
Efficiently Compressing 3D Medical Images for Teleinter-1

ventions via CNNs and Anisotropic Diffusion2

3

Ha Manh Luu4

AVITECH & FET, University of Engineering and Technology, VNU, Hanoi, Vietnam5

Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands6

7

Theo van Walsum8

Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands9

10

Daniel Franklin11

School of Electrical and Data Engineering, University of Technology Sydney, Sydney, Australia12

13

Phuong Cam Pham14

Nuclear Medicine and Oncology Center, Bach Mai Hospital, Hanoi, Vietnam15

16

Luu Dang Vu17

Radiology Center, Bach Mai Hospital, Hanoi, Vietnam18

19

Adriaan Moelker20

Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands21

22

Marius Staring23

Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands24

25

Xiem HoangVan26

FET, University of Engineering and Technology, VNU, Hanoi, Vietnam27

28

Wiro Niessen29

Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands30

31

Nguyen Linh Trung32

AVITECH, University of Engineering and Technology, VNU, Hanoi, Vietnam33

34

Version typeset January 27, 202135

36

Corresponding author. E-mail: halm@vnu.edu.vn37

38

i



Abstract39

Purpose: Efficient compression of images while preserving image quality has the poten-40

tial to be a major enabler of effective remote clinical diagnosis and treatment, since poor41

Internet connection conditions are often the primary constraint in such services. This paper42

presents a framework for organ-specific image compression for teleinterventions based on43

a deep learning approach and anisotropic diffusion filter.44

Methods: The proposed method, DLAD, uses a CNN architecture to extract a proba-45

bility map for the organ of interest; this probability map guides an anisotropic diffusion46

filter that smooths the image except at the location of the organ of interest. Subsequently,47

a compression method, such as BZ2 and HEVC-visually lossless, is applied to compress48

the image. We demonstrate the proposed method on 3D CT images acquired for radio49

frequency ablation (RFA) of liver lesions. We quantitatively evaluate the proposed method50

on 151 CT images using peak-signal-to-noise ratio (PSNR), structural similarity (SSIM)51

and compression ratio (CR) metrics. Finally, we compare the assessments of two radiol-52

ogists on the liver lesion detection and the liver lesion center annotation using 33 sets of53

the original images and the compressed images.54

Results: The results show that the method can significantly improve CR of most well-55

known compression methods. DLAD combined with HEVC-visually lossless achieves the56

highest average CR of 6.45, which is 36% higher than that of the original HEVC and out-57

performs other state-of-the-art lossless medical image compression methods. The means of58

PSNR and SSIM are 70 dB and 0.95, respectively. In addition, the compression effects59

do not statistically significantly affect the assessments of the radiologists on the liver lesion60

detection and the lesion center annotation.61

Conclusions: We thus conclude that the method has a high potential to be applied in62

teleintervention applications.63
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I. INTRODUCTION

I. INTRODUCTION85

Teleradiology is the transmission of the medical images such as CT, MRI, X-ray and Ul-86

trasound over the Internet from one location to another for diagnostic or therapeutic decision-87

making. Teleradiology is becoming an increasingly important part of modern diagnostic medicine,88

although the capabilities of medical imaging technology continue to improve rapidly, the educa-89

tion of radiologists with the expertise required to fully utilize its capabilities has been unable to90

keep up. This has resulted in a lack of radiological experts, particularly in undeveloped/rural91

medical centers. At the same time, the rapid enrollment of the Internet worldwide has enabled92

increasingly convenient transfer of data among medical centers1. It has been reported that 86%93

of the radiologists in the United States have undertaken medical practice using teleradiology2
94

while in an online survey, 74% of European radiologists claimed that teleradiology is currently95

used in their countries3,4. Teleradiology is now being employed in several developing countries in96

Africa, South America and Asia5. Vietnam has launched a teleradiology system which connected97

several hospitals during the Covid-19 pandemic in 20206.98

Next to supporting radiological diagnosis, teleradiology has been used in the context of99

interventional therapeutic. Live teleinterventions in vascular endotherapy have recently been used100

for training of interventionalists via the Internet7. The interventions were often performed under101

the guidance of 2D angiography at a frame rate of 1-2 frame/s8. Teleultrasound scanning using102

2D real-time US images has become popular in several telehealth applications9. However, live103

teleinterventions using 3D image modalities, such as CT-guided radiofrequency ablation (RFA)104

liver intervention is still challenging due to the frequently insufficient bandwidth for transmission105

of 3D CT images during live intervention. For example, a typical 3D CT image of 100 MB takes 5106

to 8 minutes to be transferred between two locations via a network with an effective transmission107

speed of 2 Mbps, while a compressed image with a compression ratio of 6:1 may be transmitted108

within a minute. For some CT-guided liver interventions, such as tumor ablations, such a long109

waiting time is a significant delay in the procedure, compared to the average ablation time of 16110

minutes (range 6-29 minutes)10 while the delay is expected to be less than the scanning time111

(from few seconds to a minute). During the scanning time, the interventionists move out of112

the intervention room to avoid radiation expose and go back the intervention room after a brief113

overview of the acquired image.114
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I. INTRODUCTION

Though modern broadband telecommunications technologies, such as 5G or optical fibers,115

are able to transmit with a speed of up to several Gbps, and with very low latency11, this advanced116

infrastructure is not available in many regions. The 4G network has been shown to be able to117

transfer data from a hospital to other sites at a distance of 10 km and at a data rate up to118

