense Segmentation 2.01± 2.6 1.15 4.08± 7.2 1.23 3.70± 5.4 2.03 2.75± 3.1 1.23
Registration 1.93± 2.5 1.15 2.53± 4.7 1.01 2.67± 2.3 2.13 5.08± 4.4 3.01

SEDD Segmentation 1.99± 2.4 1.24 6.26± 8.9 3.01 4.21± 4.9 2.12 2.43± 2.9 1.04
Registration 1.92± 2.5 1.19 2.43± 4.5 1.07 2.72± 2.4 2.17 4.86± 4.4 2.22

Cross-stitch Segmentation 1.88± 1.9 1.30 2.76± 3.5 1.28 4.87± 6.8 2.49 1.66± 1.7 0.85
Registration 1.91± 2.3 1.23 2.41± 4.5 0.95 2.78± 2.4 2.16 4.90± 4.0 2.84

Elastix [49] Registration 1.42± 0.7 1.17 2.07± 2.6 1.24 3.20± 1.6 3.07 5.30± 5.1 3.27
Hybrid [6] Registration 1.55± 0.6 1.36 1.65± 1.3 1.22 2.65± 1.6 2.36 3.81± 3.6 2.26

TABLE 5: Analysis of the determinant of the Jacobian for the validation and the independent test sets. Lower values are better.

Validation set (HMC) Independent test set (EMC)
Network Std. Jacobian Folding fraction Std. Jacobian Folding fraction
Reg 0.2935± 0.1022 0.0049± 0.0039 0.4129± 0.2258 0.0112± 0.0115
JRS-reg 0.2543± 0.0505 0.0030± 0.0014 0.3148± 0.1106 0.0066± 0.0062
Dense 0.2062± 0.0431 0.0018± 0.0012 0.2558± 0.0899 0.0036± 0.0027
SEDD 0.2626± 0.1167 0.0019± 0.0016 0.4287± 0.3000 0.0066± 0.0074
Cross-stitch 0.2241± 0.0784 0.0024± 0.0018 0.3301± 0.1869 0.0071± 0.0070

work performed better overall, since the registration network
leverages prior knowledge from the organs in the moving im-
age. For the bladder, the segmentation network achieved better
results; Apparently the registration network had difficulties
finding the correspondence between the bladder in the fixed
and moving images, since it tends to deform considerably
between visits. However, the segmentation network failed to
segment the seminal vesicles for five cases. That is explained
by the fact that the seminal vesicles is a difficult structure to
segment, due to its relatively small size, undefined borders,
and poor contrast with its surroundings. The registration
network on the other hand is able to employ the surrounding
anatomy as context, to accurately warp the seminal vesicles.

For the multi-task networks, we demonstrated that fusing
segmentation and registration tasks is performing better than
its single-task counterparts. Merging these tasks using Cross-

stitch network achieved the best results on both the validation
and testing datasets.

Different loss weighting methods achieved comparable
results as shown in Table 2. In Figure 3, homoscedastic
uncertainty tended to weigh all losses equally, using almost
a fixed weight of 0.9 during most of the training iterations.
On the contrary, DWA tended to fluctuate during training as
the weights are updated based on the ratio of the loss from
previous iterations, which fluctuates due to the batch-based
training. Since the fixed and moving images are affinely regis-
tered beforehand, DWA tended to down-weigh the registration
loss and the associated DSC at the beginning of the training,
while weighting the segmentation network loss more in order
to improve its prediction. Later during training, all the weights
stabilized around 0.9 similar to homoscedastic uncertainty.
Although both methods stabilized by the end of the training
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FIGURE 7: Example contours from the validation dataset (HMC) generated by the proposed STL and MTL networks. From left
to right, the selected cases are the first, second, and third quartile in terms of the prostate MSD of the Cross-stitch network. The
contours of the bladder, prostate, seminal vesicles, and rectum are colored in red, yellow, green, and blue, respectively.

around the same value (0.9), the homoscedastic uncertainty
achieved slightly better results compared to DWA and equal
weighting methods, except for the Cross-stitch network. Our
reasoning behind this is that homoscedastic uncertainty, unlike
other methods, is learnable during the training and highly
dependent on the underlying task uncertainty.

