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ABSTRACT 

Visually scoring lung involvement in systemic sclerosis (SSc) from CT scans plays an important role in monitoring 

progression, but its labor intensiveness hinders practical application. We proposed, therefore, an automatic scoring 

framework that consists of two cascaded deep regression neural networks. The first (3D) network aims to predict the 

craniocaudal position of five anatomically defined scoring levels on the 3D CT scans. The second (2D) network receives 

the resulting 2D axial slices and predicts the scores, which represent the extent of SSc disease. CT scans from 227 

patients were used for both networks. 180 scans were split into four groups with equal number of samples to perform 

four-fold cross validation and an additional set of 47 scans constitute a separate testing dataset. Two experts scored all 

CT data in consensus and to obtain inter-observer variabilities they also scored independently 16 patients from the 

testing dataset. To alleviate the unbalance in training labels in the second network, we introduced a balanced sampling 

technique and to increase the diversity of the training samples, synthetic data was generated, mimicking ground glass and 

reticulation patterns. The four-fold cross validation results showed that our proposed score prediction network achieved 

an average MAE of 5.90, 4.66 and 4.49%, weighted kappa of 0.66, 0.58 and 0.65 for total score (TOT), ground glass 

(GG) and reticular pattern (RET), respectively. Our network performed slightly worse than the best human observation 

on TOT and GG prediction but it has competitive performance on RET prediction and has the potential to be an objective 

alternative for the visual scoring of SSc in CT thorax studies. 
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1. INTRODUCTION  

Systemic sclerosis (SSc) is a rare immune-mediated connective tissue disease that affects different organs, with high 

mortality. Pulmonary disease is the leading cause of mortality in patients with SSc1. Because CT scans can provide 

accurate information on the lung, Goh2 proposed a sensitive scoring system to quantify the extent of SSc disease from 

CT scans, further standardized by a CT reference atlas3. In this so-called Goh scoring system, 2D CT images are scored 

at five levels: 1) origin of the great vessels; 2) main carina; 3) pulmonary venous confluence; 4) halfway between the 

third and fifth level; 5) immediately above the right hemi-diaphragm. At each level, three patterns are scored as the 

percentage of the total lung area: total disease extent (TOT), ground-glass opacities (GG), and reticular patterns (RET). 

TOT is a powerful predictor for mortality of SSc1, GG is a significant biomarker to differentiate SSc and idiopathic 

pulmonary fibrosis4, and RET is a strong determinant of a decline in the forced vital capacity and progression-free 

survival of SSc1. Therefore, these three patterns are important markers to monitor disease progression.  

The Goh scoring system is, however, laborious, subjective and dependent on the rater experience. Therefore, an 

automatic scoring tool is expected to overcome these limitations and benefit clinical application. Although several 

attempts have been made to automatically predict biomarkers5,6, their common drawback is that they use segmentation 

networks to output the pixel labels as a basis for computing the final biomarkers, which requires time-consuming and 

laborious manual pixel-wise annotations as reference data. 

The purpose of this paper is to build an automatic framework to identify the five levels and subsequently score the extent 

of disease from CT scans, without the need for segmentation annotations. A straightforward but effective data synthesis 

technique for the disease patterns (ground-glass opacities and reticulation) was introduced to alleviate the lack of training 

data and label unbalance.  



 

 
 

 

 

 

2. METHODOLOGY 

The proposed two-step framework is shown in Figure 1. In the first step, a level selection network (3D VGG117) 

identifies five levels from the input 3D CT scans. Subsequently, a Goh score prediction network (2D VGG117) predicts 

three scores (TOT, GG, and RET) for each input 2D slice. The 3D VGG11 has the same structure as the 2D VGG11 

except that all 2D convolutions and pooling operations were replaced by the 3D convolutions and pooling operations, 

respectively. The pre-trained weights from ImageNet were applied to the 2D VGG118. The loss function for both 

networks was the mean squared error (MSE) in predicting the manually annotated levels and manual Goh scores, 

respectively. The 3D VGG11 was trained on 3D CT scans for level selection, and the 2D VGG11 was trained on 2D 

slices of five levels for Goh score prediction. Both networks were executed on a machine equipped with a GPU NVIDIA 

GeForce RTX 2080TI with 11 GB memory. The source code is available at https://github.com/Jingnan-Jia/ssc_scoring. 

Datasets and the methodology details of the two networks are described below. 

 
Figure 1. Proposed framework. 3D VGG11 outputs five numbers to select five axial slices. Subsequently, 2D 

VGG11 predicts three scores for each slice. 

