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  Abstract 

Delineation of tumors and organs-at-risk permits detecting and correcting changes in 

the patients' anatomy throughout the treatment, making it a core step of adaptive 

external beam radiotherapy (EBRT). Although auto-contouring technologies have 

sped up this process, the time needed to perform the quality assessment (QA) of the 

generated contours remains a bottleneck, taking clinicians between several minutes 

up to an hour to complete. The authors of this article conducted several interviews 

and an observational study at two treatment centers in the Netherlands to identify 

challenges and opportunities for speeding up the delineation process in the context 

of adaptive therapies. The present article starts by describing several performance 

factors uncovered in the study. Then, it discusses two clinician-centered strategies 

for accelerating the contouring process. First, enable targeted inspection of the 

generated contours by leveraging AI uncertainty and clinically relevant features such 

as the proximity of the organs-at-risk to the tumor. Second, minimize the number of 

interactions needed to edit faulty delineations with redundancy-aware editing tools 

that provide the user a sense of predictability and control. Tool developers and 

workflow builders can follow these strategies to increase contouring efficiency 

without compromising the patient’s outcome. 

  Introduction 

External Beam Radiotherapy (EBRT) is the most common form of RT and has 

become one of humanity’s main tools against cancer, together with surgery and 

systemic treatment. In EBRT, ionizing radiation is directed at the patient’s tumor to 

destroy the malignant cells. Over the last decades, significant technological 

improvements have been made in treatment planning and delivery, which increased 

the precision of EBRT. For instance, proton beam therapy (PT) can harness the 

ability of protons to deposit all their energy (Newhauser & Zhang, 2015; Wilson, 

1946). This capability permits PT more precisely shaping the radiation dose to the 

tumor, minimizing the dose to the surrounding healthy tissue and reducing side 

effects (Langendijk et al., 2013; Lundkvist et al., 2005; Simone et al., 2011; Thomas 

& Timmermann, 2020).  
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During an EBRT treatment course, which usually lasts several weeks, the patient 

anatomy can change. When this happens, it is often necessary to update the 

treatment plan, which entails executing the colored processes in the dose delivery 

pipeline of Figure 1. The present study focuses on the contouring process, which, 

despite the introduction of auto-contouring methods, still requires significant 

intervention of clinicians who must perform an extensive quality assessment of the 

generated delineations to ensure that they are clinically acceptable (Cardenas et al., 

2019; Nikolov et al., 2020; van Dijk et al., 2020).. For instance, in the institutions 

surveyed in the present work, contouring can take more than an hour. Even when 

automatically generated initial contours are available. 

===== INSERT FIGURE 1 APPROXIMATELY HERE ===== 

Existing studies seek to make the contouring workflow fit into the reduced time 

windows of adaptive therapies in two ways. First, bottom-up investigations focus on 

how clinicians perform the contouring task, providing a deeper understanding of 

their information needs (Steenbakkers et al., 2006), the optimal workspace 

conditions (Multi-Institutional Target Delineation in Oncology Group, 2011), and 

producing design insights for the user interfaces and editing tools to improve 

contouring performance (Aselmaa et al., 2014, 2017; Ramkumar, 2017; Ramkumar 

et al., 2016). These studies often explore their research questions in a controlled 

environment using software developed for this purpose (Steenbakkers et al., 2005), 

which ignores clinicians’ context and limits the scope of their findings to ways of 

optimizing current software solutions. 

On the other hand, articles from the medical domain often take a top-down view of 

the contouring activity, discussing aspects like the commissioning process of auto-

contouring technologies and how to integrate them into clinical practice (Cardenas et 

al., 2019; Vandewinckele et al., 2020). Even though clinical papers consider the 

clinical context, their focus on auto-contouring technology distracts them from the 

clinician’s role in the process. The latter can result in clinical workflows like those 

observed at the surveyed institutions, where even though automation has greatly 

accelerated contouring, the activity is still time-consuming because clinicians must 

manually inspect and edit faulty delineations. 

The present study aims at bridging the bottom-up and top-down approaches 

discussed above. Concretely, it is assumed that contouring will remain a human-

centered process for the foreseeable future and seeks how to make it suitable for 

adaptive EBRT workflows. Concretely, this article contributes to the state-of-the-art 

of clinical contouring workflows in adaptive EBRT in two ways: 

1. It reports the results of an observational study in two cancer treatment 

centers in the Netherlands. The Study of the Contouring Workflow 

provided a situated account of the current contouring workflows in the 

context of adaptive EBRT, together with factors that can affect its 

performance. 
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2. It discusses acceleration strategies based on the context of adaptive 

radiotherapy that tool developers and clinicians can leverage to adapt the 

contouring workflow to time-constrained scenarios. 