By analyzing the performance of the Cross-stitch units as
demonstrated in Figure 4, we found that the Cross-stitch units
tended to average feature maps for the down-sampling path,
while preferring to be more task-specific for the upsampling
path. This somewhat mimics the shared encoder double
decoder (SEDD) network, but in contrast to this network,
the Cross-stitch network does not completely split the de-
coder paths. This finding confirms that the segmentation and
registration tasks are correlated and thereby encode similar
features.

We carried out an experiment to study the effect of the
bladder filling protocol between the HMC and EMC datasets.
As shown in Figure 5, the HMC dataset has a bladder filling
protocol so the volume of the bladder changes slightly around
100 mL between different sessions, which is not the case for
the EMC dataset as shown in Figure 6. Since the registration-
based networks and joint networks were trained on small
bladder deformations, they failed on large deformations,
however the segmentation network was not affected since it
does not depend on the deformation but rather the underlying
texture to segment the bladder.

In terms of the smoothness of the predicted DVF shown
in Table 5, MTL networks achieved lower numbers for
the standard deviation of the Jacobian as well as for the
folding fraction, compared to the STL network (Reg), on

both the test and validation set. Our reasoning is that joining
the segmentation task to the registration task works as an
additional regularization to the registration network. Due to
the fact that the higher the quality of the predicted DVF, the
higher the quality of the propagated contours and subsequently
the lower the DSC loss. The numbers on the test set are slightly
higher than the validation set, but this is due to the variance
between the deformations between both sets and the fact that
the network has not seen the test set before. This can be
addressed using transfer learning as suggested by Elmahdy et
al. [23] or by using synthetic deformations that mimic the one
presented in the EMC dataset.

In the paper, we compared our algorithm against different
algorithms from various categories: non-learning (elastix
[46], a popular conventional tool); hybrid [6], and GAN-based
[7]. The presented multi-task networks outperformed these
approaches on the validation set and performed on par to these
methods for the test set. However, the test time for the hybrid
and elastix methods are in the order of minutes, while the
presented methods have the advantage of fast prediction in less
than a second. This enables online automatic re-contouring of
daily scans for adaptive radiotherapy. Moreover, in our hybrid
study [6] we carried out an extensive dosimetric evaluation
alongside the geometric evaluation. The predicted contours
from that study met the dose coverage constraints in 86%,
91%, and 99% of the cases for the prostate, seminal vesicles,
and lymph nodes, respectively. Since our multi-task networks
outperformed the geometrical results in that study, we expect
that our contours would achieve a higher success rate in terms
of the dose coverage. This could potentially reduce treatment
related complications and therefore improve patient quality-
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FIGURE 8: Example contours from the independent test set (EMC) generated by the proposed STL and MTL networks. From
left to right, the selected cases are the first, second, and third quartile in terms of the prostate MSD of the Cross-stitch network.

of-life after treatment.
A promising direction for future research is the addition

of a third task, potentially radiotherapy dose plan estimation.
Hence, we can generate contours that are consistent with an
optimal dose planning. Further studies could also focus on
sophisticated MTL network architectures similar to sluice
networks [50] or routing networks [51]. Moreover, we can
study how to fuse the contours from the segmentation and
registration paths in a smarter way rather than simply selecting
one of them based on the validation set.

VI. CONCLUSION
In this paper, we propose to formulate the registration and
segmentation tasks as a multi-task learning problem. We
presented various approaches in order to do so, both on an
architectural level and via the loss function. We experimented
with different network architectures in order to investigate
the best setting that maximizes the information flow between
these tasks. Moreover, we compared different loss weighting
methods in order to optimally combine the losses from these
tasks.

We proved that multi-task learning approaches outperform
their single-task counterparts. Using an adaptive parameter
sharing mechanism via Cross-stitch units gives the networks
freedom to share information between these two tasks, which
resulted in the best performance. An equal loss weighting
approach had similar performance to more sophisticated
methods.

The cross stitch network with equal loss weights achieved
a median MSD of 0.99 mm, 0.82 mm, 1.13 mm and 1.47
mm on the validation set and 1.09 mm, 1.24 mm, 1.02 mm,
and 2.10 mm on the independent test set for the prostate,

bladder, seminal vesicles, and rectum, respectively. That is
equal or less than slice thickness (2 mm). Due to the fast
inference of the methods, the proposed method is highly
promising for automatic re-contouring of follow-up scans for
adaptive radiotherapy, potentially reducing treatment related
complications and therefore improving patient quality-of-life
after treatment.
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APPENDIX. OF THE PAPER “JOINT REGISTRATION AND SEGMENTATION VIA MULTI-TASK LEARNING FOR
ADAPTIVE RADIOTHERAPY OF PROSTATE CANCER”

In this appendix we provide a detailed results for the proposed methods and associated experiments in terms of DSC and %95
HD.

