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Abstract. Bayesian Neural Nets (BNN) are increasingly used for robust
organ auto-contouring. Uncertainty heatmaps extracted from BNNs have
been shown to correspond to inaccurate regions. To help speed up the
mandatory quality assessment (QA) of contours in radiotherapy, these
heatmaps could be used as stimuli to direct visual attention of clini-
cians to potential inaccuracies. In practice, this is non-trivial to achieve
since many accurate regions also exhibit uncertainty. To influence the
output uncertainty of a BNN, we propose a modified accuracy-versus-
uncertainty (AvU) metric as an additional objective during model train-
ing that penalizes both accurate regions exhibiting uncertainty as well
as inaccurate regions exhibiting certainty. For evaluation, we use an
uncertainty-ROC curve that can help differentiate between Bayesian
models by comparing the probability of uncertainty in inaccurate ver-
sus accurate regions. We train and evaluate a FlipOut BNN model on
the MICCAI2015 Head and Neck Segmentation challenge dataset and
on the DeepMind-TCIA dataset, and observed an increase in the AUC
of uncertainty-ROC curves by 5.6% and 5.9%, respectively, when using
the AvU objective. The AvU objective primarily reduced false positives
regions (uncertain and accurate), drawing less visual attention to these
regions, thereby potentially improving the speed of error detection.
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1 Introduction

Radiotherapy for cancer treatment requires one to acquire diagnostic scans like
CT and contour the boundaries of tumors and organs-at-risk (OARs). This pro-
cess is time-consuming, prone to human error as well as inter-and intra-annotator
disagreement [5,27]. For head-and-neck CT scans, these issues are further exac-
erbated due to the large OAR count (∼35) and a lack of soft-tissue contrast.
Although deep learning has made great leaps in auto-contouring of tumors and
OARs [26], the predicted contours still need to be manually verified before treat-
ment. In this paper we investigate the use of Bayesian uncertainty heatmaps to
help speed up this quality assessment (QA) by directing visual attention of clin-
icians to regions potentially containing contouring errors. Specifically, to enable
faster error detection, we improve upon literature by incentivizing deep Bayesian
models to produce uncertainty heatmaps only in inaccurate and not in accurate
regions.

There exists a large body of work on uncertainty estimation for medical image
segmentation. Some show that uncertainty heatmaps correspond to erroneous
regions [23,24] indicating their potential to be used during autocontouring QA.
Others investigate loss functions (c.f. Dice vs cross-entropy) [15,24], uncertainty
metrics (e.g. entropy, standard deviation) [6,20,23] or the use of uncertainty for
error detection [23], contour refinement [2,25] and training data sampling [12].
The aforementioned works design for epistemic (or model) uncertainty which rep-
resents the variation in outputs, given an input. Conversely, other works design
for aleatoric (or data) uncertainty [4,11,18] for e.g. inter- and intra-annotator
disagreement, a phenomenon common in medical image segmentation. To the
extent of our knowledge, Bayesian approaches to medical image segmentation
have only explored the direct use of uncertainty and have not attempted to
influence its nature. Our approach instead trains Bayesian segmentation models
to produce both accurate contours along with uncertainty present only in inac-
curate regions. This can potentially speed up autocontouring QA by ensuring
that clinicians are not distracted by the uncertainty in accurate regions.

To ensure that accurate regions are certain and inaccurate regions are uncer-
tain, we are inspired by [13] and their use of the Accuracy-vs-Uncertainty (AvU)
metric in image classification tasks. Specifically, the AvU metric measures the
ratio of the sum of accurate and certain (nac) and inaccurate and uncertain
(niu) voxels to the total number of voxels (N). Our contribution is to use this
metric as a loss term to improve the clinical utility of uncertainty heatmaps by
providing a higher signal-to-noise ratio for error detection in a medical image
segmentation context. In addition, we propose a loss term to specifically reduce
uncertainty in accurate regions, as these regions are largest and may play a
major role in influencing the visual attention of clinicians during autocontouring
QA. Unlike [13], we maximize AvU across a range of uncertainty thresholds and
evaluate our approach using the uncertainty-ROC metric [16].
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2 Method

2.1 Dataset and Neural Architecture

We used two public datasets of CT scans of the head-and-neck region which
were annotated with 9 organs-at-Risk (OARs). The MICCAI 2015-Head and
Neck Segmentation Challenge dataset [22] contains 33 training, 5 validation and
10 test samples. The DeepMindTCIA dataset [21], containing 15 patients, is used
as an independent test set.

Building upon literature, we use OrganNet2.5D [7], a non-Bayesian model
as our base neural architecture. It follows the encoder-decoder design and uses
a combination of both 2D-only and 3D-only convolutions. Its middle layers use
dilated convolutions to obtain a sufficient receptive field since it only performs
two down-sampling steps to maintain resolution for the smaller optic organs.
Inspired by earlier work [1], we add Bayesian layers in the middle of our network.

