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Vestibular schwannomas are rare, benign intracranial 
tumors arising from the neurilemma of the vestibu-

lar nerve. Initial symptoms usually comprise hearing loss, 
tinnitus, and balance disturbance. Approximately 60% of 
tumors show no or minimal progression over time, and 
40% either are very large at presentation or show pro-
gression during follow-up (1). Small- to medium-sized 
tumors are not life-threatening and are generally conser-
vatively managed, at least initially, using surveillance with 
repeated MRI examinations. Conversely, patients with 
large tumors at presentation or with tumors that progress 
during follow-up may need intervention through radia-
tion therapy or surgery. There are no reliable predictors 
for tumor progression.

Tumor progression is determined according to the 
extrameatal manual diameter measurements at sub-
sequent MRI examinations (2). However, these two-
dimensional (2D) measurements have considerable er-
ror, resulting in inter- and intraannotator differences of 
10%–40% (3–5). The more accurate three-dimensional 

(3D) volume measurements have not been widely ap-
plied in clinical practice because these measurements are 
time-consuming (3–6).

To address this problem, several automated segmen-
tation tools have been developed (7–9). The reported 
tools were trained for volume measurement of ves-
tibular schwannoma with gadolinium-enhanced T1-
weighted MRI and sometimes additional T2-weighted 
MRI. These tools are increasingly based on deep learn-
ing methods, which yield state-of-the-art performance 
in many vision tasks, including medical image segmen-
tation. Deep convolutional neural networks (CNNs), 
particular the U-Net architecture, can reach expert-level 
performance in various organ segmentation tasks from 
clinical MRI (8). Although many variants of the U-Net 
have been proposed and demonstrated task-specific 
improvements, recent insights suggest that rather than 
the architecture, careful selection of the hyperparam-
eters and training strategy can have an important effect 
on performance (9). The no-new-U-Net framework, 
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Purpose: To develop automated vestibular schwannoma measurements on contrast-enhanced T1- and T2-weighted MRI scans.

Materials and Methods: MRI data from 214 patients in 37 different centers were retrospectively analyzed between 2020 and 2021. 
Patients with hearing loss (134 positive for vestibular schwannoma [mean age 6 SD, 54 years 6 12; 64 men] and 80 negative for 
vestibular schwannoma) were randomly assigned to a training and validation set and to an independent test set. A convolutional neural 
network (CNN) was trained using fivefold cross-validation for two models (T1 and T2). Quantitative analysis, including Dice index, 
Hausdorff distance, surface-to-surface distance (S2S), and relative volume error, was used to compare the computer and the human 
delineations. An observer study was performed in which two experienced physicians evaluated both delineations.

Results: The T1-weighted model showed state-of-the-art performance, with a mean S2S distance of less than 0.6 mm for the whole 
tumor and the intrameatal and extrameatal tumor parts. The whole tumor Dice index and Hausdorff distance were 0.92 and 2.1 mm 
in the independent test set, respectively. T2-weighted images had a mean S2S distance less than 0.6 mm for the whole tumor and the 
intrameatal and extrameatal tumor parts. The whole tumor Dice index and Hausdorff distance were 0.87 and 1.5 mm in the indepen-
dent test set. The observer study indicated that the tool was similar to human delineations in 85%–92% of cases.

Conclusion: The CNN model detected and delineated vestibular schwannomas accurately on contrast-enhanced T1- and T2-weighted 
MRI scans and distinguished the clinically relevant difference between intrameatal and extrameatal tumor parts.
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T1-weighted MRI scans, acquired from multiple centers us-
ing different MRI scanners and scan protocols. We addition-
ally carried out a carefully designed observer study, based on 
the concept that the radiologists’ visual observation of the 
segmentation results can be a direct, important evaluation of 
segmentation quality. In addition to conventional metrics, 
the observer study highlights the applicability of our model 
in a clinical setting.

Materials and Methods
This retrospective study was performed at the Leiden Uni-
versity Medical Center, a tertiary referral center for vestibular 
schwannoma in 2020–2021. The institutional review board 
approved the study protocol (G19.115) and waived the obliga-
tion to obtain informed consent.