The 3D CT dataset consisted of 227 anonymized SSc patients, with a wide range of disease severity. All patients were 

scanned with the same CT scanner without contrast enhancement. All 3D CT scans were resized to a fixed size of 

256×256×256 with a 1.2×1.2×1.2 mm voxel size. From the entire dataset, 180 scans were split into four groups with 

equal number of samples to perform four-fold cross validation and a separate set of 47 scans constitute the testing 

dataset. The craniocaudal world positions of the five levels and the Goh scores for each level were manually annotated 

by two experts in consensus. A rheumatologist (Obs1, over 5-year experience) and a radiologist (Obs2, over 20-year 

experience in chest CT) sat together and labeled each image. If they had different labels in mind for a particular image, 

they discussed their reasoning until they reached consensus. In addition, a subset of randomly selected 16 patients from 

the testing set was scored twice by Obs1 and Obs2 (with a one-month interval) and independently to estimate the inter-

observer variation.  

2.1 Level selection 

We converted the world positions of the five levels to relative slice numbers in the resampled 3D CT scans (the bottom 

slice was regarded number 0). The relative slice numbers were used as the reference during training of the 3D VGG11. 

To increase the diversity of training samples, random crops with a fixed size of 256×256×192 (in xyz-direction) were 

applied on-the-fly. The patch always covered all five levels and was also suitable for the GPU memory constrains. 

2.2 Goh score prediction 

The 2D slices at five levels from the 227 patients were used for Goh score prediction. As shown in  Figure 2, manual 

scores were estimated to the nearest five percent, following the protocol by Goh9.  

To alleviate the adverse effect of the label imbalance in the patient database, in which most labelled slices correspond to 

0% scores (healthy) and very few to very high scores  (Figure 2), we proposed two techniques: balanced sampling and 

data synthesis. Balanced sampling resamples the training images with a probability inversely proportional to the ratio of 

each score. It can make sure that the distribution of sampled scores is balanced, but its limitation is that there are a large 

number of images repeatedly sampled from the high-score categories. Therefore, a data synthesis method was proposed, 

by which new images are simulated with new scores (see Figure 3). The synthesis details are as follows. First, from 

selected slices without lesions (a), a binary lung mask (b) was made10. Then two binary masks c1 and c2 were generated 

by defining up to 3 ellipses with random centers, orientations and axial lengths, which were multiplied by the lung mask 

to obtain d1 and d2. The two masks were then filled with GG (e1) and RET (e2) patterns, respectively, to produce images 

f1 and f2. Two small patches e1 and e2, which fully contained two different patterns, were manually cropped from diseased 

slices in advance. Finally, f1 and f2 were inserted into the healthy slice a to obtain the synthetic image h. In this process, 



 

 
 

 

 

 

edges were smoothed to avoid introducing high intensity gradients. The synthetic Goh scores were calculated by the ratio 

of the areas of the different patterns to the whole lung area. The whole synthesis was applied on-the-fly during training 

with a probability of 0.5. In other words, half of the training set was sampled from the original images and the other half 

of training samples were synthetic images. 

 
Figure 2. Label distribution of 1135 (5 × 227) slices for three patterns. 

 

 
 

 
Figure 3. A) Flow chart to synthetize images; B) two synthetic examples (left: without overlap, right: with 

overlap), where the arrows indicate GG (red) and RET (green) areas. Goh scores of three patterns are indicated 

at the bottom of each image. 

2.3 Evaluation metric 

To have a complete evaluation of networks, apart from mean absolute error (MAE), weighted Kappa (κ) was calculated 

using scikit-learn11 and the intra-class correlation coefficient (ICC) estimates were calculated using the pingouin12 

package in Python based on a single-rating, absolute-agreement, 2-way random-effects model. Statistical tests were 

performed using the Wilcoxon signed rank test. 



 

 
 

 

 

 

3. EXPERIMENTAL RESULTS 

In this section, results are organized as follows: First the level selection output from 3DVGG11 (given by MAE and 

ICC) is shown. Then, the Goh score prediction from 2D VGG11 is shown for the two data augmentation techniques 

under study (balanced sampling and data synthesis). Finally, a comparison with human observer in a subset of testing 

dataset is provided. 

3.1 Level selection 

Table 1 shows the slice prediction performance based on the results of four-fold cross validation. The ICC values 

indicate moderate reliability on the first level, good reliability on the second and third level, and excellent reliability on 

the last two levels. The reason that the first level is more difficult to predict may be because it requires more anatomical 

knowledge to locate the origin of great vessels. This is illustrated in Figure 4.A, where most of the points outside of 

overall 95% CI are from the first three levels. Since the mean error of the prediction was only 0.21 slices, there was no 

systematic bias. Figure 4.B shows that the regression line (slope = 0.97, intercept = 4.09) nearly coincided with the 

identity line, which shows outstanding agreement between the predictions and labels. 

Table 1. Slice prediction results of each level. MAE values are followed by standard deviations (STD). 

Level 1.Origin great vessels 2.Main Carina 3.Venous Confluence 4.Halfway 5.Right hemi-diaphragm 

MAE (#slices) 4.21 (3.58) 3.70 (3.17) 4.23 (3.55) 2.49 (2.15) 2.92 (2.46) 

ICC 0.72 0.84 0.81 0.96 0.97 

 

        
                 (A)                                                                                                   (B)                       

Figure 4. A) Bland-Altman plot and B) Correlation plot of level selection network. In the right plot, dash line is 

the regression line and solid line is the identify line. 