  The Contouring Activity 

An exploratory literature review was performed to establish baseline knowledge 

about the contouring activity and its role in adaptive therapies. The query used for 

the search (Scopus, PubMed, and Google Scholar) included the keywords: adaptive, 

adaptation, proton therapy, radiotherapy, contouring, automatic, semi-automatic, 

workflow, and head-and-neck. The latter term was relevant since the study's 

participants (next section) were specialists in this region. The search yielded around 

50 articles with publishing years ranging between 2008 and 2021.  

As Figure 2 depicts, the main inputs of the contouring activity are 3D images (stacks 

of hundred of 2D images) that describe the patient anatomy. Among these, there is 

an image to contour, usually a Computerized Tomography (CT), and supporting 

information such as previous contours of the patient and other image modalities such 

as Magnetic Resonance Imaging (MR) and Positron Emission Technology CT (PET-

CT). Using available information, the contouring task consists of drawing the 

contours of anatomical structures in the image to contour relevant to the patient's 

cancer. The two main anatomical groups are the target volumes (TVs), which 

correspond to areas affected by tumoral cells, and the organs at risk (OARs), which 

correspond to healthy tissue.  

===== INSERT FIGURE 2 APPROXIMATELY HERE ===== 

As the right panel of Figure 2 indicates, the goal of the contouring activity is to 

produce contours suitable for creating or updating the patient treatment plan and 

assessing its quality. Several actors participate in this workflow in the clinic, 
distributing contouring tasks based on the anatomical structures' groups. In general, 

radiotherapy technologists (RTTs) start by delineating the OARs. After this, the 

radiation oncologists (ROs), which are directly responsible for the patient’s 

outcome, assess the quality of the OARs contours and draw the boundaries of the 

TVs, the structures with the highest priority. The study that the next section 

describes was designed based on this understanding of the contouring activity. 

  Study of the Contouring Workflow 

A study of the contouring workflow was conducted to identify characteristics of 

adaptive EBRT that affect contouring performance and to identify context-

dependent strategies that tool developers can leverage to improve it. The following 

sections detail the study's design and describe the methodology used for analyzing 

the resulting data. 
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  Study design  

  Participants 

Two radiation oncologists (RO) and two radiotherapy technologists (RTT) from two 

cancer treatment centers in the Netherlands specializing in the head-and-neck area 

joined the study. Table 1 summarizes the participants’ information. One of the 

institutes, the Leiden University Medical Center (LUMC), offers photon-based 

VMAT treatments. The second, the Holland Proton Therapy Center (HollandPTC), 

offers proton therapy (PT). Despite the differences in dose delivery technology, both 

institutions have a similar workflow, performing offline adaptations. The latter 

means that the patient's treatment plan is updated sparsely during treatment (entails 

re-executing blue boxes in Figure 1). The Institutional Review Board at the Delft 

University of Technology approved this research. Each participant provided 

informed consent to be part of the study. 

  Procedure 

The study had three sessions. The first one, a one-hour-long semistructured 

interview, permitted establishing rapport with the participants and validated the 

initial understanding of the EBRT workflow. In the second and third sessions, the 

participants performed their contouring duties while being recorded. As Table 1 

shows, these meetings lasted between one and two hours, depending on the 

participants’ time. In the second session, clinicians performed initial contouring. The 

third focused on adaptive contouring, where clinicians perform a quality assessment 

of automatically generated contours. Given the limited clinicians' time, they 

contoured a subset of anatomical including the tumors and organs close to them that 

could affect the patient outcome.   

  Materials 

For the observational sessions, clinicians at each center had access to the data of two 

previously treated head and neck patients. Each patient file included initial treatment 

planning data such as CT, PET-CT, and MRI scans and daily images such as CBCT 

and CT, relevant for sessions 2 and 3, respectively. For session 3, starting 

delineations could have been generated by another clinician or automated methods 

like deformable or rigid registration and deep learning-based contouring. For 

inspecting and editing the contours, clinicians used their routine software. 