To perform training for Bayesian models, a prior on the weights is assumed
and updated to a posterior using the available dataset. For inference, we perform
Monte-Carlo sampling of the posterior weights to estimate the output distribu-
tion as follows:

p(y|x,D) = EW∼p(W |D)[p(y|x,W )]. (1)

Here, x is an input mapped to an output y, p(y|x,D) is the output distribution
and p(W |D) is the posterior [3] used to sample model weights W . We use the
FlipOut technique [28], a form of variational inference in Bayesian neural nets
that enables GPU-efficient sampling of weights from the posterior. Here, the
prior is assumed to be a Gaussian factorizable across the Bayesian layers which
is initialized with zero mean and identity covariance. FlipOut with a Gaussian
prior was chosen over methods like Dropout [9] or DropConnect [16] since they
use a Bernoulli distribution that may not be as representative of the neural net
weight distribution when compared to a Gaussian. Unlike OrganNet2.5D, we use
a lower count of filters in our model to be able to efficiently perform training
and inference on its Bayesian version.

2.2 Losses

Segmentation Loss: In 3D segmentation, for each OAR class (c ∈ C) the
model produces 3D probability maps (Pc) where each voxel (i) is represented by
a probability vector summing to 1. We use the Cross Entropy (LCE) loss and
the Dice loss (LDice) on each Pc to learn organ geometry as also done in [17].

Accuracy-vs-Uncertainty (AvU) Loss: After prediction, each voxel has two
properties – accuracy and uncertainty. Uncertainty is calculated on the output
distribution p(y|x,D). We chose predictive entropy, a commonly used uncer-
tainty statistic, as it is capable of capturing both epistemic and aleatoric uncer-
tainty [8]. Here, entropy represents the average amount of ambiguity present in
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the OAR probability vector P i
c of each voxel i in the probability map Pc and is

calculated as shown in [17]. In this work, we use the normalized entropy calcu-
lated by dividing the entropy by ln |C|. Each voxel then belongs to one of four
categories: nac, nau, nic and niu, where n stands for the number of voxels, a
for accurate, i for inaccurate, c for certain and u for uncertain. For QA, it is
desirable to have a high nac when compared to nau to prevent clinicians from
spending time investigating accurate regions as well as high niu when compared
to nic to prevent omission of errors. This requirement leads to the formulation
of the AvU metric [19]:

AvU =
nac + niu

nac + nau + nic + niu
, (2)

with a range between [0,1]. To maximize AvU, we follow [13] and minimize the
negative logarithm of the AvU metric which uses a differentiable version of nac,
nau, nic and niu. This loss term is minimal when all accurate voxels are certain
and inaccurate voxels are uncertain, i.e. nau = nic = 0. While [13] applies the
AvU loss to each image in a classification task, for organ segmentation we apply
it on a dilated region around the ground truth and predicted mask since the
background usually has low error as well as low uncertainty. In addition, rather
than using a fixed uncertainty threshold calculated by the average uncertainty on
a held-out validation set, we instead propose penalizing the AvU metric across
a range of uncertainty thresholds (t ∈ T ) and average their AvU loss values:

LAvU =
1
T

T∑

t=1

ln
(

1 +
nt
au + nt

ic

nt
ac + nt

iu

)
. (3)

p(u|a) Loss: In practice, inaccuracies are usually present along the contour and
not in the core. To avoid unnecessary visual inspection, it is desirable to have
low uncertainty in the core of such organs. Thus, we investigate an additional
loss on the probability of uncertainty in accurate regions, p(u|a):

Lp(u|a) =
1
T

T∑

t=1

ln
(

1 +
nt
au

nt
ac + nt

au

)
. (4)

This loss is at its minimum when nac is 0. Thus, the final model objective is:

L = LCE + LDice + α · LAvU + β · Lp(u|a). (5)