TABLE 6: The effect of network input for the different architectures on the validation set (HMC) in terms of DSC. Higher values
are better. Here, ⊕ is the concatenation operation, and ·‖· represents the inputs to the segmentation network (left of ‖) and the
inputs to the registration network (right of ‖).

Prostate Seminal vesicles Rectum Bladder
Network Input Output path µ± σ median µ± σ median µ± σ median µ± σ median

Seg

If 0.84± 0.03 0.84 0.60± 0.14 0.62 0.75± 0.10 0.77 0.90± 0.07 0.93
If ⊕ Sm 0.85± 0.05 0.86 0.66± 0.16 0.72 0.79± 0.12 0.82 0.93± 0.03 0.94
If ⊕ Im 0.66± 0.08 0.67 0.39± 0.21 0.40 0.39± 0.21 0.41 0.91± 0.08 0.93

If ⊕ Im ⊕ Sm 0.86± 0.04 0.87 0.64± 0.16 0.70 0.78± 0.08 0.78 0.93± 0.03 0.94

Reg If ⊕ Im 0.85± 0.06 0.86 0.62± 0.18 0.68 0.79± 0.08 0.81 0.82± 0.10 0.84
If ⊕ Im ⊕ Sm 0.82± 0.08 0.83 0.60± 0.17 0.65 0.77± 0.08 0.80 0.79± 0.13 0.83

JRS-reg If ⊕ Im 0.87± 0.04 0.87 0.68± 0.14 0.72 0.82± 0.06 0.84 0.87± 0.08 0.91
If ⊕ Im ⊕ Sm 0.87± 0.04 0.87 0.67± 0.15 0.72 0.83± 0.06 0.84 0.87± 0.08 0.91

Cross-stitch

If || If ⊕ Im
Segmentation 0.85± 0.03 0.85 0.57± 0.19 0.60 0.81± 0.08 0.83 0.93± 0.05 0.94
Registration 0.87± 0.03 0.88 0.67± 0.15 0.70 0.82± 0.06 0.84 0.87± 0.08 0.91

If || If ⊕ Im ⊕ Sm
Segmentation 0.88± 0.04 0.88 0.70± 0.11 0.74 0.86± 0.05 0.88 0.94± 0.02 0.95
Registration 0.87± 0.03 0.88 0.68± 0.15 0.73 0.84± 0.05 0.85 0.88± 0.08 0.91

If ⊕ Sm || If ⊕ Im ⊕ Sm
Segmentation 0.77± 0.11 0.79 0.52± 0.19 0.57 0.80± 0.05 0.80 0.93± 0.03 0.94
Registration 0.85± 0.04 0.85 0.66± 0.14 0.72 0.80± 0.06 0.82 0.87± 0.08 0.90

If ⊕ Im ⊕ Sm || If ⊕ Im ⊕ Sm
Segmentation 0.88± 0.04 0.89 0.67± 0.15 0.72 0.85± 0.05 0.86 0.94± 0.03 0.95
Registration 0.86± 0.04 0.87 0.67± 0.16 0.72 0.83± 0.06 0.84 0.88± 0.08 0.91

TABLE 7: The effect of network input for the different architectures on the validation set (HMC) in terms of %95 HD (mm).
Lower values are better. Here, ⊕ is the concatenation operation, and ·‖· represents the inputs to the segmentation network (left of
‖) and the inputs to the registration network (right of ‖).