12 Mbps, however the package loss due to the unstable wireless channel is a challenge for live119

intervention application11. Coaxial cable seems to be a reasonable network for teleradiology,120

which enables to transfer data at a stable rate of 20-50 Mbps12. Another problem is that the121

networks are often a shared resource and the actual data transfer speed are much smaller than122

the maximum capability of the networks. In most hospitals and medical centers, LAN and WAN123

are available infrastructures which supply a typical data transmission rate of 10-100 Mbps, while124

the actual speed of a Wifi, under IEEE 802.11 standard, often are 2-5 Mbps13. Such regions125

with relatively poor Internet connectivity, therefore, are severely limited in their ability to take126

advantage of teleradiology, especially in live-view radiological interventions/operations. Image127

compression may enable effective utilization of teleradiology in such regions.128

Several studies on methods for medical image compression have been published. These129

approaches fall into one of three categories: lossless, lossy or ROI-based compression methods.130

Lossless compression methods are often utilized because there is no reduction in image quality131

relative to the original. The compression ratios of various lossless compression methods (e.g.132

JPEG-LS, JPEG-2000, TIFF, PNG, CALIC, LZW, LZ77, and Gzip) range from 1.7 to 3.9 (Culnie,133

2000)14. The original JPEG standard included a lossless compression option based on a simple134

differential PCM predictive coding scheme plus entropy encoding, while the more recent JPEG-135

LS employs a coding method based on a combination of separate decorrelation, error modelling136

and encoding schemes, which yields higher compression ratios and with lower computational137

complexity compared to the original JPEG lossless process15. HEVC also has a lossless option138

which has been used for medical image compression16. Beyond these general-purpose image139

compression standards, Mahenswari and Raghavan (2020) developed the tetrolet transform for140

medical image compression17. Amri et al. (2016) proposed watermark reduction combined141

with the standard JPEG-LS and TIFF formats18. Guarda el al. (2017) proposed a method to142

improve HEVC coding for volumetric medical image compression using Least-Squares Prediction143

(LSP)19. Lucas et al. (2016) proposed a method utilizing 3D predictors20. Hulsken (2020)21144

introduced a lossless wavelet-based method, iSyntax, to compress several types of medical images145

for web view purpose. In general, the main drawback of lossless compression methods is the low146
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I. INTRODUCTION

compression ratio and thus without further improvement, they seem to be not suitable for the147

live teleintervention application.148

In contrast, lossy and near lossless compression methods offer much better compression149

ratios. Marcelo et al. (2000)22 investigated standard lossy compression (JPEG) and reported150

that compressed (JPEG) images could be used for diagnosis with similar accuracy to using non-151

compressed images. Parikh et al. (2017) applied lossy HEVC for medical image compression,152

and determined a medically acceptable compression range for HEVC23. Sharma et al. (2019)153

proposed a detector (RIGED) and block adaptive arithmetic encoding (BAAE) for medical im-154

ages24. The optimal level of quantization was selected based on overall visual quality as assessed155

by radiologists. Zerva et al. (2020)25 introduced the 3D-WDR-MCPD method for lossily com-156

pressing 3D medical images, which explores the spatiotemporal coherence property to improve157

the compression ratio. Senapati et al. (2016)26 proposed the 3D-HLCK embedded coder with158

the aim to reduce memory use in medical image compression. However, the use of lossy compres-159

sion in teleradiology is still controversial because the reduced image quality may affect clinical160

decision-making.161

In medical images, the regions of the image that contain information on the pathology, and162

that are being used for decision-making, are called regions of interests (ROIs); anything outside of163

these areas - the rest of the image - are denoted non-ROIs. The non-ROIs generally constitute the164

majority of the image. Therefore, ROI-based methods often losslessly compress the ROIs while165

lossily compressing the area outside the ROIs. Many researchers therefore define ROIs in the image166

and use a ROI-based method for achieving high compression ratios. In general, there are two167

strategies to define the ROIs. The first uses classical image processing methods such as such as168

graph cuts27, region growing28, levelsets and active shape/appearance models29; and the second169

utilizes modern machine-learning approaches, which can automatically separate ROIs with high170

accuracy and fast processing time. Recently, the machine learning approach has demonstrated171

superior performance over classical methods if a sufficient amount of training data is available30.172

Ahmadi et al. (2018)31 used a CNN for segmenting ROIs and background from an angiogram173

image. A DCT was used for tilling the ROIs and non-ROIs, after which the image was smoothed174

via Gaussian blurring, followed by JPEG-LS-based compression. Wavelet transforms were also175

used to lossily compress the non-ROIs32,33,34,35. Sreenivasulu and Varadarajan (2018) applied176

a DCT and hierarchical tree encoding method for ROI compression28. Manpreet and Wassona177

(2015) processed the ROIs by context tree weighting, and applied fractal lossy compression for178

3



I. INTRODUCTION

the non-ROIs36. Other approaches applied lossy compression methods for both the ROIs and179

the non-ROIs with different quality. Kurma et al. (2018) introduced the CVQ-SA method which180

compresses the ROIs with a low compression ratio and the non-ROIs with a high compression181

ratio37. Chaabouni et al. (2016) first applied a DWT, and then compressed the coefficients182

using an incremental self organizing map (ISOM)27. However, those methods do not preserve183

the edges in non-ROIs, which may be relevant in separating the objects in medical images.184

