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1
Introduction

1.1 Automatic delineation in adaptive radiotherapy

Cancer is a leading cause of mortality, accounting for about 10 million deaths world-
wide annually. The National Cancer Institute (NCI) predicts that by 2040, the number
of new cancer cases per year will rise to 29.5 million and the number of cancer-related
deaths to 16.4 million [1]. Radiotherapy (RT) is one of the widely used treatment
options for cancer diseases, where a high dose of ionizing radiation damages the DNA
of cancerous cells [2]. RT is frequently combined with other treatment modalities
such as chemotherapy, surgery, and recently immunotherapy [3]. RT dose is usually
delivered by using a technique called Intensity Modulated Photon Therapy (IMRT)
or Intensity Modulated Proton Therapy (IMPT). Prior to the radiation treatment
of a patient, a personalized treatment plan is constructed based on a planning CT
scan and sometimes augmented with MR and/or PET images. RT doses are usually
fragmented over 4 to 8 weeks resulting in 20 to 40 daily fractions [4]. Since the dose
is delivered over several sessions, variations in the size and shape of the target area
and Organs-At-Risk (OARs) are bound to take place. These variations are caused by
multiple factors such as patient motion, weight loss, breathing, organ filling, tumors
and OARs shrinkage [5]. IMPT is more sensitive to these daily changes than IMRT,
which may result in the dose being distorted or dose not match the anatomy of the
day [4, 6]. The simplest strategy to compensate for these variations is to account for
them beforehand by adding a margin to the Clinical Target Volume (CTV) to generate
the Planning Target Volume (PTV), and then generate the treatment plan using the
PTV. However, these margins result in extra dose to the OARs, thus increasing the
risk of toxicity, making it a suboptimal strategy. A more sophisticated approach is
called Adaptive Radiotherapy (ART), where we account for inter-fraction variations
by adapting the treatment plan online to the daily anatomy. Figure 1.1 illustrates

1



Figure 1.1: Illustration of the online adaptive radiotherapy workflow. A CT scan of the
day is acquired using an in-room scanner, after which the patient table is moved to
the treatment beam via a robotic arm. During the movement of the table, the daily CT
scan is re-contoured and the treatment plan is adapted accordingly.

the workflow of online adaptive radiotherapy using an in-room CT scanner. However,
these daily CT scans have to be delineated online to update the treatment plan.
Usually this task is done by radiation oncologists according to certain guidelines [7, 8].
However, intra and inter-observer inconsistency has been noted due to preference and
experience differences among radiation oncologists [9, 10]. Typically, daily manual
re-contouring is not performed because it is time consuming and new anatomical
variations may be introduced in the time it takes to delineate the scan [11]. Automatic
re-contouring algorithms can alleviate these issues, but robust methods are required,
because otherwise still time consuming fallback or correction strategies are needed.
Automatic contouring can be done by direct segmentation of the daily scan, or by
registration of the annotated planning scan with the daily scan followed by contour
propagation. These two methods are discussed in detail in the following sections.

1.2 Image registration in radiotherapy

Image registration is the task of finding the geometrical correspondence between
images that were acquired at different time steps or from different imaging modalities.
In this dissertation we focus on deformable, non-linear, image registration (DIR)
which accounts for local deformations such as stretching or shrinkage deformations.
In the context of adaptive radiotherapy, the aim is to find the transformation that
aligns the planning scan (moving image) and daily scan (fixed image) of the same

2
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Figure 1.2: A diagram of iterative-based image registration algorithms.

patient (inter-fractional registration). DIR has been extensively integrated into RT
applications such as dose planning, delivery and evaluation, since all these tasks can
be improved by accounting for organ deformation. DIR is an ill-posed problem because
there is no unique transformation between the fixed and moving images. Therefore it
is formulated as an optimization problem (see Figure 1.2) that can be solved using
iterative approaches such as Stochastic Gradient Descent (SGD):

∧
µ= argmin

µ
C (I f (x), Im(x); Tµ(x)), (1.1)

where I f (x), Im(x) are the fixed and moving images, C is a dissimilarity metric
such as Normalized Cross Correlation (NCC), and T (x) is the transformation that
makes Im(T (x)) spatially aligned to I f (x). The transformation function can be
modeled by a limited number of parameters (parametric transformation) or by a
vector per voxel describing the displacement of this voxel in a continuous space
using interpolation (non-parametric transformation). In this thesis we focus on non-
parametric transformation. For contour propagation, the contour of the moving image
is resampled in the fixed image domain by interpolation.