Patients and Data
In total, 214 patients who underwent MRI because of hearing 
loss were included in the study, with 134 patients who were ves-
tibular schwannoma positive (mean age, 54 years 6 12 [SD]; 
64 men) and 80 who were vestibular schwannoma negative. 
Selection of patients with vestibular schwannoma included a 
wide spectrum of patient and tumor characteristics, such as 
patient age, sex, tumor size, and tumor consistency. All posi-
tive patients were adults with a unilateral vestibular schwan-
noma and at least one gadolinium-enhanced T1-weighted 
MRI examination. High-resolution T2-weighted images were 
available in 112 patients. MRI scans obtained after surgery or 
irradiation were excluded. Available MRI examinations were 
originally performed in 37 different hospitals with 12 differ-
ent MRI scanners from three major MRI vendors. The MRI 
scans of negative cases, included to optimize detection perfor-
mance, were solely acquired at the Leiden University Medi-
cal Center in adult patients with hearing loss before cochlear 
implantation and provided no demographic data because of 
previous anonymization. Patients’ characteristics and techni-
cal information are shown in Tables 1 and 2, respectively.

In positive cases, the intra- and extrameatal components 
(2) and the whole tumor were manually delineated by two 
annotators independently (O.M.N., a physician with 3 
years of experience, and S.R.R., a technical physician with 2 
years of experience) with gadolinium-enhanced T1-weighted 
MRI, supervised and, when necessary, corrected by a senior 
head-and-neck radiologist (B.M.V.). Two senior radiologists 
(M.C.K. and B.M.V., with 18 and 21 years of experience) 
trained both annotators. Delineation was performed using 
Vitrea software, version 7.14.2.227 (Vital Images). The de-
lineation was automatically propagated to T2-weighted MRI 
after rigid image registration using elastix software (12,13). 
The complete dataset was split into a training and validation 
set (80% from 26 centers) and an independent test set (20% 
from 11 different centers) on which the model was not trained; 
see Figure 1 for details. This was done to mimic clinical deploy-
ment, in which new cases may be slightly different from the data 
seen in the training phase and possibly bear an unknown distri-
bution shift (14).

abbreviated nnU-Net, indeed demonstrated this for several 
organs and imaging modalities (10,11). As such, we propose 
application of nnU-Net to address vestibular schwannoma 
segmentation in our clinical setting.

This study aimed to develop a deep learning CNN model 
to automatically detect and segment vestibular schwan-
noma in 3D from T2-weighted and gadolinium-enhanced 

Abbreviations
CNN = convolutional neural network, nnU-Net = no-new-U-Net, 
RVE = relative volume error, S2S = surface-to-surface distance, 3D 
= three-dimensional, 2D = two-dimensional

Summary
Automated measurement of vestibular schwannoma using a convolu-
tional model in a multicenter setting on contrast-enhanced T1- and 
T2-weighted MRI scans was accurate and similar to human measure-
ments.

Key Points
 n The convolutional neural network detected and delineated vestibu-

lar schwannomas accurately on MRI scans, with mean surface-to-
surface (S2S) distances less than 0.6 mm.

 n Whole tumor volume, as well as intrameatal and extrameatal vol-
ume, could be measured on T1-weighted and T2-weighted MRI 
scans.

 n The multicenter, multivendor design enabled a robust model with 
mean S2S less than 0.4 mm on an external publicly available da-
taset.

 n The CNN detected tumors with 100% sensitivity and 99.1% 
specificity for the validation set and 100% sensitivity and 100% 
specificity for the test set.

Keywords
MRI,  Ear, Nose, and Throat, Skull Base, Segmentation, Convolu-
tional Neural Network (CNN), Deep Learning Algorithms, Machine 
Learning Algorithms

Table 1: Characteristics of Patients with Vestibular 
Schwannoma

Characteristic Value

No. of patients 134
Mean age (y) 54 6 12 
Men 64 (48)
Cystic component 63 (47)
Tumor size
 Intrameatal 28 (21)
 Small (0–10 mm) 19 (14)
 Medium (11–20 mm) 26 (19)
 Moderately large (21–30 mm) 24 (18)
 Large (31–40 mm) 24 (18)
 Giant (.40 mm) 13 (10)