Prostate Seminal vesicles Rectum Bladder
Network Input Output path µ± σ median µ± σ median µ± σ median µ± σ median

Seg

If 4.4± 1.0 4.4 8.6± 8.6 7.3 16.5± 11.0 13.3 6.9± 6.6 4.0
If ⊕ Sm 3.9± 1.4 3.6 5.9± 5.9 4.1 12.1± 9.7 8.9 4.3± 3.2 3.0
If ⊕ Im 9.1± 2.3 8.7 14.9± 10.5 11.7 45.1± 17.3 41.8 5.3± 5.6 3.6

If ⊕ Im ⊕ Sm 3.8± 1.1 3.6 7.3± 9.2 4.2 11.5± 6.7 9.6 3.3± 1.5 3.0

Reg If ⊕ Im 5.5± 4.5 4.0 5.6± 4.1 4.3 11.0± 6.4 9.4 15.7± 9.6 12.1
If ⊕ Im ⊕ Sm 7.7± 6.3 5.5 6.2± 4.2 4.8 11.6± 6.8 9.2 17.0± 9.5 14.7

JRS-reg If ⊕ Im 3.6± 1.3 3.0 4.5± 3.0 3.3 9.6± 5.7 8.2 13.1± 10.1 9.4
If ⊕ Im ⊕ Sm 3.6± 1.9 3.1 4.4± 2.8 3.7 9.8± 5.9 8.1 13.4± 10.7 10.6

Cross-stitch

If || If ⊕ Im
Segmentation 5.1± 2.3 4.4 9.5± 9.6 6.1 17.2± 14.0 12.6 5.0± 6.6 3.0
Registration 3.3± 0.9 3.0 4.7± 3.0 3.7 10.1± 6.3 9.0 12.6± 10.0 9.4

If || If ⊕ Im ⊕ Sm
Segmentation 3.0± 1.0 3.0 4.3± 1.7 3.9 9.5± 6.2 7.2 3.3± 2.9 2.3
Registration 3.2± 0.9 3.0 4.5± 3.3 3.6 9.8± 6.3 8.6 12.2± 10.1 9.7

If ⊕ Sm || If ⊕ Im ⊕ Sm
Segmentation 5.8± 2.0 5.9 11.0± 13.4 5.8 10.2± 4.9 8.5 4.5± 4.3 3.0
Registration 4.4± 1.6 4.1 4.5± 3.3 3.6 10.2± 5.7 9.3 12.9± 9.3 11.1

If ⊕ Im ⊕ Sm || If ⊕ Im ⊕ Sm
Segmentation 3.1± 1.0 3.0 5.4± 5.4 4.4 9.7± 5.6 8.9 4.2± 5.6 2.6
Registration 3.5± 1.2 3.2 4.4± 3.1 3.4 10.2± 6.3 9.1 12.5± 10.6 8.7
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TABLE 8: DSC values for the different networks and loss weighting methods for the HMC dataset. Higher values are better.

Prostate Seminal vesicles Rectum Bladder
Network Weight Output path µ± σ median µ± σ median µ± σ median µ± σ median

JRS-reg
Equal Registration 0.84± 0.16 0.89 0.67± 0.25 0.79 0.76± 0.14 0.79 0.79± 0.17 0.88
Homoscedastic Registration 0.84± 0.16 0.89 0.68± 0.25 0.77 0.76± 0.15 0.80 0.80± 0.18 0.89
DWA Registration 0.83± 0.16 0.88 0.66± 0.25 0.78 0.74± 0.15 0.79 0.76± 0.18 0.84

Dense

Equal Segmentation 0.83± 0.15 0.88 0.55± 0.29 0.65 0.78± 0.16 0.81 0.88± 0.11 0.93
Registration 0.83± 0.16 0.88 0.66± 0.25 0.75 0.76± 0.15 0.80 0.79± 0.16 0.87

Homoscedastic Segmentation 0.84± 0.16 0.89 0.63± 0.27 0.75 0.79± 0.16 0.82 0.87± 0.13 0.93
Registration 0.84± 0.16 0.88 0.68± 0.25 0.78 0.77± 0.14 0.80 0.78± 0.17 0.86

DWA Segmentation 0.84± 0.15 0.89 0.58± 0.28 0.67 0.79± 0.15 0.83 0.88± 0.12 0.93
Registration 0.84± 0.16 0.89 0.67± 0.24 0.76 0.76± 0.15 0.79 0.79± 0.16 0.87

SEDD

Equal Segmentation 0.79± 0.16 0.85 0.46± 0.28 0.53 0.77± 0.14 0.80 0.85± 0.12 0.91
Registration 0.82± 0.16 0.87 0.66± 0.26 0.78 0.75± 0.15 0.79 0.78± 0.16 0.86