With the recent advance of deep learning, a variety of methods on learning-
based registration were proposed to replace conventional iterative methods. This
research either uses deep learning to model the transformation function via supervised
training through synthesized deformations [12, 13, 14] or via unsupervised training by
equipping the network with a spatial transformer [15] similar to the work presented
in [16, 17, 18, 19]. For further details, the reader may refer to [20] where a detailed
review on medical image registration using deep learning is provided.

3



Figure 1.3: A diagram of joint registration and segmentation algorithms.

1.3 Joint registration and segmentation

Automatic contouring of the daily anatomy can be done by either a segmentation
algorithm or via DIR as mentioned in Section 1.1. However, each of these tasks
has its own strengths and weaknesses. For instance, image segmentation algorithms
can directly delineate images based on texture and surrounding anatomy, and may
therefore be robust to large organ deformations. However, it sometimes has difficulties
with low contrast areas and irregularly shaped organs. On the other hand, image
registration algorithms have the ability to encode prior knowledge of the patient’s
anatomy and therefore may perform better on low quality images. However, such
methods sometimes have difficulty with large deformations. These two tasks are in fact
complementary, as for example image atlases warped by image registration algorithms
are often used for image segmentation [21, 22], while image contours can be used
to guide the image registration method in addition to the intensity images [23, 17,
24]. Contours are also used for evaluating the quality of the registration [25, 26].
Therefore, coupling image registration and segmentation tasks and modeling them
in a single framework could leverage their strengths and mitigate their weaknesses
through the sharing of beneficial information. Figure 1.3 is a diagram showing how
these tasks might be joined.

1.4 Accelerating MR acquisition for adaptive radiotherapy

CT-guided radiotherapy has long been the standard setup for radiation oncology
despite its low contrast compared to MRI since it encodes crucial information about

4
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tissue electron density needed for dose calculation and simulation. The introduction of
MRI-guided radiation therapy (MRIgRT) has revolutionized the practice of radiation
oncology. This is due to the superior performance of MR images over CT in terms
of soft tissue contrast (see Figure 1.4), which facilitates the monitoring of the daily
anatomical changes and subsequently adapt the treatment radiation in real-time.
Any substantial latency in this MRI-guided workflow might, however, result in the
introduction of new anatomical variations and subsequently the delivered dose would
be different from the intended dose [27]. One of the potential causes for this latency
is imaging latency, which represents the time delay between the anatomical change
and its emergence in the reconstructed image.

Therefore, fast image acquisition and reconstruction are crucial to improve the
performance of current MR scanners, which led in recent years to the development of
techniques such as parallel reception, compressed sensing and multi-band accelera-
tions. However, there is still a need for further scan acceleration. The long acquisition
time is intrinsic to the scanner and physics properties of MRI. For the majority of scans
performed in clinical practice, this acquisition is done through consecutive read-outs
of single lines in k-space. The scanning time could be shortened by reducing the
number of acquired lines in k-space, i.e. by undersampling the 2D or 3D k-space.
However, this could violate the Nyquist criterion, resulting in aliasing and blurriness
in the reconstructed images. These issues may result in a lag between the organ
positions derived from the reconstructed image and the actual positions by the time
the acquisition is finished. Compressed Sensing (CS) is one of the most common
solutions for acceleration by undersampling, while maintaining image quality. CS was
introduced by Donoho [28], Lustig [29] and Candes [30], where it leverages the fact
that MR images can be compressed in some domain, restoring the missing k-space
data through an iterative reconstruction algorithm [31].