The main challenges of medical image compression methods for live interventions are:185

1. The compression rate should be sufficiently high while preserving the image quality for186

clinical purposes (should be larger than 6); and187

2. The compression and decompression process must be sufficiently fast (should be in order188

of seconds).189

In this paper, we propose an image processing method, deep learning and anisotropic diffusion190

(DLAD), to improve medical image compression for live interventions using 3D images. Our191

approach falls under the ROI compression approach. The proposed method exploits the principle192

of Shannon’s information theory38 that the smoothed version of an image contains less entropy193

than the original image. Therefore, compressing the smoothed image should achieve higher194

compression rates compared to the original image. Our approach is to first apply a trained195

application-specific convolutional neural network (CNN) to the image for extracting a probability196

map, which highlights the organ of interest region. Subsequently, the probability map modulates197

the diffusion coefficient function of an anisotropic diffusion filter, which controls the rate of198

diffusion in the original image. Differing from the other lossy ROI-based compression methods,199

the key idea of our method is that the anisotropic diffusion filter blurs the homogeneous areas200

outside the organ of interest region while preserving the edges and keeping the organ of interest201

region undiffused. Finally, the diffused image is compressed using a conventional compression202

method.203

We demonstrate the proposed compression framework for liver RFA interventions using CT204

images. During the intervention, the interventionist performs tumor ablation under CT guidance39
205

(see Figure 1). With single-ablator interventions, one of the key factors for the success is that the206

tip of the ablator needs to be positioned at the center of the tumor40. Therefore, locating the207

tumor centers in the CT images is a critically important task for the radiologist/interventionist.208
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II. METHOD

Figure 1: A CT-guided along with US-guided intervention of the liver RFA ablation41.

To perform the image compression, the probability map is derived from the interventional209

CT image utilizing a fully convolutional network (FCN) based on the well-known U-net archi-210

tecture42,43. The probability map is then embedded in the diffusion coefficient function of a211

Perona-Malik diffusion filter44. Afterwards, a lossless compression method (such as BZ2)45 vi-212

sually lossless method (such as HEVC)46, is applied on the diffused image. In our study, we213

assess the extent to which image compression artifacts affect the radiologist’s assessment of the214

liver intervention images. This is crucial because image compression artifacts should not affect215

the diagnostic assessment and treatment quality. In this study, two radiologists perform the liver216

lesion detection and the liver lesion center localization. Based on the score of their assessments,217

compared with the ground truth, we qualitatively evaluate the effect of the image compression218

on the clinical process.219

The remainder of the paper is organized as follows. The next section presents the compres-220

sion process, the proposed image processing method based on CNN and diffusion filter, as well as221

the two conventional image compression methods. In Section III., we describe the experiments222

and evaluation of the proposed method which includes image quality metrics and assessments223

by radiologists. Section IV. discusses the implications of these results, while the final section224

summarizes the outcomes and draws conclusions from the study.225
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II. METHOD

II. METHOD226

II.A. CNN-based liver probability map extraction227

In this study, we applied a fully convolutional network (FCN) based on the well-known U-net228

architecture47 to extract the probability map P (I(xi)) = {p(xi)} of the liver CT image I, where229

xi is the position of the i -th voxel42. The probability p(xi) ∈ [0, 1] should yield the value of230

closing to 1 when xi is inside the liver region while approaching 0 outside of the liver region. The231

FCN network introduced by Christ et al. (2017)42 was used to compute the probability map of232

the each 2D slice of the 3D interventional CT image. The key idea of a FCN is that it contains233

only convolutional layers, which allows the last layer of the network to predict dense pixel-wise234

probabilities for an image. The FCN contains 19 layers, which are organized in five stages of235

the U-net architecture (see Figure 2). We chose the FCN model due to its intrinsic multiscale236

structure and the good results reported in other related applications. The relatively small size of237

the network allows the probability map to be extracted within a short computation time. As in238

the experiments in our previous study43,48, the computational time, using a modern GPU, for the239

whole 3D liver CT image is few seconds, while the inference time for a single 2D slice is of the240

order of several hundred milliseconds on average.
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II. METHOD II.B. Deep learning anisotropic diffusion filter

II.B. Deep learning anisotropic diffusion filter242

Based on the fact that entropy coding can be used to compress the image49, our strategy for243

improving the compression rate is to reduce the entropy of the image38 by applying an anisotropic244

diffusion process on the images. It already has been demonstrated that a blurred version of an245

image has smaller entropy than the original image50. In this section, we describe the anisotropic246

diffusion filter used in this work. The filter has two important properties:247

1. It does not diffuse inside the liver region; and248

2. It diffuses less at the edges while diffusing more in homogeneous regions.249

The diffusion process of the image I can be described as the following equation44:250

∂I(xi, t)

∂t
= div(C(xi, t)∇I) = ∇C(xi, t)∇I + C(xi, t)4I, (1)251

where ∇ is gradient operator,4 is Laplacian operator, div(...) is divergence operator and C(xi, t)252

is a diffusion coefficient function. In this study, we proposed the following diffusion coefficient253

function:254

C(‖∇I(xi)‖, p(xi)) = (1− p(xi))exp(−
‖∇I(xi)‖

K
), (2)255

where ‖∇I(xi)‖ is the magnitude gradient of the image I, p(xi) is the probability values of256

the probability map P (I(xi)) and K is conductivity parameter which rescales gradient mag-257

nitude values. This diffusion coefficient function ensures that when p(xi) → 1, the function258