Homoscedastic Segmentation 0.84± 0.15 0.89 0.50± 0.28 0.58 0.76± 0.18 0.82 0.88± 0.13 0.94
Registration 0.84± 0.16 0.88 0.68± 0.24 0.78 0.76± 0.15 0.80 0.79± 0.17 0.88

DWA Segmentation 0.83± 0.14 0.88 0.62± 0.27 0.74 0.78± 0.16 0.83 0.87± 0.14 0.94
Registration 0.84± 0.15 0.88 0.67± 0.24 0.78 0.75± 0.15 0.79 0.78± 0.18 0.86

Cross-stitch

Equal Segmentation 0.84± 0.14 0.89 0.61± 0.27 0.73 0.78± 0.14 0.81 0.88± 0.10 0.93
Registration 0.84± 0.15 0.89 0.68± 0.24 0.80 0.77± 0.15 0.80 0.80± 0.16 0.87

Homoscedastic Segmentation 0.84± 0.13 0.87 0.65± 0.24 0.76 0.74± 0.18 0.80 0.92± 0.08 0.95
Registration 0.84± 0.15 0.89 0.68± 0.24 0.79 0.75± 0.15 0.79 0.80± 0.17 0.87

DWA Segmentation 0.82± 0.14 0.86 0.66± 0.24 0.76 0.75± 0.18 0.79 0.92± 0.08 0.95
Registration 0.84± 0.15 0.89 0.68± 0.23 0.79 0.75± 0.15 0.78 0.77± 0.17 0.83

TABLE 9: %95 HD (mm) values for the different networks and loss weighting methods for the HMC dataset. Lower values are
better.

Prostate Seminal vesicles Rectum Bladder
Network Weight Output path µ± σ median µ± σ median µ± σ median µ± σ median

JRS-reg
Equal Registration 5.2± 5.7 3.2 6.5± 7.1 4.0 12.6± 6.7 12.0 20.3± 14.0 18.6
Homoscedastic Registration 5.7± 5.9 3.7 6.2± 7.1 3.6 13.0± 7.3 11.5 18.5± 14.0 13.0
DWA Registration 5.7± 5.9 3.5 6.4± 6.8 3.7 13.2± 7.3 12.2 20.0± 13.2 17.6

Dense

Equal Segmentation 5.7± 5.4 4.1 14.4± 17.2 6.8 16.8± 12.6 13.6 10.9± 10.9 5.5
Registration 5.6± 5.6 4.0 6.6± 7.8 4.0 13.1± 6.7 13.0 19.6± 12.0 17.4

Homoscedastic Segmentation 5.8± 5.9 3.3 10.0± 11.6 5.1 17.1± 16.6 13.8 11.4± 11.3 5.9
Registration 5.3± 5.7 3.0 6.4± 6.8 3.2 13.0± 6.5 12.6 19.2± 13.7 14.2

DWA Segmentation 5.4± 5.5 3.6 12.7± 17.0 5.9 16.2± 12.5 14.4 10.8± 10.7 6.2
Registration 5.3± 5.6 3.5 6.0± 6.6 3.3 13.1± 7.2 13.0 19.4± 11.9 17.4

SEDD

Equal Segmentation 8.5± 7.1 6.0 18.9± 19.5 8.6 16.7± 11.9 14.7 12.7± 11.0 8.5
Registration 5.6± 5.8 3.6 6.7± 7.2 4.1 13.3± 7.0 12.0 19.0± 12.7 15.2

Homoscedastic Segmentation 5.7± 5.5 3.9 16.0± 16.3 10.6 18.8± 16.5 15.3 9.4± 9.9 4.1
Registration 5.5± 5.6 3.3 6.3± 6.7 3.6 13.3± 7.3 13.0 18.8± 13.5 14.6

DWA Segmentation 6.2± 5.4 4.4 11.5± 14.0 5.0 16.8± 14.4 13.0 9.5± 10.8 4.4
Registration 5.8± 5.7 4.0 6.4± 7.4 3.6 13.4± 7.5 12.5 21.9± 11.5 19.0

Cross-stitch

Equal Segmentation 5.8± 5.4 4.0 12.2± 15.8 5.0 17.0± 14.7 14.0 10.8± 11.3 4.4
Registration 5.1± 5.5 3.2 6.2± 8.6 3.3 12.6± 6.7 12.0 19.1± 12.5 16.2