2.3 Evaluation

As a first measure of evaluation, we evaluate AvU for each uncertainty threshold
t in the full range of normalized entropy (0 ≤ t ≤ 1). Then a single Area-under-
the-curve (AUC) score is computed for each model using the AvU scores across
a range of uncertainty thresholds. However, the AvU score compresses informa-
tion of all voxels in a single value and does not allow to evaluate uncertainty
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separately in accurate and inaccurate regions. For faster radiotherapy contour
QA, we need high probability of uncertainty in inaccurate regions – p(u|i), and
low probability of uncertainty in accurate regions – p(u|a). Let us plot p(u|i) on
the y-axis and p(u|a) on the x-axis of a graph and also define niu as True Positive
(TP), nau as False Positive (FP), nac as True Negative (TN) and nau as False
Negative (FN). This makes p(u|i) the True Positive Rate and p(u|a) the False
Positive Rate, essentially giving us the commonly used Receiver Operating Char-
acteristic (ROC) curve. We dub this measure as the uncertainty-ROC curve [16].
Calculation of the AUC would provide us with insight into whether the addi-
tional AvU loss has been useful. In this work, the p(u|i) and p(u|a) values plotted
on the graph are the average across all test samples calculated using a discretized
set of uncertainty values. Instead of uncertainty-ROC, [13] uses the Uncertainty
Calibration Error (UCE) [14] metric to evaluate the effect of the AvU loss. This
metric motivated by model trustworthiness metric Expected Calibration Error
(ECE) [10], requires a normalized uncertainty value of x ∈ [0, 1] to also provide
an error percentage of the same value. We believe that this approach of treating
the scalar value of uncertainty as a proxy for error percentage is not the correct
approach. Finally, we also report ECE where a high score would indicate that
the model, on average, produces high confidence probability estimates (i.e. low
entropy), even for inaccurate predictions.

Due to inter-observer variation common in radiotherapy contouring [5], we
consider voxels with “tolerable” errors within the inaccuracy map as accurate
since they do not require clinical intervention [23]. Two morphological operations
on the inaccuracy map i.e. erosion (to remove) followed by dilation (to repair
partially eroded error regions) help us output an error map consisting only of
segmentation failures that require clinical intervention.

3 Experiments and Results

3.1 Experimental Details

For our data, we ensure homogeneity by resampling all CT volumes to a reso-
lution of (0.8, 0.8, 2.5) mm. As is commonly done in radiotherapy anatomical
contouring, we trim the Hounsfield units of the CT scan from −125 to +225 for
improved contrast of soft tissues. Finally, during training, random 3D patches
of size 140 × 140 × 40 were extracted and augmented with 3D translations, 3D
rotations, 3D elastic deformation and Gaussian noise.

We compare the original FlipOut model to the one with AvU loss (FlipOut-A)
and the one with the AvU and p(u|a) loss (FlipOut-AP), by training them on the
MICCAI2015 training set and evaluating on the MICCAI2015 and DeepMindT-
CIA test sets. Additionally, the FlipOut-A(t1), FlipOut-A(t2) and FlipOut-A
models use the following thresholds (Eq. (3)): the median, the mean [13] and the
25th to 75th percentile range in steps of 0.05%, of the uncertainty values in the
MICCAI2015 validation set.

All our models are trained for 1000 epochs, with the FlipOut-A and Flipout-
AP models having their first 50 epochs dedicated to segmentation losses alone,
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Table 1. Comparing Bayesian models for the MICCAI2015 (MIC2015) and Deep-
MindTCIA (DMTCIA) datasets. † and ‡ represents statistical significant difference
(p < 0.05) when compared to FlipOut and FlipOut-A respectively. The mean and
standard deviation are calculated across all patients.

Dataset Model HD95 (mm) ECE (x10−2) AvU (x10−1) unc-ROC (x10−1)

MIC2015 FlipOut 3.30.4 7.30.6 8.50.1 6.50.2

FlipOut-A(t1) 3.10.3 6.50.7†‡ 8.70.5† 6.70.6†‡

FlipOut-A(t2) 3.20.4 6.40.2†‡ 8.70.6† 6.71.0†‡

FlipOut-A 3.10.4 5.80.6† 8.90.1† 6.90.2†

FlipOut-AP 3.20.3 5.81.0† 9.00.1† 6.90.3†

DMTCIA FlipOut 4.41.4 8.21.1 8.10.2 6.10.3

FlipOut-A(t1) 4.50.9 8.30.5 8.20.9† 6.40.7†

FlipOut-A(t2) 4.41.2 8.10.5 8.30.5† 6.40.2†

FlipOut-A 4.41.3 8.20.7 8.50.3† 6.50.3†

FlipOut-AP 4.51.4 8.20.9 8.60.2† 6.60.1†

so that they can learn the geometry of individual organs-at-risk prior to tuning
their uncertainty. They are further trained till a 1000 epochs when the KL-
divergence between the posterior p(W |D) and prior p(W ) has stabilized. The
loss balancing terms α = 100 and β = 100 (Eq. (5)) are experimentally deter-
mined from the training set {1, 10, 100} such that the volumetric and surface
measures of the newer model are either better or equivalent to the base model.
For training we use a fixed learning rate of 10−3 with the Adam optimizer.
For output distribution estimation, we perform 5 and 30 Monte Carlo sampling
steps during training and inference respectively. During training and evaluation,
we identify tolerated errors by using a kernel size corresponding to (2.4,2.4,2.5)
mm. Code is implemented using Tensorflow version 2.4 on an Nvidia V100 (16
GB). Code to reproduce results is available on https://github.com/prerakmody/
hansegmentation-uncertainty-errordetection.