C(‖∇I(xi)‖) → 0, i.e. there is no diffusion in the liver region, while when p(xi) → 0,259

C(‖∇I(xi)‖) depends more on the value of the magnitude gradient image ‖∇I(xi)‖ (at a specific260

time point t).261

II.C. Image compression methods262

The aim of the proposed method is to reduce the entropy of the image to achieve a higher263

compression rate for several well-known compression methods. Furthermore, we intend to use264

lossless compression methods because they do not affect the quality of the images, which is265

relevant for medical applications. For the live intervention application, the compression methods266

should allow fast decompression because typically the receiver devices have low computational267

7
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power while the computational power of the transmitter can easily be matched by advanced268

hardware (such as a computational cluster or modern GPUs). Therefore, image compression269

methods which require long decompression times, such as JPEG-LS and JPEG2000, are not270

suitable for our application. In this section, we briefly present two compression methods, BZ2271

and HEVC, which support lossless and visually lossless compression, respectively. Those methods272

will be assessed in the experimental section and then compared to several well-known lossless273

compression methods such as Gzip (GZ), Rar (RAR), Zip (ZIP), 7Z, JPEG-LS (JLS), JPEG2000274

(J2K), iSyntax21 and Set partitioning in hierarchical trees (SPIHT)51.275

BZ2, also called Bzip2, is a lossless compression algorithm mainly based on the Bur-276

rows–Wheeler transform (BWT)52 and Huffman coding53. BWT is block-sorting text compression277

algorithm, which rearranges a symbol string into runs of similar symbols54. The rearranged sym-278

bols are then effectively compressed by applying Huffman coding. The 3D CT images can be279

considered as a raw data stream and thus can be compressed using BZ2. In addition, Patel et280

al. (2012) suggested that BZ2 can be implemented in parallel in multicore CPUs and GPUs to281

reduce processing time55.282

HEVC, also called H.265, is a state-of-the-art compression standard which can be used for283

both video and image compression56. HEVC achieves a high compression ratio because it contains284

several advanced techniques such as spatial and temporal prediction, DST and DCT transforms,285

quantization and entropy coding23. HEVC-lossless/visually lossless compressions46 are suitable for286

medical image compression16,19,23,57,58. Furthermore, HEVC also can be implemented in parallel287

and thus also can potentially be applied in live teleinterventions59.288

III. EXPERIMENT AND EVALUATIONS289

III.A. Dataset and annotations290

We used 151 abdominal diagnostic and interventional CT images aquired before and during291

RFA liver interventions, which were retrospectively used in our previous studies43,60. The datasets292

were collected from three sources: Erasmus MC, Mayo Clinic and LiTS challenge. The images293

were acquired on Siemens, GE and Philips scanners and were reconstructed according to standard294

medical protocols. All datasets were anonymized before they were used in this study. The295

images were converted into nifti format with 16-bit depth. The details of the datasets are296

8



III. EXPERIMENT AND EVALUATIONS III.B. Quantitative evaluation criteria

Table 1: Characteristics of the datasets used in this study.

Dataset
Number of

images
In-plain

resolution (mm)
Spacing
(mm)

Number of
slices

Voltage
(kV)

Tube current
(mAs)

EMC 103 0.55-0.98 0.8-10.0 21-261 80-120 4-12
Mayo 20 0.66-0.82 3.0 128-343 100-120 18-21
LiTS 28 0.63-1.0 0.7-5.0 31-234 - -

summarized in Table 1. Of those datasets, 33 contrast-enhanced CT images with 61 visible297

liver legions (35 HCCs, 20 metastases, 3 benign cysts and 3 hemangiomas), 1 to 5 lesions per298

image with diameters smaller than 3 cm, were selected for the radiologist evaluation section. The299

selected images contain either liver tumor segmentations or tumor center markers performed by300

a certified radiologist and then reviewed by one to three radiologist experts. From the liver tumor301

segmentations, we determined the center of the tumors by extracting the middle point of the302

longest diameter of the tumor segmentations. Those centers were used as the ground truth in the303

radiologist evaluation section (Section III.D.1.). Table 1 lists the characteristics of the datasets304

used in this study.305

III.B. Quantitative evaluation criteria306

III.B.1. PSNR307

PSNR is commonly used to measure the quality of lossy image compression method.308

PSNR is defined as the ratio between the maximum possible power of a signal and the power309

of the difference between in intensities of the original image and the reconstructed-compressed310

image (the diffused image). Generally, PSNR for a 3D image is formulated as follows:311

PSNR = 10 log10(
L2

MSE
), (3)312

313

MSE =

∑
[I(xi)−D(xi)]

2

V
, (4)314

where L = 216− 1 for 16 bit depth CT images, MSE is the the average power of the difference315

of the the original image I(xi) and the compressed image D(xi) across a total of V voxels.316

III.B.2. SSIM317

While PSNR quantifies the difference of the two images globally, SSIM , introduced by318

Wang and Bovik (2004)61, measures the quality of the image based on the fact that the pix-319