Note.—Data presented with a plus/minus sign are the means 
6 SDs. Other data are presented as numbers of patients, with 
percentages in parentheses. 
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includes preprocessing and postprocess-
ing methods, and performs automatic 
tuning of hyperparameters (10). In this 
study, a 3D U-Net with five encoder 
and decoder layers was selected, using 
randomly cropped 3D image patches of 
size 320 3 320 3 20 voxels as network 
input during training. The network 
was trained as a multiclass segmenta-
tion task to automatically segment both 
the intra- and extrameatal component 
of the tumor. Two 3D nnU-Nets were 
trained (one for contrast-enhanced T1-
weighted MRI and one for T2-weighted 
MRI) from scratch with He initializa-
tion. Fivefold cross-validation was used, 
generating five models that were merged 
by averaging the softmax scores. To deal 
with multicenter settings, z-scoring nor-
malization was performed to each image 
independently. All the training images 
were then resampled to the median spac-
ing of the training dataset using third-
order spline interpolation. Training was 

performed on an NVIDIA Tesla V100 graphics processing 
unit (NVIDIA) with 16-GB memory using the PyTorch 
(version 1.7.1) library.

Observer Study
An observer study was performed to test whether the CNN 
could perform as well as human delineation on contrast-en-
hanced T1-weighted images. The T1-weighted annotations 

Furthermore, the publicly available dataset by Shapey et al 
(15) was used as additional external test of the contrast-enhanced 
T1-weighted model (n = 242). This dataset contained 47 post-
surgery scans, which were omitted from the analysis.

CNN Architecture and Training
NnU-Net is a deep learning–based segmentation method 
that automatically selects one of three network architectures, 

Table 2: Technical Information of Patients with Vestibular Schwannoma

Technical MRI Feature Contrast-enhanced T1-weighted MRI T2-weighted MRI

No. of patients 134 112
In-plane resolution (mm) 0.35 3 0.35 (0.27 3 0.27–1.0 3 1.0) 0.29 3 0.29 (0.23 3 0.23–0.70 3 0.70)
In-plane matrix 400 3 400 (256 3 208–560 3 560) 512 3 512 (256 3 192–768 3 652)
TE (msec) 9 (2.38–20) 200 (1.53–297)
TR (msec) 602.10 (8.76–2200) 2400 (4.47–5000)
Section thickness (mm) 1.0 (0.9–5.0) 0.6 (0.5–1.8)

Note.—Unless otherwise noted, data are presented as medians, with ranges in parentheses. TE = echo time, TR = repeti-
tion time.

Figure 1: Flowchart of data. Patients were ran-
domly assigned to the training and validation set (80%) 
and the independent test set (20%). Positive cases were 
randomly assigned on the basis of the hospital where 
the scan was acquired, so the independent test set con-
tained data of 11 hospitals that were not used to train 
the algorithm. For training and validation, fivefold cross-
validation was used. The mean of the five models is the 
ensemble model. This ensemble model was evaluated 
in the independent test set.
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as the network’s input size. The step size is half of the window size, 
and a Gaussian weighted function was applied in aggregating the 
predictions. To eliminate false detection, connected component-
based postprocessing was performed. Only the largest connected 
component in the predictions was kept. Tumor detection by the 
CNN was defined as at least 1 voxel being detected. The perfor-
mance was evaluated using the Dice index (measuring overlap of 
the delineations), 95th percentile Hausdorff distance (indicating 
the maximum distance between delineations), surface-to-surface 
(S2S) distance (indicating the mean distance between delinea-
tions), and the relative volume error (RVE) (indicating the differ-
ence in volume in percentage). One of the annotator’s (O.M.N., 
annotator 1) delineations were used for training and quantitative 
evaluation. The results were plotted in box-and-whisker plots. Fur-
thermore, interannotator variability was investigated. Differences 
between the prediction performance of each annotator and the 
interannotator variabilities were tested using the Wilcoxon signed 
rank test. In addition, a post hoc analysis of T1-model perfor-
mance was conducted with respect to tumor size, according to the 
classification by Kanzaki et al (2). To avoid group sizes that were 
too small per category, the validation and test set were pooled and 
a Kruskal-Wallis test was performed. P values less than .05 were 
considered to indicate statistically significant differences. Observer 
agreement before the consensus meeting on satisfactory degree for 
segmentation and human delineation was expressed as percent-