Recently deep learning-based algorithms were introduced in order to reconstruct a
high quality MR images at acceptable speed. These algorithms often focus on modeling
iterative approaches similar to CS algorithm via deep learning models [32, 33, 34].

1.5 Outline of the thesis

The aim of the work described in this thesis is to develop a deep learning-based
methodology for automatic contouring for real time adaptive radiotherapy either
guided by CT or MR imaging modalities. Our proposed automatic contouring networks
were trained and tested on CT images since it is the commonly used for treatment
planning, while for MR we focused on the other bottleneck, i.e. the reconstruction
time.

Chapter 2 presents a contour propagation pipeline that combines conventional
iterative-based registration with a deep learning model. We propose a CNN network

5



Figure 1.4: Example of prostate images, where from left to right are CT, T2-weighted
MR, and fat suppressed MR images [35].

that automatically segments the bladder, and then feeds it to the registration algorithm
as prior knowledge of the underlying anatomy. We also introduce a GAN model to
address the problem of gas pockets in the rectum to avoid the registration algorithm
to be distracted.

Chapter 3 presents a novel transfer learning approach in order to leverage
personalized anatomical knowledge accumulated over the treatment sessions. We
adapt a baseline segmentation model as the patient goes through their RT treatment.
Thus, instead of depending on a static deep learning segmentation model for all
patients, we accumulate knowledge over successive sessions for a particular patient.
This accumulated knowledge is then used to encourage the model into predicting a
segmentation that has a higher quality for this specific patient.

Chapter 4 proposes to combine the registration and segmentation tasks in a deep
learning setting using adversarial learning. The proposed framework consists of an
unsupervised 3D end-to-end generator network that estimates the deformation vector
field (DVF) between the input image pairs. Meanwhile, a discriminator network is
trained to evaluate how well the registration is performing.

Chapter 5 proposes to formulate the registration and segmentation as a joint
problem via a Multi-Task Learning (MTL) setting, allowing these tasks to leverage their
strengths and mitigate their weaknesses through the sharing of beneficial information.
We explored different joint network architectures as well as loss weighting methods for
merging these tasks, thus pinpointing the best strategy to maximize the information
flow between the two tasks.

Chapter 6 presents a fast MR reconstruction algorithm, which enables the appli-
cation of the automatic contouring methods proposed in the previous chapters for
online adaptive MR-guided radiotherapy. Starting from undersampled k-space data, an
iterative learning-based reconstruction scheme inspired by compressed sensing theory
is used to reconstruct the images. We developed a novel deep neural network to refine
and correct prior reconstruction assumptions given the training data. The proposed

6
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network was ranked #1, shared #1, and #3 on respectively the 8x accelerated
multi-coil, the 4x multi-coil, and the 4x single-coil tracks in the fastMRI competition
organized by Facebook and New York University (NYU).

Chapter 7 summarizes and discusses the ideas presented in this thesis.
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2
Robust Contour Propagation Using Deep

Learning and Image Registration for Online

Adaptive Proton Therapy of Prostate Cancer

This chapter was adapted from:

M Elmahdy, T Jagt, Y Qiao, R Shahzad, H Sokooti, S Yousefi, L Incrocci, C Marijnen, M
Hoogeman, and M Staring. Robust contour propagation using deep learning and
image registration for online adaptive proton therapy of prostate cancer, Medical
Physics, Pages 3329-3343, 2019.