9



III.B. Quantitative evaluation criteria III. EXPERIMENT AND EVALUATIONS

els/voxels have a strong relation when they are spatially close. The SSIM index of two images is320

calculated using the following formula62:321

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C1)
, (5)322

where x and y are pairs of local square patches at the same spatial locations (as sub-volumes/sub-323

images of image I and D respectively); µx and µy are the mean intensity values of the two324

corresponding patches x and y; σx and σy are standard deviations of the intensities of the patches325

x and y respectively; σxy is the covariance intensities of the of the two patches; C1 = (K1L)2326

and C2 = (K2L)2, with K1 and K2 are preset constants, are variables to stabilize the division327

by the small dominator. In this study, we chose K1 = 0.01 and K2 = 0.03 and the patch size of328

11x11x1 with Gaussian weight scale of σ = 1.5 as suggested by Nilsson (2020)63.329

III.B.3. Compression ratio330

The compression ratio, CR, measures the ratio between the original image size and the331

compressed image size:332

CR =
OS

CS
, (6)333

where OS and CS are the original image size and the compressed image size, respectively.334

III.B.4. Radiologist assessments335

PSNR and SSIM are objective image quality metrics that are not explicitly related to336

diagnostic and treatment decision-making by medical experts. In this study, two radiologists, with337

3 and 8 years of experience in reading liver tumors and performing RFA liver intervention using338

CT images, detected the liver lesions and annotated the centers in the CT images. Specifically,339

the 33 CT images, with the ground truth of the liver lesion centers (section III.A.), were processed340

using the proposed DLAD method and then compressed using BZ2 and HECV-visually lossless341

method. The file names of the original and decompressed images were anonymized and sorted in a342

random order. The two radiologists blindly read and annotated the center of the detected lesions343

in each image separately. In addition, the spatial accuracy of the liver tumor center annotation is344

important because the radiologist typically aims to insert the RF ablator through the center of a345

tumor in liver RFA interventions. Therefore, for the TP detection annotations, we compute the346

10



III. EXPERIMENT AND EVALUATIONSIII.C. Implementation and parameter verification

Euclidean distances between the liver lesion annotations by the two radiologists and the ground347

truth.348

For the liver lesions detection evaluation metric, we used a per-lesion scoring metric as349

suggested by McCollough (2017)64 as follows:350

• The reader gets +1 point for a true positive (TP) lesion detected, i.e. when the annotated351

center is less than 10 mm apart;352

• The reader gets -1 point for a false positive (FP) lesion annotation;353

• The reader gets -1 point for a false negative (FN) lesion annotation;354

• The normalized score (NS) is the total score/number of lesions (expressed as a percentage);355

and356

• The sensitivity score (SC) is TP/(TP+FN) (expressed as a percentage).357

Note that the evaluation does not include true negative (TN) score because it is medi-358

cally necessary to detect the liver tumor rather than the healthy liver parenchyma in the RFA359

intervention.360

III.C. Implementation and parameter verification361

The study was carried on an Ubuntu 16.04 Linux PC, with a 2.40 GHz 16-core Intel®362

E5-2665 Xeon® CPU, 64 GB DDR3 and 1333 MHz bus. The proposed DLAD method was363

implemented using the ITK 5.1.1 library in C++ with a Python 3.7 wrapper. The CNN model364

for the liver probability map extraction was reused from our previous study43, which was trained365

on 115 CT images from the LiTS dataset65 using an NVidia TITAN V GPU and was tested366

on 40 contrast enhanced CT images of the liver. The parameter settings for training the CNN367

model were inhered from the the original work by Christ et al. (2017)42. In this study, the368

probability map is dilated with a circular kernel of 30x30x1 voxels and then is thresholded so369

that the probability values are 1 when they are larger than 0.75 to ensure the liver is inside the370

undiffused region. As investigated in our previous study43 that the threshold of 0.75 guarantees371

liver segmentation from the probability map to be larger than 90 % on average.372
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Compression and decompression were performed with Python 3.7 using only the CPU. We373

used BZ2 compression which is available as a standard Linux library and standalone utility. HEVC-374

visually lossless, implemented in the FFMPEG library in multicore CPU, was applied to compress375

each 2D slice of the image (the implementation has no support for 3D image compression yet).376

PNSR and SSIM scores were computed using the Skimage library while the entropy of the377

image was measured using the Scipy library. ISyntax source code was implemented and experi-378

mented in Matlab 2018b, provided by the author21.379

In the parameter tuning section for the DLAD method, we use the 10 images in the Mayo380

dataset as a training dataset. We performed the diffusion while varying the number of iterations381

and the conductivity parameter K. The results of the experiment are shown in Figure 3. While382

the PSNR score does not show differences w.r.t the number of iterations (Figure 3a), the383

SSIM and CR score are both strongly dependent on these two parameters. According to384

Flynn (2013)66, the processed image should maintain an SSIM score higher than 0.95 to ensure385

visual acceptance. In addition, the number of iterations should be as low as possible to limit the386

processing time. Note that the number of iterations is linearly related to the processing time while387

the compression ratio does not linearly increase with the number of iterations. Thus, we chose388

the optimal conductivity parameter K = 0.4 and the number of iterations as 15. A summary of389

the pilot experiment using the BZ2 compression method is provided in Table 2.390
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Figure 3: The effect of varying the number of iterations and the conductivity parameter K
on the PSNR score (a), SSIM score (b) and the compression ratio (c) on average. The
circle is at the optimal parameter point.