were propagated to T2-weighted MRI; therefore, the observer 
study was conducted only for the T1-weighted images. A user 
interface was created (Fig 2), showing a gadolinium-enhanced 
T1-weighted image and the registered T2-weighted image 
in the top row and the human and automatic delineation in 
random order on the bottom row, projected on the gadolin-
ium-enhanced T1-weighted MRI scan. Observers could scroll 
through the MRI scan, manually adjust its brightness and 
contrast, and toggle the segmentations on and off for optimal 
assessment. The observers were a head-and-neck radiologist 
(B.M.V.) and a skull-base otorhinolaryngologist (E.F.H., with 
18 years of experience), blinded to case information and delin-
eation type (human or automated). The observers were asked 
to rate and compare the two delineations by answering two 
separate questions about the intra- and extrameatal part and 
the whole tumor: (a) Which delineation is better (annotation 
1, annotation 2, or similar) and (b) is the annotation quality 
satisfactory (yes or no). In a consensus meeting, cases in which 
observers did not agree were discussed. The consensus results 
are presented in the section on outcomes of observer study.

Testing and Statistical Analysis
All test images were resampled in the same way as the training 
data, and a sliding window approach was used to predict images 
with a window size of 320 3 320 3 10 voxels, which is the same 

Figure 2: Observer study interface. The top row shows the clean, gadolinium-enhanced T1-weighted MRI and T2-weighted MRI scans. The bottom row shows the 
convolutional neural network and human annotations, randomized to the left and the right pane, respectively. The multiple-choice questions for each observer are shown at 
the right side of the interface. The observers could also add free-text comments.
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100% specificity for the test set. The algorithm calculated the 
segmentation with a median runtime of 78 seconds per patient.

Performance with Contrast-enhanced T1-weighted MRI
The results of the CNN on contrast-enhanced T1-weighted 
MRI scans are shown in Table 3 and Figure 3A. S2S distance 
of the whole tumor was 0.31 mm 6 0.36 (SD) in the valida-

age agreement. All analyses were performed in Python (version 
3.8.2) with NumPy (version 1.20.2), SciPy (version 1.3.3), and 
the sklearn (version 0.23.2) library.

Results
The CNN detected tumors with 100% sensitivity and 99.1% 
specificity for the validation set and 100% sensitivity and 

Table 3: Quantitative Results of Contrast-enhanced T1-weighted Model

Variable

Dice 95% Hausdorff (mm) S2S (mm) RVE (%)

Mean 6 SD Median Mean 6 SD Median Mean 6 SD Median Mean 6 SD Median

Validation set
 Whole tumor 0.91 6 0.10 0.93 1.13 6 1.45 1.00 0.31 6 0.36 0.24 7.59 6 8.10 4.88
 Intrameatal 0.78 6 0.21 0.85 1.26 6 0.78 1.00 0.31 6 0.20 0.26 19.7 6 43.5 11.5
 Extrameatal 0.83 6 0.26 0.93 1.43 6 1.67 1.00 0.41 6 0.43 0.31 12.0 6 21.6 4.94
Independent test 

set
 Whole tumor 0.92 6 0.05 0.93 2.10 6 3.34 1.00 0.47 6 0.67 0.36 10.2 6 9.1 7.1
 Intrameatal 0.81 6 0.08 0.81 1.34 6 0.84 1.12 0.37 6 0.23 0.32 14.7 6 14.8 6.8
 Extrameatal 0.89 6 0.12 0.93 2.18 6 3.43 1.00 0.52 6 0.68 0.37 12.1 6 16.9 6.5
Publicly available 

dataset by 
Shapey et al 
(15)

 Whole tumor 0.88 6 0.04 0.88 1.31 6 0.22 1.30 0.39 6 0.12 0.37 27.6 6 11.9 26.1

Note.—Dice index, Hausdorff distance, surface-to-surface distance (S2S), and relative volume error (RVE) of the model compared with an-
notator 1 in the validation set, independent test set, and publicly available dataset by Shapey et al (15). The publicly available dataset seems 
to have structurally smaller ground truths, as can be seen in Figure E4 (supplement). 