9



Abstract

Purpose: To develop and validate a robust and accurate registration pipeline
for automatic contour propagation for online adaptive Intensity-Modulated Proton
Therapy (IMPT) of prostate cancer using elastix software and deep learning.
Methods: A 3D Convolutional Neural Network was trained for automatic bladder
segmentation of the CT scans. The automatic bladder segmentation alongside the CT
scan are jointly optimized to add explicit knowledge about the underlying anatomy to
the registration algorithm. We included three datasets from different institutes and
CT manufacturers. The first was used for training and testing the ConvNet, where
the second and the third were used for evaluation of the proposed pipeline. The
system performance was quantified geometrically using the Dice Similarity Coefficient
(DSC), the Mean Surface Distance (MSD), and the 95% Hausdorff Distance (HD).
The propagated contours were validated clinically through generating the associated
IMPT plans and compare it with the IMPT plans based on the manual delineations.
Propagated contours were considered clinically acceptable if their treatment plans met
the dosimetric coverage constraints on the manual contours.
Results: The bladder segmentation network achieved a DSC of 88% and 82% on
the test datasets. The proposed registration pipeline achieved a MSD of 1.29±0.39,
1.48±1.16, and 1.49±0.44 mm for the prostate, seminal vesicles, and lymph nodes,
respectively on the second dataset and a MSD of 2.31±1.92 and 1.76±1.39 mm for
the prostate and seminal vesicles on the third dataset. The automatically propagated
contours met the dose coverage constraints in 86%, 91%, and 99% of the cases for
the prostate, seminal vesicles, and lymph nodes, respectively. A Conservative Success
Rate (CSR) of 80% was obtained, compared to 65% when only using intensity-based
registration.
Conclusion: The proposed registration pipeline obtained highly promising results
for generating treatment plans adapted to the daily anatomy. With 80% of the
automatically generated treatment plans directly usable without manual correction, a
substantial improvement in system robustness was reached compared to a previous
approach. The proposed method therefore facilitates more precise proton therapy of
prostate cancer, potentially leading to fewer treatment related adverse side effects.
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2.1 Introduction

Prostate cancer is one of the leading causes of mortality and the most common cancer
among men. The National Cancer Society (NCS) estimates around 164,690 new cases
and 24,430 deaths from prostate cancer in the United States only for 2018 [36]. Due
to its slow progress, individuals could develop prostate cancer for many years without
explicit signs. There are treatment options for prostate cancer including surgical
removal of the prostate, hormone therapy, and radiotherapy. Intensity-Modulated
Proton Therapy (IMPT) is able to deliver a highly localized dose distribution to the
target volume, while minimizing collateral damage to the surrounding healthy tissues
[37]. IMPT is however more sensitive to daily changes than photon therapy, which
may result in distortion of the delivered dose distribution [4, 6]. These changes could
arise from anatomical variations in the shape and position of both target volumes
and Organs-At-Risk (OARs) or a misalignment in the patient setup. In order to
compensate for these changes, a margin is added to the Clinical Target Volume
(CTV) to generate the Planning Target Volume (PTV) in addition to robust treatment
planning. These margins result in extra dose to the OARs, leading to an increase in the
treatment-related toxicities that may prevent dose escalation. Traditionally, motion-
induced variations are minimized by implanting fiducial markers in the prostate,
subsequently compensating for the daily prostate motion using online imaging [38].
However, such correction strategies are invasive and only capable of correcting for
translational motion and limited amount of rotational motion [39]. Online imaging
and re-planning should be able to handle this problem without using fiducial markers
[40]. These online CT scans have to be delineated first in order to update the
treatment plan. Usually this task is done by radiation oncologists according to certain
guidelines [7, 8]. However, intra and inter-observer inconsistency has been noted due
to different preferences and experience among radiation oncologists [9, 10]. Typically,
daily manual re-contouring is not performed because it is time consuming and new
anatomical variations may be introduced in the time it takes to delineate the scan [11].
Automatic re-contouring algorithms can alleviate these issues, but robust methods are
required, because otherwise still time consuming fallback strategies are needed.

Automatic re-contouring could be accomplished effectively using Deformable
Image Registration (DIR) by deducing the correspondence between the daily CT
and the planning CT. Using the generated Deformation Vector Field (DVF), manual
contours can be propagated from the planning CT to the daily CT. The automatically
generated contours together with fast re-optimization of the treatment plan [41]
could compensate for the daily variation and ensure the delivery of the prescribed
dose distribution at small margins and robust settings. DIR is a crucial step towards
developing online adaptive IMPT alongside re-planning and personalized dose Quality
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Assurance (QA). Currently, these steps are time consuming, thus severely limiting
online procedures.