Figure 4 is an example CT image processed by the DLAD method. In the diffused image391

(B) the liver region is indistinguishable from the original (A), whereas the rest of the image is392

anisotropically diffused. Moreover, the histogram of the diffused image is more peaked than that393

of the original image, with a corresponding lower entropy value (8.72) than the original image394
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Table 2: The evaluation on the pilot images (Mayo) with the conductivity parameter K =
0.4 and the number of iterations = 15 using CPU only. The average entropy shows that
the diffused images have lower entropy than that of the original images. The numbers in
(parentheses) are the standard deviations while the numbers in the [square bracket] are the
min and the max values. The compression ratio is for the BZ2 method.

Number of
slices

Diffusion time
(s)

PSNR
(dB)

SSIM CR
Entropy

Original Diffusion
90.5 [75-110] 34.7 [32.4-36.8] 70.33 (0.85) 0.95 (0.02) 2.25 (0.20) 9.15 (0.12) 8.66 (0.20)

(9.14). The average entropy of the full set of diffused Mayo images (8.66) is also lower than the395

average entropy of the original images (9.15) (Table 2)396
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Figure 4: An example of the effect the DLAD method on a liver CT image: The original
image (the left) and the diffused image (the right) have entropy values of 9.14 and 8.72,
respectively.
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III.D. Experiment results397

III.D.1. Quantitative evaluation results398

We applied the DLAD diffusion on the rest of the datasets (141 CT images). The diffused399

images were compressed with several well-known lossless compression methods such as GZ, RAR,400

ZIP, BZ2, 7Z, JLS, J2K, iSyntax, SPIHT and HEVC-visually lossless. The compression ratios401

of the original images and the diffused images are shown in Figure 5 and Table 3 for each402

of these compression methods. HEVC-visually lossless achieves the highest compression ratio,403

compressing the original images and the diffused images by factors of 4.73 and 6.45, respectively,404

with the improvement of 36%. We also perform paired T -tests on the compression ratios for405

the original images versus those of the diffused images. The results show that for all of the406

compression methods, the improvement in compression ratios with diffused vs. original images407

was statistically significant, with p-values of smaller than 0.01. The results also suggest that408

the HEVC compression method on the DLAD diffused image statistically significantly performed409

better than the other compression methods (p < 0.001).410
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Figure 5: : The compression ratios achieved by each compression method on the original
images (the left) and the DLAD diffused images (the right).

The average computation time of the compression methods on a 2D slice of the original411

images and the diffused images, using the CPU only, are shown in Figure 6. It can be seen that,412
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Table 3: Compression ratios, maximum processing time and maximum memory usage of
several compression methods applied on the abdominal 3D CT images. The numbers in
the round bracket are standard deviations. The implementation of iSyntax is in Matlab
with unreliable computation time and used memory resource, and thus those values are not
included in the table.

Type of compression
GZ RAR ZIP BZ2 7z iSyntax SPIHT JLS J2K HEVC

Median of
compression

ratio

Original
1.7

(0.21)
2.28

(0.33)
1.6

(0.2)
2.28

(0.32)
2.13

(0.28)
2.26

(0.26)
2.54

(0.94)
2.63

(0.42)
2.18

(0.32)
4.73

(0.77)

Diffusied
2.1

(0.37)
3.29

(0.70)
2.34

(0.43)
3.45

(0.78)
3.06

(0.63)
2.93

(0.51)
3.3

(1.07)
4.12

(0.95)
3.22

(0.61)
6.45

(1.06)

Improvement
33%

(14%)
44%

(18%)
29%

(14%)
47%

(20%)
38%

(16%)
29%

(15%)
33%

(24%)
53%

(22%)
46%

(19%)
36%

(13%)
Maximum

processing time (s)
23.1

(18.4)
26.8

(22.3)
23.6

(19.9)
23.8

(19.0)
34.9

(28.6)
-

32.8
(21.3)

27.5
(22.6)

38.2
(34.0)

36.3
(29.4)

Maximum
memory usage (MB)

490.7 490.8 491.2 499.6 597.0 - 490.9 490.9 490.9 490.9

in general, all of the compression methods require less than a half of a second to compress and413

decompress a single 2D liver CT image. In addition to the diffusion processing time and the414

liver probability map extraction time (using the CPU), the whole process requires an average415

processing time of less than one and a half minutes for a 3D CT image of 90 slices (see Table416

2). Moreover, the J2K and JLS compression methods require more time to decompress than to417

compress the images.418

Figure 7 illustrates the differences between the original image (A) and the images with BZ2419

(B) and the HEVC (C) compression. The difference images show that the BZ2-compressed420

image does not show any difference in the liver region, since it is lossless in this region; the421

HEVC-compressed image yields some tiny differences in the liver region. The PSNR and SSIM422

score are computed within the liver region of the HEVC-decompressed diffused images, yielding423

average values of 92 dB and 0.998, respectively.424

III.D.2. Radiologist assessment result425

Liver lesion detection by the two radiologists on the images with BZ2 and the HEVC-426

compression is summarized in Table 4. The table shows that the sensitivity metrics for radiologist427

1 and 2 to the original images are 67.2% and 72.1%, respectively. Those scores are within the428

range [53% - 81%] of the expected performance of radiologists in the task of liver lesion detection429

reported in Fletcher et al. (2018)67. Both radiologists detected one or two lesions fewer in the430

diffused images and the diffused HEVC images, which are not statistically significant (< 5%).431
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Figure 6: The average compression and decompression times of the different compression
methods on both the original images and the diffused images. The prefix “O” indicates that
the compression ratios are for the original images, while the prefix “D” indicates that the
result is for the diffused images. The computation time of iSyntax is excluded due to the
unreliable implementation for time-consuming measurement in Matlab.