  Data Analysis 

The recordings of the three sessions were transcribed and analyzed using Thematic 

Analysis (Braun & Clarke, 2006). The coding process was bottom-up, first labeling 

patterns in the transcripts and then grouping the resulting fine-grained codes into 

coarser ones based on their similarity. Table 2 displays the underlying coarser codes, 

the resulting themes, and sample data excerpts. The screen recordings of sessions 2 

and 3 were also relevant as they showcased the way clinicians interact with the user 

interface during the contouring process. The interactions were mapped onto a 

timeline like the one that Figure 4 depicts. For the y-axis, the authors drew 

inspiration from the literature on contouring tasks (Aselmaa et al., 2017) but 

grouped them into four categories to simplify the coding process and the analysis. 
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These are direct and indirect manipulation, navigation, and non-contouring 

interactions. 

  Initial Contouring  

  Results 

Initial contouring (IC) occurs when executing the plan creation and offline 

adaptation process in Figure 1 for the first time. At LUMC and HollandPTC, initial 

contouring (IC) takes two to six hours for head-and-neck (HN) cancers, requiring 

delineating more than twenty structures. The following paragraphs group the 

observations about the IC workflow into three characteristics. Finally, this section 

discusses how these characteristics can affect contouring performance. 

  Usable Additional Information 

At IC, no pre-existing contours of the patients exist, given that this process occurs 

after they have started treatment. Instead, clinicians use information from multiple 

image modalities acquired in the simulation process. The main image modality in 

radiotherapy, CT, usually does not provide enough boundary information when the 

contrast between adjacent tissues is not enough or when there is noise or artifacts in 

the image acquisition process. In these cases, clinicians rely on Magnetic Resonance 

Imaging (MRI) and Positron Emission Technology-CT (PET-CT) scans, acquired 

for most patients at HollandPTC and LUMC. As Figure 3 shows, MRI helps 

differentiate soft tissue structures:” MRI makes it easier for us to delineate the 

parotid glands because you can see them very good at an MRI.”. In the case of PET-

CT, this modality permits clinicians to locate tumors and estimate their boundaries 

with higher precision:” We actually scan all of our head and neck patients [with 

PET-CT] because it makes our delineations that more easy and more accurate, so 

that is now standard.” [P1].  

===== INSERT FIGURE 3 APPROXIMATELY HERE ===== 

In practice, clinicians align additional images to the CT before using them for 

contouring. This process, known as image registration, can take several minutes per 

image pair and requires the clinician’s intervention to verify the alignment’s quality. 

Registering the images allows clinicians to scroll through them in parallel using the 

contouring software, enabling direct comparison of the structures in both scans. 

Applicable Domain-Specific Knowledge 

In some cases, the information in the images is not enough. At IC, this happens 

when MRI and PET-CT scans are not available and because there are no pre-existing 

contours of the patients (they just started the treatment). In these cases, clinicians 

rely on domain-specific knowledge they access in two ways. First, they leverage 

guidelines (Brouwer et al., 2015) and atlases that describe and indicate what the 

contours should look like, respectively. Second, they draw on their experience. 

Experienced clinicians know what areas can be challenging to delineate given the 

available data. They use this domain-specific anatomical knowledge to direct their 

attention and estimate contours over unclear image boundaries. An example of this 

dynamic occurs when the radiation oncologists (ROs) review the delineations 
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created by the radiotherapy technologists (RTTs): “We [ROs] think that it 

[delineating the swallowing muscles] is too hard for RTTs, need quite a bit of 

anatomical knowledge to know where they are exactly. And in this case, this patient 

doesn't have a very big tumor in the throat, but most of the time patients have quite a 

big tumor here. And you can't see the swallowing muscles that good. So, then you 

need to know exactly where they run from to delineate them.” [P1]. 

  Editing Capabilities of Contouring Software 

In practice, at IC, clinicians create the contours from scratch. As the timeline on the 

top section of Figure 4 depicts, this entails starting with an empty delineation and 

gradually building the contours through a series of interactions. At the surveyed 

institutions, clinicians favored a semi-automatic workflow, which consisted of two 

phases. First, they generated initial contours using the between-slice interpolation 

tool, which only requires contouring a subset of the slices that the structure spans. 

After auto-completing the rest of the delineations (indirect editing around eighty 

seconds in), they proceeded to correct potential inaccuracies manually with the 

brush tool. As the timeline shows, the generation of contours takes more time than 

the refinement, and clinicians spend most of the time directly editing the 

delineations with the brush. 