Homoscedastic Segmentation 5.9± 5.4 4.1 7.8± 7.4 4.6 20.5± 18.9 14.7 7.8± 8.7 3.1
Registration 6.2± 5.6 4.5 6.1± 7.2 3.2 13.5± 7.3 13.5 19.4± 12.3 16.3

DWA Segmentation 6.7± 5.8 4.2 7.6± 9.1 4.1 20.7± 18.6 14.9 7.5± 8.8 3.5
Registration 6.0± 5.7 4.1 6.1± 6.8 3.4 13.5± 7.5 13.6 21.5± 11.6 20.1
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TABLE 10: DSC values for the different networks on the validation set (HMC). Higher values are better.

Prostate Seminal vesicles Rectum Bladder
Network Output path µ± σ median µ± σ median µ± σ median µ± σ median
Seg Segmentation 0.84± 0.03 0.84 0.60± 0.14 0.62 0.75± 0.10 0.77 0.90± 0.07 0.93
Reg Registration 0.85± 0.06 0.86 0.62± 0.18 0.68 0.79± 0.08 0.81 0.82± 0.10 0.84
JRS-reg Registration 0.86± 0.03 0.87 0.69± 0.13 0.73 0.83± 0.06 0.84 0.88± 0.08 0.92

Dense Segmentation 0.88± 0.04 0.89 0.70± 0.12 0.73 0.85± 0.04 0.86 0.94± 0.02 0.94
Registration 0.87± 0.04 0.88 0.68± 0.15 0.73 0.82± 0.06 0.83 0.87± 0.08 0.90

SEDD Segmentation 0.87± 0.04 0.88 0.69± 0.12 0.72 0.83± 0.07 0.84 0.93± 0.02 0.94
Registration 0.86± 0.04 0.87 0.69± 0.13 0.74 0.82± 0.06 0.83 0.88± 0.08 0.92

Cross-stitch Segmentation 0.88± 0.04 0.88 0.70± 0.11 0.74 0.86± 0.05 0.88 0.94± 0.02 0.95
Registration 0.87± 0.03 0.88 0.68± 0.15 0.73 0.84± 0.05 0.85 0.88± 0.08 0.91

Elastix [49] Registration 0.84± 0.07 0.86 0.50± 0.25 0.53 0.74± 0.06 0.74 0.75± 0.10 0.76
Hybrid [6] Registration 0.88± 0.04 0.89 0.70± 0.14 0.72 0.85± 0.06 0.87 0.91± 0.08 0.95
JRS-GAN [7] Registration 0.86± 0.04 0.87 0.61± 0.20 0.67 0.82± 0.06 0.83 0.88± 0.08 0.92

TABLE 11: % 95 HD (mm) values for the different networks on the validation set (HMC). Lower values are better.

Prostate Seminal vesicles Rectum Bladder
Network Output path µ± σ median µ± σ median µ± σ median µ± σ median
Seg Segmentation 4.4± 1.0 4.4 8.6± 8.6 7.3 16.5± 11.0 13.3 6.9± 6.6 4.0
Reg Registration 5.5± 4.5 4.0 5.6± 4.1 4.3 11.0± 6.4 9.4 15.7± 9.6 12.1
JRS-reg Registration 3.8± 1.3 3.2 4.1± 2.8 3.2 9.9± 6.2 8.4 11.7± 10.3 9.2

Dense Segmentation 3.2± 1.0 3.0 5.8± 7.6 3.9 9.6± 5.8 8.0 3.8± 3.9 2.8
Registration 3.4± 1.1 3.2 4.4± 3.0 3.2 10.5± 6.0 9.0 12.6± 9.2 10.2

SEDD Segmentation 3.5± 1.1 3.3 5.2± 5.2 4.0 10.5± 5.5 9.7 3.3± 1.3 3.0
Registration 3.6± 1.2 3.2 4.1± 2.6 3.1 10.4± 6.3 9.5 11.7± 9.9 8.7

Cross-stitch Segmentation 3.0± 1.0 3.0 4.3± 1.7 3.9 9.5± 6.2 7.2 3.3± 2.9 2.3
Registration 3.2± 0.9 3.0 4.5± 3.3 3.6 9.8± 6.3 8.6 12.2± 10.1 9.7

Elastix [49] Registration 4.0± 1.7 3.7 6.0± 3.4 5.6 10.9± 5.2 9.8 15.3± 8.3 13.6
Hybrid [6] Registration 2.9± 0.9 2.8 3.8± 2.2 3.1 7.7± 4.5 6.1 5.7± 4.6 3.3
JRS-GAN [7] Registration 3.4± 1.2 3.0 5.3± 3.0 4.6 10.1± 6.1 8.4 11.0± 9.6 7.6

TABLE 12: DSC values for the different networks on the independent test set (EMC). Higher values are better.