Moreover, false detections are fewer in the decompressed images than that in the original images.432

The NS scores suggest that radiologist 2 (with 8 years of experience) performs better than the433

radiologist 1 (3 years of experience), but there is no significant difference in the performances of434

the two radiologists.435

Figure 8 illustrates the displacements in the annotations at the liver lesion centers performed436

by two radiologists. The median values of the displacements for the original, BZ2-decompression437

diffused and HEVC-decompression diffused images by radiologists 1 and 2 (with the standard438

deviations in parentheses) are 2.4 (1.6) mm, 2.2 (2.2) mm, 2.6 (1.9) mm, 2.0 (1.3) mm, 2.3439

Table 4: The evaluation scores performed by the two radiologists on the 33 sets of the
original, the BZ2-decompression diffused and the HEVC-decompression diffused images.

Evaluation
parameter

Radiologist 1 Radiologist 2

Original
Difffused-

BZ2
Diffused-
HEVC

Original
Difffused-

BZ2
Diffused-
HEVC

TP 41/61 39/61 40/61 44/61 43/61 42/61
FP 21 16 19 15 13 12
FN 20 22 21 17 18 19

SC (%) 67.2 63.9 65.5 72.1 70.4 68.8
NS (%) 0.0 1.6 0.0 19.7 19.7 18.0
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Diffused – BZ2 Diffused – HEVCOriginal Image

Absolute Difference Of A and B Absolute Difference Of A and C
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D E

Figure 7: Examples of the decompressed CT images in RFA liver intervention using BZ2
and HEVC method.

(1.6) mm and 2.3 (1.3) mm, respectively. The p-values for T -tests on the performance of the440

radiologist 1 and 2 with “Original” vs “Diffused-BZ2”, and “Original” vs “Diffused-HEVC” are441

0.72, 0.25, 0.13 and 0.53, respectively. There are thus no statistically significant differences in442

placing the liver lesion centers when comparing the radiologists performance on the original images443

and the compressed images. The medians of the difference in placing the annotations between444

the two radiologists are 0.97 (2.76) mm, 1.08 (2.53) mm and 1.04 (2.38) mm, respectively.445

The p-values for T -tests on the inter-observer performance with “Original” vs “Diffused-BZ2”,446

and “Original” vs “Diffused-HEVC” are 0.36 and 0.91, respectively, suggesting that there is no447

statistically significant difference in annotating the liver tumor centers by the two radiologists.448
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Figure 8: The distances between the annotations at the liver lesion centers performed by
the two radiologists and the ground truth of the liver tumor centers. “Original” is the
displacements in the original images, “Diffused-BZ2” indicates the displacements in the
BZ2-decompression diffused images, while “Diffused-HEVC” stands for the displacements
in the HEVC-decompression diffused images. ”Difference” illustrates the distances between
the annotations of the radiologist 1 and 2 at the same liver lesions.

IV. DISCUSSION449

The experimental results presented in Section III.D.1. show that the JLS compression method450

achieves a median compression ratio of 4.12 (0.95) which is the highest compression ratio among451

the lossless compression methods, while HEVC-visually lossless achieves the highest median com-452

pression ratio of 6.45 (0.95). These results are comparable to those of the best state-of-the-art of453

medical image compression methods17,19,20,23,28,37,58. A summary of the state-of-the-art medical454

image compression methods is listed Table 5. The DLAD method is a preprocessing method to455

reduce entropy of the images while maintaining the quality of the image for medical purposes, and456

thus it may also be combined with other compression methods. Parikh et al. (2016) suggested457

that lossy HEVC-based compression can reduce the size of a medical image by up to 71-94%, and458

Pole and Shriam (2018) showed that the proposed lossy HEVC method for compressing 3D med-459

ical images achieves a CR of 10-15. Obviously, the lossy HEVC-based methods perform better460

than our proposed method; however, we suggest that the effect of the lossy compression methods461

should be carefully verified for the specific medical application by the (interventional) radiolo-462

gists before being a compression scheme is chosen in practice. Recently, the H.266 compression463

method has been released68; it is expected that the combination of DLAD and H.266-lossless464

also has great potential in medical image compression applications.465
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Table 5: The summary of the state-of-the-art for 3D medical image compression methods.

Citations Method
Data
(3D)

PSNR
(dB)

SSIM CR
Max processing

time (s)
Comp. Decomp.

Kurmar et al.
(2018)37

ROI lossy/
CVQ - SA

10 abdomen
CT images

39.0 (1.0),
[37.27 - 40.28]

- 6.27 (0) - -

Sreenivasulu
et al.