===== INSERT FIGURE 4 APPROXIMATELY HERE ===== 

  Discussion 

Clinicians use contours produced at IC to create the patient’s treatment plan.  

Therefore, they seek maximal accuracy, often at the expense of longer task 

durations. The three characteristics of the IC context described before affect 

contouring time in several ways. First, extra image modalities reduce the task 

difficulty, which can result in reduced dwelling times to determine where the 

contour should go. Nevertheless, additional images need to be registered to the main 

one, a time-consuming process that could offset the performance benefits gains that 

the process offers.  Second, domain-specific knowledge can reduce the extent of the 

contouring task by letting clinicians direct their attention to where it is needed. Yet, 

following the accuracy directive, they still must go through the whole volume to 

ensure no inaccuracy remains. Finally, the semi-automatic between slice 

interpolation tool spares clinicians from needing to edit several slices but still 

requires significant manual effort to initialize the method. 

  Adaptive Contouring  

  Results 

LUMC and HollandPTC implement an offline-adaptive dose delivery pipeline, 

which entails updating the treatment plan several times during treatment by 

repeating the plan creation and offline adaptation process between fractions. 

Adaptive contouring (AC) occurs in this setting and differs from initial contouring 

(IC) in that the time is more critical and the resources scarcer. At the surveyed 

institutions, AC takes one to two hours for head and neck cancer patients. Like the 
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previous section, the following paragraphs detail the AC context and discuss how it 

affects the process’ performance. 

  Usable Additional Information 

In contrast with IC, at AC, no extra images of the patient are acquired. Therefore, 

clinicians have access to the image to contour, a CT at LUMC and HollandPTC, the 

images acquired for IC, and the approved IC contours. In practice, clinicians only 

use the latter and do so in two ways. First, because IC contours document all the 

clinical decisions made for the current patient, they use them as a patient-specific 

atlas to resolve complex contouring tasks. Regarding having an atlas for contouring, 

P4 mentioned that” it’s always nice to have it [the atlas] like a verification. Because 

the brainstem isn’t that difficult, but like if you have the swallowing muscles or 

something, that’s really something. If you have the atlas side by side, it really can 

come in handy.” [P4] Second, clinicians use approved IC contours to create an initial 

segmentation. For this, they align, or register, the IC and AC images and then 

“propagate” the contours from the former to the latter. 

  Applicable Domain-Specific Knowledge 

In addition to general anatomical knowledge, at AC, clinicians use knowledge about 

dosimetry and the patient tumor to structure and guide the contouring process. On 

the one hand, it can help them direct their attention to critical areas. On the other, it 

lets them modulate the contouring based on the structure’s relevance to the patient’s 

treatment plan. For instance, P2 mentioned that while some contours require 

maximal attention and precision:” with this type of organs, so all the nervical organs, 

as in optical nerves and brain stem and spinal cord, when it’s critical, so when the 

PTV is nearby, then it’s very important that we draw this very precise.” Others 

accept rougher contours as they will not significantly impact the patient’s outcome:” 
this submandibular gland, it gets too much dose, so it won’t work. After irradiation, 

this one is gone. So, at that point, we can decide to delineate, but it isn’t, it’s OK if it 

isn’t quite perfect.” 

  Editing Capabilities of Contouring Software 

As mentioned before, clinicians do not start delineating from scratch at AC. Instead, 

they generate a starting point by propagating the contours from the initial scan to the 

current one. Therefore, the goal at AC is to perform a quality assessment (QA) of 

these delineations. The timeline in the bottom section of Figure 4 exemplifies the 

series of interactions that clinicians usually perform during the QA process. In the 

timeline, it is possible to see how starting from partial delineations, they reach the 

final ones after a series of relatively long direct editing interactions interleaved with 

brief navigation operations ones. Between slice interpolation, the tool clinicians use 

for contouring from scratch, does not work for contour refinement. Therefore, for 

extensive errors across multiple slices like the one that Figure 5 depicts, clinicians 

face two options. Either manually fix the contour on every slide or delete the 

delineation and re-do it from scratch using between-slice interpolation. 