Figure 3: Quantitative boxplots of convolutional neural network tumor segmentation performance. The Dice 95% Hausdorff (Hausdorff95) distance and surface-to-
surface distance (S2S) measures are shown from left to right. (A) Results of the contrast-enhanced T1-weighted model. (B) Results of the T2-weighted model. Validation set 
results are shown in sky blue and independent test set results in dark blue. Box extends from the first to third quartile, with line at the median. Whiskers extend from the box 
1.5 times the interquartile range. Data points outside the whiskers were plotted individually.
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tion set and 0.47 mm 6 0.67 in the independent test set. 
These S2S distances are around the in-plane voxel size and 
lower than the section thickness. The whole tumor Hausdorff 
distance in the independent test set was 2.10 mm 6 3.34; it 
was 1.34 mm 6 0.84 and 2.18 mm 6 3.43 in the intra- and 
extrameatal parts, respectively. All the median Hausdorff dis-
tances were below the 2-mm threshold, which is often used 
in clinical practice to define 2D growth (1). T1 model perfor-
mance on the independent test set was similar to the results 
in the validation set, indicating robust external validity. The 
independent test set had higher mean Hausdorff properties 
than the median because of two outliers (cystic tumor) in the 
test set that influenced the Hausdorff distance and its SD. 
Dice indexes for the whole tumor were above 0.91 6 0.10 
and 0.92 6 0.05 in both sets, and RVE was 7.6% 6 4.9 and 
10.2% 6 9.1, with lower values for the intra- and extrameatal 

parts of the tumor due to the sensitivity of Dice and RVE 
to small volumes. Figure 4 shows examples of the T1 model 
compared with annotator 1.

The CNN model, when applied to the publicly available 
dataset of Shapey et al (15), performed at the same level as 
with the independent test set, with a mean Dice index of 0.88 
6 0.04, a mean Hausdorff distance of 1.31 mm 6 0.22, a 
mean S2S distance of 0.39 mm 6 0.12, and an RVE of 26% 
6 11.9.

Performance with T2-weighted MRI
The results of the whole tumor and the intra- and extrameatal 
parts are summarized in Table 4 and Figure 3B. S2S distances 
ranged between 0.46 mm 6 0.28 and 1.00 mm 6 3.75 for 
all tumor parts in both datasets. Hausdorff distance of the 
whole tumor in the validation set was 3.12 mm 6 9.28, with 

Figure 4: Examples of cystic, large, and small vestibular schwannoma whole tumor annotations, including the separation between the intra- and extrameatal tumor 
parts, of contrast-enhanced T1-weighted MRI scans. The top row shows the convolutional neural network (CNN) predictions in red, and the bottom row shows the delin-
eation of annotator 1 in green. The first, fourth, and fifth tumors are potentially hard to delineate for the CNN because of the large peripheral cystic tumor parts. The Dice 
scores of these patients were 0.96, 0.96, 0.91, 0.93, and 0.72, respectively, and the surface-to-surface distances were 0.39 mm, 0.21 mm, 0.24 mm, 0.35 mm, and 3.44 
mm, respectively.

Table 4: Quantitative Results of T2-weighted Model

Variable

Dice 95% Hausdorff (mm) S2S (mm) RVE (%)

Mean 6 SD Median Mean 6 SD Median Mean 6 SD Median Mean 6 SD Median

Validation set
 Whole tumor 0.82 6 0.19 0.87 3.12 6 9.28 1.27 1.00 6 3.75 0.42 24.5 6 98.9 7.60
 Intrameatal 0.69 6 0.23 0.78 1.60 6 0.95 1.20 0.46 6 0.28 0.40 14.5 6 18.7 8.39
 Extrameatal 0.77 6 0.28 0.88 2.70 6 3.19 1.67 0.82 6 1.01 0.54 30.9 6 73.3 18.5
Independent test 

set
 Whole tumor 0.87 6 0.06 0.89 1.52 6 0.76 1.21 0.54 6 0.31 0.47 12.1 6 10.8 9.01
 Intra meatal 0.74 6 0.08 0.74 1.64 6 0.59 1.50 0.52 6 0.20 0.50 12.6 6 21.2 5.27
 Extrameatal 0.85 6 0.17 0.89 1.60 6 0.92 1.14 0.56 6 0.33 0.42 22.3 6 14.9 20.0