There are commercially available applications for automatic re-contouring such as
Atlas Based Auto Segmentation (ABAS), Mirada, and RayStation. These applications
are, however, considered a black box for the end-users and therefore limit the
parameter choices and tuning. Open source DIR packages provide a high level of
flexibility with a concrete scientific evidence and reproducibility. Qiao et al. [42]
reported an MSD of 1.36±0.30 mm, 1.75±0.84 mm, 1.49±0.44 mm for the prostate,
seminal vesicles, and lymph nodes, respectively for 18 patients using the open source
elastix software. A clinical success rate of 69% was achieved, which means that 31%
of the delineations have to be corrected, leading to increased costs and a suboptimal
patient workflow. In 2011, Thor et al. deployed DIR to propagate the contours of
the prostate and OARs from CT to cone-beam CT [43]. The system achieved a mean
DSC of 0.80 for the prostate, 0.77 for the rectum, and 0.73 for the bladder with a
relatively high variance. Moreover, the system was not qualitatively evaluated in terms
of dosimetric coverage. Recently, Woerner et al. [44] investigated the error between
different radiologists and both DIR and rigid registration in different body regions.
They only reported the results for the prostate, which were 0.90, 0.99 mm, and 8.12
mm for the DSC, MSD, and Hausdorff Distance (HD), respectively. Thörnqvist et
al. [45] used two different demons-based registration algorithms, with one more
conservative than the other. They achieved an average DSC of 0.88, 0.85, 0.89, 0.78
for the lymph nodes, prostate, bladder, and rectum, respectively.

In spite of the existence of quite accurate registration algorithms, they still suffer
from a lack of robustness, which is a critical aspect for clinical application. Therefore,
in this paper we focus on the robustness aspect of the registration pipeline. The main
challenges in Qiao et al. were the presence of gas pockets and large deformations
surrounding the seminal vesicles, bladder, and rectum. Hence, we propose to tackle
these challenges by inpainting the rectum gas pockets as well as embedding the
bladder segmentation in the registration pipeline using deep learning to enhance the
system’s robustness. The proposed registration pipeline was evaluated geometrically
and dosimetrically for generating clinically acceptable IMPT plans. Compared to our
conference paper [46], we made several improvements, such as the inclusion of more
datasets, dealing with gas pockets, data normalization, and multi-stage registration.
Moreover, we carried out an extensive dosimetric validation for the automatically
generated contours to verify its clinical viability.

2.2 Methods

The prostate and seminal vesicles are positioned between the bladder and the rectum,
therefore prostate motion is mainly influenced by the filling and motion of both the
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Figure 2.1: The proposed multi-stage registration process using elastix software
and deep learning. The red boxes denote the contours finally used as output of the
algorithm.

bladder and the rectum [47]. Hence, we hypothesize that embedding an explicit prior
knowledge about the deformation of either organs to the intensity-based DIR method
may improve the accuracy and robustness of the registration. Here, we considered the
bladder because it has a well-defined shape that could be more easily delineated in
a fully automatic manner than the rectum. Since the registration is intensity-based,
the quality of the registration process is correlated to the quality of the input images.
Hence, we introduced multiple data preprocessing steps to enhance the quality of the
input images. These steps include rectum gas pocket detection and inpainting and
contrast clipping as shown in Figure 2.1.

2.2.1 Bladder segmentation using deep learning

In this study, we automatically segment the bladder using a 3D U-net Convolutional
Neural Network (3D-CNN) similar to the architecture introduced in [48]. The network
consists of encoding and decoding branches connected with skip connections as shown
in Figure 2.2. In order to represent the volumetric information and tissue homogeneity
of the CT volume, 3D convolution layers followed by non-linear leaky rectified linear
units were used. The original maxpooling layers were replaced by strided convolution
in both encoder and decoder branches. Negative Dice Similarity Coefficient (DSC) [49]
is deployed as a cost function and the network is trained using the Adam optimizer
[50] with a fixed learning rate of 10−4. The network has 64,320 trainable parameters
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Conv [3 x 3 x 3, Stride=2]  + LeakyReLU 3D Upsampling