===== INSERT FIGURE 5 APPROXIMATELY HERE ===== 
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  Discussion 

While clinicians use IC contours for creating the treatment plan, they use AC 

contours to update it. For this reason, at this stage, their primary concern seemed to 

be to faithfully translate IC contours to the current patient anatomy. The identified 

contextual characteristics affect AC performance in several ways. First, having 

information about the role that each structure plays in the patient's treatment helps 

direct clinicians' attention to delineations that can affect the patient outcome. A 

potential pitfall of the current prioritization approach is that it is purely heuristic and 

based on clinicians’ experience instead of available information such as the planned 

dose. Second, by using IC-approved contours, clinicians can reduce the time for 

analyzing and editing complex or large regions by propagating them via registration. 

Nevertheless, same as with other image modalities at IC, the time it takes to perform 

the registration might offset the time gains. Finally, although contouring is overall 

faster at AC due to the contours being pre-generated, there is no tool to efficiently 

perform QA, requiring clinicians to invest significant manual effort. 

  Discussion 

The Study of the Contouring Workflow provided an understanding of several 

characteristics that affect contouring performance in different contexts. This section 

takes these observations as input and lays down several ways of accelerating the 

adaptive contouring activity, which is increasingly time-pressured due to clinics 

implementing more responsive adaptative workflows. The discussion differentiates 

between the inspection, navigation, and editing tasks, which account for most of the 

delineation time. Figure 6 summarizes the study's findings and the resulting context-

dependent acceleration strategies. 

===== INSERT FIGURE 6 APPROXIMATELY HERE ===== 

  Inspection and Navigation  

In adaptive contouring, clinicians focus on inaccurate delineations that affect the 

patient's treatment. For example, they prioritize inspection of tumors contours 

because an error could result in overexposure of surrounding organs to radiation or, 

worse, in underexposure of the cancerous tissue (Aliotta et al., 2019). This 

observation suggests that it is possible to use patient-specific treatment-level 

information to define the contouring priority of anatomical structures. For instance, 

those areas that, when creating the treatment plan, showed to affect patient outcome, 

with metrics such as the Normal Tissue Complication Probability (NTCP) models 

(Brouwer et al., 2014), should be prioritized. Figure 7 presents an example of 

prioritization based on the local characteristics of the dose distribution. As can be 

observed, while a potential inaccuracy in the tumor delineation has a high priority, 

errors in the parotid glands are less urgent due to their lower impact on the patient’s 

treatment.  

Before prioritizing errors, they need to be detected and highlighted to the user. 

Several methods have been proposed in the literature for this purpose. They vary in 

the information and the mechanism used to perform the search. As for the former, it 



towards fast contouring workflows for adaptive proton therapy 

is possible to compute shape (Heimann & Meinzer, 2009; Hermann & Klein, 2015) 

and image or appearance-related (Gao et al., 2010) characteristics of the contours. 

For instance, the surface area or the intensity histogram, respectively. Another 

possible indicator of the contours' quality is their uncertainty or variability, which 

can come from historical patient data (Chu et al., 2013), the auto-contouring 

algorithm (LaBonte et al., 2020; Mody et al., 2021), or directly the image-to-contour 

(Top et al., 2011). After gathering all these sources of information, available 

techniques surface potential errors in two ways. On the one hand by letting a 

classifier automatically find data-based rules for separation of the inaccurate from 

the accurate regions (Altman et al., 2015; Chen et al., 2015; Hui et al., 2018; 

Kalpathy-Cramer et al., 2014; McIntosh et al., 2013; Rhee et al., 2019; Sandfort et 

al., 2021). On the other, they delegate the search task to the users, presenting them 

with the traditional two-dimensional image and contour slices together with 

informative overlays such as uncertainty iso-lines (Al-Taie et al., 2014; Prassni et 

al., 2010) and contour boxplots (Whitaker et al., 2013). These two-dimensional 

visualizations have been augmented by adding three-dimensional views (Lundström 

et al., 2007; Raidou et al., 2016) and letting the user interact with the data by 

filtering and sorting mechanisms (Furmanová et al., 2021; Saad et al., 2010). 

The main problem of existing techniques for guiding the user search for contouring 

errors is their reliability. On the one hand, they often surface areas that are not 

inaccurate, which could result in the user unnecessarily editing the contours, the 

most expensive operation (false positives). On the other, they can fail to spot 

inaccuracies that could affect the patient's treatment (false negatives). Invariably, the 

latter low sensitivity would erode the user's trust in the system, which might explain 

why these systems have not been widely deployed in clinical practice.  