Note.—Dice index, Hausdorff distance, surface-to-surface distance (S2S), and relative volume error (RVE) of the model compared with 
annotator 1 in the validation set and independent test set. 
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a smaller value in the independent test set (1.52 mm 6 0.76). 
Whole tumor Dice indexes were 0.82 6 0.19 and 0.87 6 0.06, 
and RVE values ranged from 12.1% 6 10.8 and 24.5% 6 
98.8 in both datasets. Intrameatal tumors had worse Dice in-
dexes (0.69 6 0.23 and 0.74 6 0.08) and RVE (14.5% 6 18.7 
and 12.6% 6 21.2), likely due to the low contrast between 
the tumor and adjacent petrous bone on T2-weighted images. 
Overall T2 performance was slightly degraded compared with 
postcontrast T1. However, S2S distances below 1 mm indicate 
acceptable performance.

Interannotator Variability
Comparisons between the T1-weighted model and the two an-
notators and between the two annotators are shown in Table 5 
and Figure 5. The comparison between both annotators shows the 
whole tumor interannotator variability, resulting in a Dice index 
around 0.91 and RVE of 7%–9%. When the model was com-
pared with each annotator in both datasets, S2S distances were 
similar and below 0.5 mm. The model was trained on annotator 
1, but the results compared with annotator 2 are similar for all 
quantitative measures.

Performance by Tumor Size
In Appendix E1 (Fig E3 [supplement]), the results of the perfor-
mance per size category are shown. Whole tumor results show a 
pattern of higher Dice indexes for larger tumors, which was ex-
pected because the Dice index is sensitive to size. S2S was similar 
in all size groups (,0.5 mm), although S2S was slightly greater 
in larger tumors (P , .001). Results of intra- and extrameatal 

tumor parts show stable performance, except for four outliers 
in the small tumors (inaccurate extrameatal segmentation) and 
three outliers in giant tumors (false intrameatal tumor detection). 
In these tumors, there were some differences between model and 
human delineation for a completely intrameatal tumor with or 
without a tiny extrameatal part (small) or an extrameatal tumor 
with or without an intrameatal part (giant).

Outcomes of Observer Study
Agreement between the two observers before the consensus 
meeting on whole tumor segmentation quality was 131 of 
134 (98%) for the human annotators and 127 of 134 (95%) 
for the CNN.

CNN segmentations of the whole tumor were considered 
similar to the human segmentations in 103 of 111 (93%) cases 
in the validation set and 20 of 23 (87%) in the test set. The 
CNN segmentations were rated better than the human segmen-
tations in two of 111 (2%) and two of 23 (9%) cases in the 
two datasets, respectively. Intrameatal segmentations were rated 
as similar to or better than human segmentations in 100 of 106 
(94%) and 22 of 23 (96%) in the validation and test sets, respec-
tively. For extrameatal segmentations, these proportions were 83 
of 97 (86%) and 18 of 22 (82%).

In addition, the observers considered 104 of 111 (94%, vali-
dation set) and 20 of 23 (87%, test set) of whole tumor CNN 
segmentations satisfactory. Intrameatal tumor parts were consid-
ered satisfactory in 100 of 104 (94%, validation set) and 22 of 
23 (96%, test set) segmentations. Extrameatal tumor parts were 
considered satisfactory in 90 of 97 (93%, validation set) and 18 

Table 5: Comparison of the Model with Annotators and Interannotator Variability

Variable

Dice 95% Hausdorff (mm) S2S (mm) RVE (%)