161616168 16 16 16 8 2

Conv [3 x 3 x 3, Stride=1]  + LeakyReLU

2

Softmax

96

96

96 96

96

96

Figure 2.2: The architecture for the 3D-CNN network, where the numbers on the
blocks denote the number of feature maps.

which enables network inference of the entire CT image in approximately 2 seconds.
The network was designed to output the same size as input, however the input size
should be divisible by 16. Largest connected component analysis was applied as a
post-processing step to eliminate irrelevant activations.

2.2.2 Gas pocket detection and inpainting

A problem that usually arises for intensity-based DIR of the pelvic region is the
presence of gas pockets in the bowel and rectum. These pockets appear as dark areas
surrounded by soft tissue. Usually the size and position of these pockets are not the
same in the planning and the daily CT. In such situations, physical correspondence
between images at different sessions does not exist because of the insertion or occlusion
of image content. Only few studies addressed this issue in the literature. Gao et al.
[51] proposed introducing a virtual gas pocket to the planning CT that follows the
pocket in the daily CT. They tested it on 15 prostate cancer patients with distended
rectum. Foskey et al. [52] proposed to deflate the pocket to a virtual point. In both
papers, the authors assumed no gas pockets in the planning CT, which is not usually
the case. Recently, deep learning based algorithms have revolutionized the medical
image analysis field [53]. One category of deep learning architectures is Generative
Adversarial Networks (GANs) introduced by Goodfellow et al. [54] in 2014. GANs
have been growing since then in generating realistic natural and synthetic images. As
for medical images, GANs have been used in image segmentation [55], synthesis [56],
registration [57], and denoising [58]. Recently Yu et al. [59] proposed a 2D GAN
network with a contextual attention model to restore and inpaint occluded regions
in natural images. The network also blends the restored region with the surrounding
texture to make it look more realistic. The proposed model has two successive networks
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(a) (b) (c)

Figure 2.3: Different inpainting algorithms, where (a), (b), and (c) represent the
original CT, the result from simple-inpainting, and the result from GAN-inpainting,
respectively.

for image generation in order to generate patches with fine quality. The first ’generator’
network generates a coarse result through a dilated convolution network. This result
is then fed to the second network. The second ’discriminator’ network has two routes,
one goes to a dilated convolution network while the other goes through a contextual
attention model. Finally, the results from these two routes are concatenated and fed to
a prediction network. This network has shown an improvement over a similar network
proposed by Iizuka et al. [60]. In this paper, we retrained this network so that it
can inpaint (fill) gas pockets of different shapes and sizes with a more sophisticated
and realistic content rather than a fixed value. The same implementation and hyper
parameters were used as in the original paper.

Alternatively, we also experimented with a simplified method for inpainting.
Following the idea proposed by Rodriguez-Vila et al. [61] we fill the gas pockets
with a fixed value and smooth the output to blend it with the surrounding tissues. A
threshold of -200 is used to generate a binary mask of the gas pockets. This mask is
then dilated with a kernel of size 7x7x1 voxels (M) while the CT image is filled with
a fixed HU number of 60 (the average HU number for faeces), and smoothed with a
sigma of 4mm (Ismoothed ). Equation (2.1) shows the simple inpainting process:

Iout = Ii nput × (1−M) + Ismoothed × M (2.1)

Figure 2.3 shows a comparison between gas pocket inpainting using the GAN network
and simple inpainting.

2.2.3 Contrast enhancement

To enhance the soft tissue contrast, the CT intensity was clipped to the range of
[−300,300]. This clipping is similar to viewing the soft tissue with an appropriate
window level. Moreover, such enhancement improves the registration convergence.
Figure 2.4 shows the effect of intensity clipping.
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(a) (b)

Figure 2.4: The effect of contrast clipping, where (a) and (b) represent the image
before and after intensity clipping, respectively.