===== INSERT FIGURE 7 APPROXIMATELY HERE ===== 

  Editing 

Currently, clinicians use mostly manual tools when fixing an inaccuracy. For errors 

that occupy a large portion of the volume, like the example in Figure 5, this often 

means that the user will perform similar edits across slices. Existing semi-automatic 

interactive contouring techniques mitigate this issue by extrapolating rough feedback 

provided by the user. Their general workflow consists of two steps. First, the user 

provides a rough indication of the change to be made or the area to update via coarse 

inputs such as scribbles, points, or a bounding box. Based on this input, the 

algorithm proceeds to update the segmentation. Traditionally Markov Random 

Field-based algorithms were used (Kato & Zerubia, 2012; Rother et al., 2004). 

Recently, deep learning based implementations have appeared that offer more 

sophisticated suggestions based on the user’s input (Dai et al., 2015; Lin et al., 2016; 

Maninis et al., 2018). 

The adoption of these semi-automatic interactive editing tools in the clinic remains 

challenging. Based on discussions with clinicians, the reason for their resistance to 

these interactive editing tools seems to be that they perceive scribbles as a blunt tool 

for communicating to the algorithm what they want. Therefore, more research is 

needed to determine which type of input mechanism the clinicians prefer and how 
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the algorithm should respond. For instance, do they prefer coarse inputs like 

scribbles? Or would they be more comfortable with high precision inputs such as 

selecting a contour from an ensemble of candidates (Ferstl et al., 2016)? With 

editing being the most time-consuming QA operation, obtaining a synergy between 

humans and AI is paramount. 

  Limitations and Future Work 

A limitation of this work is the reduced number of treatment centers and clinicians 

surveyed in the study, which might have led to weighting heavily on custom 

institutional practices and personal preferences. In the future, a questionnaire like the 

one reported in (Bertholet et al., 2020) could be prepared to validate the conclusions 

with a larger pool of participants. Another limitation is the qualitative nature of the 

timelines used to illustrate the dynamics between the clinicians and the contouring 

software. In the future, we plan to use keystroke logging software to include more 

fine-grained actions and more accurate timings. The latter would be especially 

valuable for comparing different segmentation tools. 

In terms of future work, we will translate the findings of this study into a practical 

human-centered contouring protocol that clinicians can adapt to their institution-

specific adaptive EBRT capabilities and constraints. In addition to the clinician-level 

considerations that the present article considered, such protocol will also account for 

team dynamics, which also emerged as a performance factor in the surveyed 

institutions. 

  Conclusion 

This study characterized the contouring workflows in EBRT. An observational study 

at two treatment centers in the Netherlands revealed several context-dependent 

characteristics that influence delineation performance. Based on these, strategies for 

accelerating the inspection, navigation, and editing tasks were discussed. By 

applying these when developing and commissioning tools, tool builders and 

clinicians can decrease the delineation time, which will increase the suitability of 

this process for time-critical therapies like online-adaptive EBRT. 
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Table 1. Participants of the qualitative sessions. There were two radiation oncologists (RO) 

and two radiotherapy technologists (RTT) from two institutions in the Netherlands. Due to 

their tight schedules, not all of them could participate in all the sessions. 

ID Institution Role Session Time (hours) 

P1 LUMC RO 1, 2, 3 5 

P2 LUMC RTT 2, 3 2 

P3 HollandPTC RO 1, 2 3 

P4 HollandPTC RTT 1, 2, 3 5 

 

Table 2. The first column presents the themes that emerged during the Thematic Analysis of 

the transcripts of the semi-structured interviews and observational sessions of the Study of the 

Contouring Workflow. The second column presents the coarser codes obtained after several 

grouping iterations finer ones. Lastly, the third column displays, for each theme, a 

representative example from the transcribed data.  

Theme Codes Example 

Adaptive contouring 

context 

Clinical workflow, 

standardization, physical and 

clinical artifacts, training, 

institution specific considerations, 

EBRT technology  

 

“Now it takes one day to do the whole plan. 