Mean 6 
SD P Value Median

Mean 6 
SD P Value Median

Mean 6 
SD P Value Median

Mean 6 
SD P  Value Median

Validation 
set

 CNN–
ann 1

0.91 6 
0.10

,.001 0.93 1.13 6 
1.45

,.001 1.00 0.31 6 
0.36

,.001 0.24 7.59 6 
8.10

.21 4.88

 CNN–
ann 2

0.90 6 
0.11

.40 0.92 1.33 6 
1.52

.18 1.00 0.36 6 
0.36

.58 0.31 10.1 6 
9.8

.35 7.1

 ann 1–
ann 2

0.91 6 
0.05

0.92 1.27 6 
0.82

1.00 0.34 6 
0.20

0.31 9.01 6 
9.14

6.40

Indepen-
dent test 
set

 CNN–
ann 1

0.92 6 
0.05

.56 0.93 2.10 6 
3.34

.83 1.00 0.48 6 
0.67

.67 0.35 10.2 6 
9.1

.28 7.1

 CNN–
ann 2

0.91 6 
0.05

.69 0.93 2.08 6 
3.41

.94 1.07 0.50 6 
0.68

.96 0.35 9.69 6 
9.19

.57 7.72

 ann 1–
ann 2

0.92 6 
0.04

0.93 1.20 6 
0.65

1.00 0.34 6 
0.19

0.36 6.93 6 
5.32

4.53

Note.—Dice index, Hausdorff distance, surface-to-surface distance (S2S), and relative volume error (RVE) of the model compared with an-
notator (ann) 1, annotator 2, and both annotators of the contrast-enhanced T1-weighted model. Results of the validation set and indepen-
dent test set are shown. CNN = convolutional neural network. P values denote Wilcoxon signed rank test between this quantitative score 
and corresponding score of annotator 1-annotator 2 (the third row).
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of 22 (82%) (test set) segmentations. For human segmentations 
of the intrameatal tumor, 98 of 104 (94%) in the validation and 
23 of 23 (100%) in the test set were rated satisfactory. Other 
satisfaction levels of the human segmentations were 110 of 111 
(99%, validation set) and 22 of 23 (96%, test set) for the whole 
tumor and 89 of 97 (92%, validation set) and 21 of 22 (95%, 
test set) for the extrameatal tumor part.

Discussion
To our knowledge, this is the first study of a multicenter, multi-
vendor automated segmentation tool for vestibular schwannoma. 
The developed 3D CNN tool measured tumor volume with high 
accuracy on contrast-enhanced T1-weighted MRI scans and T2-
weighted MRI scans. The S2S distances were between 0.4 and 0.9 
mm, which was lower than the median section thickness of 1.0 
mm. The observer study suggests that the tool performs similarly 
to human delineation in 87%–93% of cases.

The contrast-enhanced T1-weighted MRI model provided ex-
cellent S2S distances and Dice indexes. However, the SDs of the 
Hausdorff distances were remarkably large in the test set because 
of two outliers, which contained peripheral cysts in the extramea-
tal part. The model did have difficulties with tumors containing 
large peripheral cysts (see Fig E1A and E1B [supplement] for ex-
amples), which were sometimes partially included by the model.

Evaluation of the model on the publicly available dataset 
of Shapey et al (15) showed robust performance on contrast-
enhanced T1-weighted images. The ground truth delineations 
of Shapey et al are smaller than those used in the current study, 
as shown in Figure E4 (supplement), reducing Dice index from 
0.93 to 0.88 (7). When erosion (3 3 3 kernel) was performed on 
model delineation, Dice index improved again to 0.93 6 0.03, 
supporting this observation. The delineations by Shapey et al were 
used for radiation therapy purposes, where preventing damage 
to the surrounding tissue is important, warranting conservative 
delineation. We did not compare the T2-weighted images of the 
publicly available dataset to those in our dataset given differences 
in the imaging characteristics (echo time and repetition time) and 
region of interest (whole brain vs cerebellopontine angle region).

In our study, CNN performance on T2-weighted MRI scans 
was slightly less accurate, with more uncertainty, compared with 
the contrast-enhanced T1-weighted images. This was particu-
larly the case in polycystic tumors, where the tumor border was 

hard to distinguish from the cerebrospinal fluid solely on T2 im-
ages (Fig E2A and E2B [supplement]). In one case, the model 
could not distinguish a small tumor obliterating the internal me-
atus. In another single case, the model detected the contralateral 
eye as a false-positive volume outside the region of interest.

The RVE values of the whole tumor were 8%–12%, com-
pared with 9%–10% interannotator volume differences. Only 
the T2 model in the validation set had a larger RVE of 25%. 
The performance of our CNN compared with human volume 
measurement is below previously reported interannotator vari-
abilities ranging from 15% to 20% (3–5), and also below the 
generally accepted threshold of 20% before volume increase is 
considered growth. Use of 2D measurements is advised in the 
consensus guidelines, but these measurements have high intrao-
bserver variabilities ranging from 10% to 40% (2–5). Volume 
measurement is more accurate; in addition, the proposed tool 
can reduce the workload, which has been a barrier for clinical 
adoption, enabling the shift from 2D measurement. Because 
documented detection and evaluation of tumor growth are main 
factors that indicate the need for treatment, be it surgical re-
moval or irradiation, this is of notable clinical relevance.