2.2.4 Image registration

For carrying out the DIR experiments, we used the open software package elastix
[62]. For more details, see the website http://elastix.isi.uu.nl. All the experi-
ments were performed on a cluster of workstations operated on the Oracle Grid Engine
(OGE), which has 500 nodes with a total of 800 cores. Testing time is reported using a
PC with 16 GB memory, Windows 7 Professional 64 bit operation system and an Intel
Xeon E51620 CPU with 4 cores at 3.6 GHz, utilizing only the CPU.

In this study, the planning CT scan (moving image) was aligned with the daily CT
scan (fixed image) of each patient. The registrations were initialized based on the
center-of-gravity of the bony anatomy defined by a Hounsfield number larger than
200. A mask of the body torso was generated using Pulmo software [63] to remove
the effect of the CT table. The registration process is done in three stages. First, the
moving and fixed images are registered using a single resolution affine transformation
using 200 iterations as defined in Eq. (2.2):

∧
µ1 = argmin

µ
C1

(
IF , IM , MF , MM ;Tµ1

)
, (2.2)

where IF is the daily scan, IM is the planning scan, MF is the torso mask of the daily
scan, MM is the torso mask of the planning scan, and C1 is the mutual information
cost function. The affine transformation aligns the bones and large structures. Second,
a deformable registration is applied to tackle the local deformations of the organs. In
this stage, the planning CT of each patient combined with the manual delineation of
the bladder are considered the moving images, while the repeat CT of the same patient
accompanied with the bladder segmentation resulting from the proposed 3D-CNN are
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the fixed images. Equation (2.3) defines the optimization problem for this stage:

∧
µ2 = argmin

µ
{C1

(
IF , IM , MF , MM ,Tµ1 ;Tµ2

)+αC2
(
DT (SF ) ,DT (SM ) ,Tµ1 ;Tµ2

)
}, (2.3)

where C2 is the Mean Squared Difference (MSD) cost function, α is a weight for
balancing these two cost functions, DT (SF ) is the distance transform of the 3D-CNN
bladder segmentation, and DT (SM ) is the distance transform of the manual annotation
of the planning scan. The Distance Transform (DT) of the bladder segmentations is
used instead of the binary segmentations themselves, to ensure a smooth and stable
optimization process. The generated Deformation Vector Field (DVF) from this step is
then used to propagate the contours of the prostate, lymph nodes, bladder, and rectum
from the planning CT to the repeat CT. Because the seminal vesicle is a small irregular
structure, which is highly affected by the deformation in the rectum, we introduce a
third stage to focus the registration on the rectum and seminal vesicle region. In this
stage, the rectum contour of the planning CT and the rectum contour of the daily CT
(from the previous stage) are dilated with a kernel of 45x45x1 voxels and used as a
registration mask together with the fixed and moving CT scans. The contours of the
rectum and seminal vesicles are then propagated using the generated DVF from the
final stage. Equation (2.4) defines the optimization problem for this stage:

∧
µ3 = argmin

µ
C1

(
IF , IM , M̃F , M̃M ,Tµ1 ,Tµ2 ;Tµ3

)
, (2.4)

where M̃M is the dilated rectum mask of the planning CT and M̃F is the dilated rectum
mask of the daily CT. A fast recursive implementation of the B-spline transformation
was employed for DIR [64] in stage 2 and 3. Adaptive stochastic gradient descent was
used for optimization [65] in all three stages. For the DIR stage we used a three level
Gaussian pyramid with smoothing factors of 4, 2, and 1 mm. Figure 2.1 illustrates the
proposed registration pipeline in detail.