3.2 Results and Analysis

Table 1 shows 95th percentile of Hausdorff Distance (HD95), Expected Calibra-
tion Error (ECE) [10], and AUC (Area-under-the-curve) scores for the AvU and
uncertainty-ROC (unc-ROC) curves along with their statistical significances,
using a Wilcoxon signed-rank test. There are no significant differences between
the HD95 scores. For the internal MICCAI2015 dataset, the results show that
using even a single threshold in the AvU loss causes a significant decrease in
the ECE score, thus leading to more trustworthy probability estimates while
a range of thresholds further improves calibration performance. This is in line
with the results observed in [13], but the same does not hold for the external
dataset. We also observe that upon using the AvU (Eq. (3)) and p(u|a) (Eq.
(4)) loss, AUC scores for the AvU and uncertainty-ROC curves have significant
improvements in the uncertainty outputs over FlipOut (Fig. 1). Compared to

https://github.com/prerakmody/hansegmentation-uncertainty-errordetection
https://github.com/prerakmody/hansegmentation-uncertainty-errordetection
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Fig. 1. The top row shows the AvU scores while the bottom row shows the uncertainty-
ROC curve for the MICCAI2015 (left) and DeepMindTCIA (right) datasets respec-
tively.

FlipOut-A(t1) and FlipOut-A(t2), FlipOut-A has significantly better unc-ROC
scores for the MICCAI dataset, but not for the DeepMindTCIA dataset. Finally,
compared to FlipOut-A, FlipOut-AP increases the AvU score slightly, at similar
uncertainty-ROC scores.

In Fig. 2, the rows depict CT slices with varying “qualities” of uncertainty
maps. The first row shows the mandible bone with both the models having
near-perfect contour predictions. Despite this, the FlipOut model still exhibits
uncertainty in the core of the mandible bone even though there are no contrast
issues. Conversely, the other models show uncertainty only on the contour of
the prediction since uncertainty in accurate voxels has been suppressed leading
to less visual attention in those regions. The second row shows the left parotid
gland with all models having acceptable contours with minor errors (and asso-
ciated uncertainty) in the medial lobe. The differences in uncertainty lies in
the white blob (i.e. a vein) in the core of the gland as well as its lateral bound-
aries. While the FlipOut model shows uncertainty on both, the FlipOut-A model
shows uncertainty only on the white blob and the FlipOut-AP model does not
show uncertainty in both due to the use of the p(u|a) loss. In the third row,
we show the top-most slice of the brainstem with the FlipOut and FlipOut-
AP model showing uncertainty along the predicted contours and the FlipOut-A
model showing uncertainty in the core region. Thus, although there may not
be significant differences in the uncertainty-ROC metric between the FlipOut-A
and Flipout-AP models (Fig. 1), the Flipout-AP may still be useful in certain
scenarios. Note here that the slight contour differences are simply a result of the
Monte-Carlo sampling as the overall models have similar geometric scores. In
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Fig. 2. Comparing the entropy heatmaps for the FlipOut, FlipOut-A and FlipOut-AP
models. Here, we see the clinical (green) and predicted (blue) contours (columns 1–3)
and the entropy heatmaps (columns 4–6). (Color figure online)

the fourth row, we again show the left parotid gland, but with larger errors on
the medial lobe. In all cases, the models do not show any uncertainty in the erro-
neous region despite textural differences in the same. Such errors in contouring
and omission in uncertainty may be attributed to the small size of our training
dataset and such false negatives (in context of uncertainty) can be a potential
blocker to adoption in the clinic.

4 Conclusion

This work investigates the use of the Accuracy-vs-Uncertainty (AvU) and p(u|a)
metrics as an additional objective in deep Bayesian modelling for improving error
detection using uncertainty. Specifically, the proposed losses potentially enables
faster error detection in radiotherapy contouring by motivating the model to
produce accurate voxels which are certain and inaccurate voxels which are uncer-
tain. This can assist clinicians during the mandatory quality assessment (QA) of
autocontouring algorithms prior to radiation dosage calculation. We evaluate the
effect of the AvU loss by using the uncertainty-ROC curve which shows that we
improve the correlation of uncertainty with contouring inaccuracies. Our mod-
ified AvU loss does not require a manual choice of the uncertainty threshold,
and improves the uncertainty-ROC metric on both an internal and external test
dataset. We also explore an uncertainty-based loss specifically designed for the
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more abundant accurate regions, but found that although we observe visual dif-
ferences, it does not lead to a significantly improved uncertainty-ROC. Future
work will consider exploring the effects of a larger dataset and the utility of
uncertainty from our proposed models by conducting trials with clinicians.
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