Prostate Seminal vesicles Rectum Bladder
Network Output path µ± σ median µ± σ median µ± σ median µ± σ median
Seg Segmentation 0.73± 0.11 0.77 0.37± 0.30 0.28 0.67± 0.10 0.68 0.91± 0.07 0.93
Reg Registration 0.83± 0.16 0.88 0.64± 0.26 0.74 0.72± 0.16 0.77 0.75± 0.19 0.82
JRS-reg Registration 0.84± 0.16 0.89 0.68± 0.25 0.77 0.76± 0.15 0.80 0.80± 0.18 0.89

Dense Segmentation 0.84± 0.16 0.89 0.63± 0.27 0.75 0.79± 0.16 0.82 0.87± 0.13 0.93
Registration 0.84± 0.16 0.88 0.68± 0.25 0.78 0.77± 0.14 0.80 0.78± 0.17 0.86

SEDD Segmentation 0.84± 0.15 0.89 0.50± 0.28 0.58 0.76± 0.18 0.82 0.88± 0.13 0.94
Registration 0.84± 0.16 0.88 0.68± 0.24 0.78 0.76± 0.15 0.80 0.79± 0.17 0.88

Cross-stitch Segmentation 0.84± 0.14 0.89 0.61± 0.27 0.73 0.78± 0.14 0.81 0.88± 0.10 0.93
Registration 0.84± 0.15 0.89 0.68± 0.24 0.80 0.77± 0.15 0.80 0.80± 0.16 0.87

Elastix [49] Registration 0.89± 0.05 0.91 0.72± 0.24 0.82 0.75± 0.12 0.76 0.79± 0.18 0.87
Hybrid [6] Registration 0.88± 0.04 0.89 0.77± 0.15 0.81 0.80± 0.10 0.82 0.85± 0.13 0.90
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TABLE 13: %95 HD (mm) values for the different networks on the independent test set (EMC). Lower values are better.

Prostate Seminal vesicles Rectum Bladder
Network Output path µ± σ median µ± σ median µ± σ median µ± σ median
Seg Segmentation 10.7± 5.4 9.3 21.4± 17.9 15.4 30.5± 12.9 29.0 11.2± 8.5 10.0
Reg Registration 6.7± 5.9 4.2 7.5± 8.6 4.3 13.1± 6.9 12.0 22.7± 14.0 20.2
JRS-reg Registration 5.7± 5.9 3.7 6.2± 7.1 3.6 13.0± 7.3 11.5 18.5± 14.0 13.0

Dense Segmentation 5.8± 5.9 3.3 10.0± 11.6 5.1 17.1± 16.6 13.8 11.4± 11.3 5.9
Registration 5.3± 5.7 3.0 6.4± 6.8 3.2 13.0± 6.5 12.6 19.2± 13.7 14.2

SEDD Segmentation 5.7± 5.5 3.9 16.0± 16.3 10.6 18.8± 16.5 15.3 9.4± 9.9 4.1
Registration 5.5± 5.6 3.3 6.3± 6.7 3.6 13.3± 7.3 13.0 18.8± 13.5 14.6

Cross-stitch Segmentation 5.8± 5.4 4.0 12.2± 15.8 5.0 17.0± 14.7 14.0 10.8± 11.3 4.4
Registration 5.1± 5.5 3.2 6.2± 8.6 3.3 12.6± 6.7 12.0 19.1± 12.5 16.2

Elastix [49] Registration 3.6± 2.0 2.9 4.6± 4.4 3.2 11.3± 6.0 11.3 16.1± 14.8 10.4
Hybrid [6] Registration 3.9± 1.9 3.4 4.8± 4.7 3.1 10.3± 6.8 8.6 11.1± 10.6 6.6
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