3.2 Score prediction 

Table 2 compares the four-fold validation results of our Goh score prediction networks using different techniques. It 

shows that both balanced sampling and synthetic data augmentation can improve performance significantly. 

Table 2. Goh score prediction results from 2D VGG11. ↓: lower is better, ↑: higher is better. †: significantly 

better than the upper row (P<0.05). All experiments were trained based on pre-trained weights from ImageNet8. 

Balanced 

sampling 

Data  

synthesis 

TOT GG RET 

MAE[%]↓ κ↑ ICC↑ MAE[%]↓ κ↑ ICC↑ MAE[%]↓ κ↑ ICC↑ 

- - 7.85 (10.71) 0.53 0.72 5.96 (10.03) 0.45 0.60 5.81 (8.42) 0.53 0.72 

√ - 6.87 (9.61)† 0.59 0.77 5.09 (9.50)† 0.54 0.66 5.11 (7.45)† 0.59 0.78 

√ √ 5.90 (8.77)† 0.66 0.83 4.66 (8.83)† 0.58 0.71 4.49 (6.70)† 0.65 0.84 



 

 
 

 

 

 

3.3 Comparison with human experts 

Error! Not a valid bookmark self-reference. shows the performance comparison on a subset (from 16 patients) of the 

testing dataset between our method and each human observer with experts’ consensus as the reference. The difficult 

samples account for a larger proportion in these 16 patients, therefore the results of our method in Error! Not a valid 

bookmark self-reference. are slightly different from those in Table 2. For predicting consensus TOT, our method was 

close to the first rating by observer Obs1 (Obs1T1), but Obs2 was closer to the consensus than our method (Error! Not a 

valid bookmark self-reference.). For GG the model had a fair agreement with the consensus, while the observers had 

moderate agreement, and for RET the model’s agreement was moderate, but moderate/substantial for observers. 

Table 3. Comparison between human performance and our method (with pre-trained weights, data synthesis and 

balanced sampling) in a subset of 16 patients. T1 and T2 denote the first and second observations. 

 

TOT GG RET 

 

MAE[%]↓ κ↑ ICC↑ MAE[%]↓ κ↑ ICC↑ MAE[%]↓ κ↑ ICC↑ 

Obs1T1 7.06 (7.97) 0.51 0.73 5.63 (6.14) 0.44 0.68 4.94 (7.60) 0.56 0.76 

Obs1T2 6.19 (6.63) 0.58 0.82 5.38 (7.53) 0.46 0.59 4.75 (7.24) 0.58 0.78 

Obs2T1 6.56 (7.61) 0.58 0.80 5.38 (7.53) 0.48 0.63 4.63 (6.16) 0.61 0.84 

Obs2T2 4.94 (6.45) 0.67 0.86 4.94 (5.99) 0.55 0.75 4.19 (6.96) 0.63 0.80 

Our method 8.13 (8.15) 0.49 0.73 6.94 (8.46) 0.33 0.47 4.81 (6.35) 0.60 0.83 

The scatter plots of the scoring results from our network and from the second observation from Obs2 (Obs2T2) are shown 

in Figure 5. Because the predictions and scores coincided frequently as they are both defined with a precision of 5 

percent, we used circles of different sizes to denote the numbers of points in the same positions. From the two figures we 

can find that our method had a systemic underestimation in the GG prediction. Additionally, our method performed 

slightly worse than the best human observation (Obs2T2) on the TOT scoring. However, it had competitive performance 

with the best human expert on the RET scoring. 

 
(A) 

 

(B) 

Figure 5. Reference score vs. the predicted score from (A) Obs2T2 and (B) our method. 



 

 
 

 

 

 

4. DISCUSSION AND CONCLUSION 

We proposed a two-step framework to automatically predict Goh score for lung disease in systemic sclerosis. A simple 

data synthesis method was proposed in this work. Despite its simplicity, we found that data synthesis was surprisingly 

effective in improving the prediction of all the three patterns. This confirms the importance of data diversity and label 

balance. To the best of our knowledge, this is the first work to predict SSc scores automatically; therefore there is no 

existing similar literature to perform a fair comparison. We compared the performance of our method with two 

experienced human experts and showed that it performed slightly worse than the best human observation on TOT and 

GG prediction, but its performance was competitive for RET prediction. 

Our framework provides a potential objective alternative for Goh scoring system of systemic sclerosis. In addition, with 

the help of our framework, Goh scoring could become suitable for daily practice because the scoring time per patient was 

decreased from dozens of minutes to a couple of seconds, which helps the Goh scoring system to be transferred from a 

research tool to a clinical tool. 

Some limitations will be addressed in our future work. The performance of our current method is limited by the quality 

of synthetic images which include some artifacts. More advanced GAN-based data synthesis methods13–15 will be 

introduced to generate more realistic images in the future. We will also introduce transfer learning from pre-trained 

medical imaging related task 16,17 instead of ImageNet. This may improve the performance further. 
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