So, we have to make a new calculation and it 

has to go into the the LINAC so it has to get 

another check.” [P2] 

Structure priority and 

effect of innacuracies 

on patient’s treatment 

Anatomical knowledge, 

downstream effects, 

characteristics of different 

anatomical structures, clinical 

priorities, tumor-related 

considerations 

“I guess if it's an inner region where for 

instance the cheek region here. Those are 

minor [edits], but if we see this region where 

you have the parotid gland. There it could 

influence dose to the OARs quite 

significantly. So there. Then I would say it's 

a major [edit].” [P1] 

 

Dealing with 

uncertain regions in 

the image-to-contour 

Anatomical knowledge, image 

modalities, papers and guidelines, 

information required for certainty 

“With the nasopharyngeal cancers, then I will 

take an MRI and then I will draw on the 

MRI. So, then I know exactly where the 

brainstem is.” [P4] 

 

Editing capabilities of 

contouring software 

Characteristics of contouring 

software, experience with the 

tools, use of automation 

“It seems to me that it's a model based one 

[automatically generated contour] because 

the model based one always has trouble here 

at the head of the mandible at the joint.” [P3] 

 

Distribution of labor 

and clinicians 

experience 

Experience with the contouring 

task, collaboration, task 

distribution, protocols 

“When an RTT does it [a contour]? 

Sometimes it's very nice and when a not so 

experienced RTT does it it's not a very good 

delineation and then it costs me either a lot of 

time to adjust every slice or I just start again 

and that's most of the time.” [P3] 
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Figure 1. Schematic of an external beam radiotherapy (EBRT) dose delivery pipeline. Each 

box corresponds to one process, and the diamonds to decisions in the workflow. The goal is to 

deliver the prescribed dose to the patient in F fractions spread over several days (red box). 

Adaptive strategies help mitigate dose deviations due to changes in the patient's anatomy 

during the treatment. Adaptation can be online within a fraction (orange boxes) or offline 

between fractions (blue boxes). 

 

 

Figure 2. Components of the contouring activity. The inputs (left) are the image to contour 

and, optionally, other three-dimensional datasets like MRI and PET-CT scans and dose 

distribution volumes. The contouring activity has two main processes that several actors 

perform: generation of contours and quality assessment of the delineations. Subsequent 

processes use the resulting contours for creating/updating the patient's treatment plan and 

assessing its quality. 



22 Chaves-de-Plaza, Mody, Hildebrandt, Staring, Astreinidou, de Ridder, de Ridder 

& van Egmond 

 

 

Figure 3. Available information available at contouring. The central input is the image to 

contour which, as panel A depicts, is a three-dimensional image made out of several 2D 

slices. Other three-dimensional images available at the surveyed centers are magnetic 

resonance imaging (MRI) and positron imaging technology CT (PET-CT) scans. As panel B 

shows, MRI helps differentiate soft tissue, and PET-CT aids in detecting and delineating 

tumors. 



towards fast contouring workflows for adaptive proton therapy 

 

 

Figure 4. Interaction timelines for initial and adaptive contouring. In both cases, P2, a 

radiotherapy technologist from LUMC, delineated the right submandibular gland of a head 

and neck cancer patient. The x-axis encodes time, and the y-axis differentiates the principal 

interaction categories while delineating. Non-contouring interactions (NCI) correspond to 

changes in the interface that do not affect the contours, like changing the layout or 

visualization parameters. Navigation refers to changing the view of the image to contour. 

Finally, direct and indirect manipulations entail altering the delineations in the 2D slice or 

through a button in the menu, respectively. Note how initial contouring starts from scratch 

(empty circle) while adaptive contouring starts with pre-generated delineations (partially 

filled circle). 
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Figure 5. Editing faulty delineations often entails redundant interactions. The top image 

presents an inaccurate contour of a tumor-related structure (left) generated via rigid 

registration-based propagation from the planning CT (right) by P2 at LUMC. After the 

propagation, the internal side of the delineation fails to include the whole structure, which 

causes an error that spans several slices. The images below present the sequence of steps that 

P1 followed to amend the inaccuracy. 
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Figure 6. Schematic of the approach that the present study followed. First, it characterized 

the different contexts in which contouring operates in terms of three items that affect its 

performance. Using these as input, it discusses context-based strategies for accelerating the 

inspection, navigation, and editing tasks. 

 

Figure 7. Components for accelerating the inspection, navigation, and editing tasks. The first 

step (leftmost column) is to generate the contours and gather extra information like 

delineation variability and the dose distribution (DD). Based on these sources, potential 
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errors can be flagged and categorized depending on their effect on the patient outcome. In the 

example, an error in the tumor’s delineations was flagged as high priority (red) because it 

can significantly change the treatment plan. As for the parotid glands, the orange inaccuracy 

is located in a region where the DD varies more quickly than in the case of the green one. 

Therefore, subsequent processes (like treatment plan updating) that rely on the orange 

contours could be more sensitive to changes in these contours. 
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