A distinct attribute in vestibular schwannoma research is the 
integration of an observer study. Determining a ground truth is 
necessary in artificial intelligence imaging studies. The reliability 
of the ground truth is uncertain when human observer perfor-
mance is suboptimal, as described above. Our observer study 
allowed evaluation of the comparability between CNN segmen-
tation and human segmentation, the reference standard. Our 
results showed that the CNN tool performs similarly to human 
observers in most cases, supporting the quantitative results that 
the tool is feasible and robust for use in clinical practice. Whole 
tumor delineations performed slightly better than the extramea-
tal delineations, which should be considered when the tool is 
used in clinical practice because extrameatal tumor progression 
is of particular interest for treatment decisions.

Previously proposed artificial intelligence tools for vestibu-
lar schwannoma segmentation were performed on data from a 
single center (5–7). In clinical practice, however, diagnostic and 
follow-up scans are often obtained in different centers using a 
variety of scanners and MRI protocols. In addition to its docu-
mented performance in a multicenter, multivendor setting, our 
method contains three features that make the tool more suitable 

Figure 5: Quantitative measures of the performance of whole tumor convolutional neural network compared with that of the two annotators on contrast-enhanced T1-
weighted MRI scans. Interannotator variability is also shown (obs 1-obs 2). The Dice index, 95% Hausdorff distance (Hausdorff95), and surface-to-surface (S2S) distance 
boxplots are shown. The validation set results are shown in sky blue and the independent test set in dark blue. Box extends from the first to third quartile, with a line at the 
median. Whiskers extend from the box 1.5 times the interquartile range. Data points outside the whiskers were plotted individually. obs = observer, pred = CNN prediction.
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for clinical practice compared with previous automated vestibu-
lar schwannoma delineation methods. First, the tool can distin-
guish between the intra- and extrameatal parts of the tumor. This 
distinction is important for clinical decision-making, as exten-
sion and progression of the extrameatal part usually determine 
the need for intervention. For this reason, current tumor staging 
systems are based mainly on the extrameatal dimensions of the 
tumor, while the intrameatal part is not measured (2,16). Sec-
ond, the proposed tool can also delineate on solely T2-weighted 
MRI scans. Given the ongoing debate on use of gadolinium-
based contrast material, this is a valuable feature (17). Third, un-
like previous models, our network is a fully 3D network that 
enables complete use of intrasection information.

This study had some inherent limitations. First, the study was 
performed using retrospective MRI data. Although this is an ac-
cepted method for the development of a new tool, some bias 
may be introduced by using older MRI examinations with sub-
optimal image quality and resolution. Therefore, accuracy and 
efficacy should also be investigated in prospective studies before 
clinical implementation and use. Second, for training of the T2 
model, the registered human T1 delineations were used. This 
might have resulted in a suboptimal ground truth for the T2 
model, although the reported tumor size correlations between 
T1 and high-resolution T2 were high (18,19). Third, the model 
is trained on data only before treatment and cannot be used for 
follow-up after surgery or radiation therapy without retraining.

Implementation of the CNN tool in clinical practice could 
lead to more accurate volume measurements of vestibular 
schwannoma at diagnosis and during follow-up, while reducing 
the workload of radiologists. Tumor volume change over time is 
a decisive factor in clinical decision-making, and future research 
should focus on the performance of the tool in a prospective 
study and its effect on clinical practice. The tool might be im-
proved using postprocessing to reduce the false-positive volumes 
outside the region of interest. In addition, the algorithm used for 
development of the tool could be adapted to analyze other slow-
growing skull-base abnormalities, such as meningiomas, that are 
typically approached by a wait-and-scan policy (20).

The proposed CNN model delineated vestibular schwan-
noma from MRI with excellent accuracy, similar to human 
performance in most cases. The CNN tool made the clinically 
relevant distinction between intra- and extrameatal tumor parts. 
The study shows the feasibility of automatically detecting and 
evaluating vestibular schwannoma with or without contrast ma-
terial administration in large datasets acquired from multiple 
medical centers and MRI vendors.
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