(2020)28

ROI lossless/
Wavelet

5 images
(Brain MRI)

42.3 (3.3),
[38.65 - 46.69]

-
2.6 (0.8),

[1.68 - 3.88]
- -

Lucas et al.
(2017)20

Lossless/
3D predictors

CT and
MR image

- -
4.1 (1.8),

[2.57 - 8.38]
220148.7 15.1

Parikh et al.
(2018)23

Lossy/
HEVC

MR Brain
(12 bit)

[60.3 - 63.8] [0.78 - 0.92]
29 - 35 (Intra),
29 - 33 (Inter)

- -

Zerva et al.
(2020)25

Lossy/
3D-WDR-MCDP

MR Brain [50.6 - 52.3] [0.68 - 0.78] 16 - -

Guarda et al.
(2017)19

Lossless/
HEVC

2 MR
images

- -
2.8 (0.1),

[2.68 - 3.66]
- -

Pole and
Shriam
(2018)58

Lossy/
HEVC

MR video
images of
the brain

- - 10 - 15 - -

Maheswari
and

Raghavan
(2020)17

Lossless/
Tetrolet

transform

MRI
and CT

-17.8 -
4.18,

[4.12 - 4.24]
7.02 -

This work
ROI lossless/
DLAD-HEVC

151 liver
CT images

70.03 (0.85) 0.95 (0.02) 6.45 (1.06) 138.5 21.6

From Table 4 and Figure 8, we can conclude that the compression effect of the proposed466

method does not statistically significantly affect the image quality as assessed by the radiologists467

for liver lesion detection and lesion center annotation. Note that the ground truth can be at468

between two slices while the annotations are on a slice, which may cause apart of the displace-469

ments. In general, the median displacements for both radiologists are around 2 mm, which are470

also smaller than the minimal safety margin of 5 mm in the RFA liver intervention69,70. Based471

on the inter-observer scores, we suppose that the median displacements are dominated by the472

uncertainty in human performance at this task. The main reason, of course, is the selective473

diffusion, since it does not degrade the quality of the part of the image containing the lesions474

in the liver. Whereas the visual appearance of the tissue outside the liver in the diffused images475

is different compared to typical images, this does not seem to hamper the radiologists in their476

assessment.477

Several limitations remain in our study. First, evaluation of the processing time suggests478

that a large part of the time used for the compression process is the diffusion processing time.479

In this study, it requires 34.7 [32.4-36.8] seconds using the CPU to diffuse a 3D CT image of480

around 90 slices (see Table 2). Yet, according to Kalaiselvi (2018)71, anisotropic diffusion filters481

can be sped up by 1-2 orders of magnitude when they are implemented on a modern GPU (such482

19



IV. DISCUSSION

as the NVIDIA QUADRO K5000). Furthermore, Wei et.al. (2018)59 suggested that HEVC483

compression implementation on a multicore CPU/GPU can save 99% of the processing time.484

Thus, with the current computational capabilities of modern GPUs, that the processing time485

of the compression process using DLAD method can be reduced significantly with a hardware-486

optimized implementation. Secondly, we only demonstrate the compression framework for the487

purpose of RFA liver intervention using 3D CT abdominal images. However, several recent studies488

on multi-organ segmentations using CNNs72,73 have showed that regions of others organs such489

as the kidneys and spleen can be extracted from the 3D medical images within one minute490

with high accuracy. In practice, the teleradiologist may not aim to see several organs at once.491

Thus, the teleradiologist may manually interact with the images to choose the organ of interest;492

this can then be used to guide the DLAD method to diffuse the images while preserving the493

organ of interest. Furthermore, we suggest that after the first compressed image is sent, further494

studies may subsequently transfer the subtraction image and then combine it with the diffused495

image to fully restore the original image. In order to reduce the delayed time at the receiver,496

Zerva et al.25 suggested that progressive transmission of compressed images can be applied. In497

our proposed framework, a part of the compressed 3D images can be progressively transmitted498

while the compression process is applied on the remanding part of the images. Thirdly, the499

HEVC-visually lossless implementation we used in this study only supports a series of 2D images.500

Nevertheless, we expect HEVC-based compression methods for 3D image compression, using501

inter-slice information, may further improve CR score at the expense of greater computational502

resource requirements.503

Recently, the Covid-19 pandemic has been first reported in Wuhan in China and spread out504

to 215 countries around the world within only a few months. The pandemic has become a global505

threat with at least 40 million infected cases and 1 million deaths74, causing the lockdowns and506

the social distancing in many countries around the world. In such a situation, telemedicine in507

general and teleradiology in particular are a potential solution for clinical diagnosis and treatment.508

Although the application of the teleradiology still faces many challenges, such as safeguarding509

privacy and security, we believe that along with the development of telecommunications technol-510

ogy, medical image compression approaches may have a significant contribution on accelerating511

the use of teleradiology, especially in less well connected areas.512
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V. CONCLUSIONS513

In conclusion, we introduced a framework for teleintervention using 3D medical images.514

The framework is based on the proposed image processing method, DLAD, which uses a CNN515

network for region of interest selection and an anisotropic diffusion filter to reduce the entropy516

of the image without affecting image quality in the region of the organ of interest. DLAD was517

further combined with a lossless compression method to compress the image. We showed that518

the method can obtain compression ratios up to 6.45, which is 36% better than compressing519

without DLAD, while the means of PSNR and SSIM are 70 dB and 0.95, respectively. In520

addition, we demonstrated that, for liver cancer CT images, images processed in this way do not521

degrade the detection and localization abilities of radiologists using these images. These results522

indicated that the compression framework can be used to effectively compress 3D medical images523

while preserving the quality required for the clinical use. The method thus has a high potential524

to be implemented in teleradiology applications.525
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