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Purpose or Objective 

Image-guided small animal irradiations are typically performed in a single session, requiring continuous 

administration of anesthesia. Prolonged exposure to anesthesia can potentially affect experimental 

outcomes and thus, a fast preclinical irradiation workflow is desired. Similar to the clinic, delineation 

of organs remains one of the most time-consuming and labor-intensive stages in the preclinical 

workflow, and this is amplified by the fact that hundreds of animals are involved in a single study. In 

this work, we evaluated the accuracy and efficiency of deep learning pipelines for automated contouring 

of organs in the mouse thorax. 

 

Materials and Methods 

We trained the 2D and 3D U-Net architectures of no-new-Net (nnU-Net) and AIMOS (i.e., current best 

performing algorithm for mouse segmentation) deep learning pipelines on 105 native micro-CT scans 

of mice, and we tested the trained models against an independent dataset (n=35, native CTs not included 

in training). Additionally, we also evaluated the segmentation performance on an external dataset 

(n=35, contrast-enhanced CTs), which do not share the same properties such as the mouse strain and 

image acquisition parameters as the training data. The quality of the automated contours was evaluated 

in terms of the mean surface distance (MSD) and 95% Hausdorff distance (95% HD). We also report 

the average preprocessing and inference times and the total runtime of each model. 

                                                                                                                             

Results 

For the native CT dataset, all models of nnU-Net (3d_fullres, 3d_lowres, 3d_cascade, 2d) and AIMOS 

generated accurate contours of the heart, spinal cord, left and right lungs as shown in figure 1(a). They 

achieved an average MSD less than the in-plane voxel size of 0.14 mm while the average 95% HD were 

below 0.60 mm for all target organs except for the right lung segmentation of nnU-Net 2d. For the 

contrast-enhanced CTs, we chose to compare only the best performing 3D model of nnU-Net 

(3d_fullres) to the 2D models (nnU-Net 2d and AIMOS). Consistent for all organs, the nnU-Net 

3d_fullres model showed superior segmentation performance (figure 2(a)). The 2D models generated 

incomplete contours and exhibited unacceptably large Hausdorff distances (> 1 mm). Although the 2D 

models are generally faster, all models took < 1 minute to generate contours, which is a huge 

improvement from the manual contouring time of ~40 minutes. 

 



 

 

 

Conclusion 

We have shown that the nnU-Net 3d_fullres model outperforms the state-of-the-art AIMOS deep 

learning pipeline for mouse thoracic segmentation, and it offers a 98% reduction in contouring time 

compared to manual contouring. Our findings demonstrate the potential of integrating nnU-Net in 

routine practice to expedite irradiation and reduce the workload in preclinical facilities. 