2.3 Experiments and results

2.3.1 Dataset

This study includes three datasets representing three different institutes and CT
scanners from three different vendors for patients who underwent intensity-modulated
radiation therapy for prostate cancer. Table 2.1 shows detailed information about
these datasets. The LUMC dataset was used to train and validate the neural network
for segmenting the bladder (Section 2.2.1) as well as the inpainting network (Sec-
tion 2.2.2), while the EMC and HMC dataset were used as independent test sets for
the complete registration pipeline. Geometric evaluation was performed on both the
EMC and HMC dataset. Eleven out of the eighteen HMC patients were considered
for dosimetric evaluation due to the availability of not only the manual delineations
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Table 2.1: Details of the datasets reported in this study. LUMC, EMC, and HMC are
abbreviations for Leiden University Medical Center (Netherlands), Erasmus Medical
Center (Netherlands), and Haukeland Medical Center (Norway), respectively. SV and
LN denote Seminal Vesicles, and Lymph Nodes, respectively.

Institute Scanner #Patients
#Scans/
patient

Image
size

Voxel
spacing (mm)

Manual
delineations

LUMC Toshiba 418 1 512x512x(68-240) ∼1.0x1.0x3.0 bladder, rectum

EMC [66] Siemens 14 4 512x512x(91-218) ∼0.9x0.9x1.5
prostate, SV

bladder, rectum

HMC [67] GE 18 8-11 512x512x(90-180) ∼0.9x0.9x2.0
prostate, SV, LN
bladder, rectum

for the target organs (prostate, seminal vesicles, lymph nodes) and OARs (bladder,
rectum), but moreover the manual delineations of the bowels and femoral heads
needed for planning.

2.3.2 Evaluation measures

The quality of the registration is quantified in terms of geometric aspects and dosimetric
coverage. The geometric quality is measured by comparing the manual contours and
the automatically propagated contours of the daily CT for the prostate, lymph nodes,
seminal vesicles, rectum, and bladder. The Dice Similarity Coefficient (DSC) measures
the overlap between the segmentations, while the Mean Surface Distance (MSD), and
the 95% Hausdorff Distance (HD) measure the residual distance between the contours
in 3D space.

DSC =∑ 2 | F ∩M |
| F | + | M | , (2.5)

where F and M are the propagated contour and the ground truth contour, respectively.

MSD = 1

2

(
1

n

n∑
i=1

d (ai , M)+ 1

m

m∑
i=1

d (bi ,F )

)
, (2.6)

HD = max

{
max

i
{d (ai , M)} ,max

j
{d (bi ,F )}

}
, (2.7)

where {a1, a2, ..., an} and {b1,b2, ...,bm} are the surface mesh points of the fixed and
moving contours, respectively and d (ai , M) = min j || b j −ai ||. The geometrical success
rate, as a marker for geometric robustness, is defined as the percentage of registrations
with MSD < 2 mm (slice thickness): γ = n

N {MSD < 2 mm}, where (N) is the total
number of registrations performed.

IMPT plans were generated for 11 patients from the HMC dataset using both
the manual and the automatic delineations. The plans were then evaluated on the
manual delineations to investigate the clinical effect of the error between these two
delineations. Erasmus-iCycle, an in-house developed treatment planning optimization

18



C
H

A
P

T
E

R
2

H
Y

B
R

ID
IT

E
R

AT
IV

E
A

N
D

D
E

E
P

L
E

A
R

N
IN

G
C

O
N

T
O

U
R

P
R

O
PA

G
AT

IO
N

system, [68, 69, 70, 71, 72] together with the Astroid dose engine were used to
generate the IMPT plans. Erasmus-iCycle uses a multi-criteria optimization to generate
a clinically desirable Pareto optimal treatment plan on the basis of a wish list consisting
of hard constraints and objectives. A small margin of 2 mm around the prostate and
3.5 mm around the lymph nodes and seminal vesicles is used to compensate for the
marginal error of the propagated contours and to account for intra-observer variations
in the manual contouring. These margins alone can not account for variations in shape
and location of the target volumes. Dose was prescribed according to a simultaneously
integrated boost scheme in which the high-dose PTV (prostate + 2 mm margin) was
assigned 74 Gy and the low-dose PTV (seminal vesicles and lymph nodes + 3.5 mm
margin) 55 Gy, to be delivered using two laterally opposed beams. In order to avoid
under-dose, the optimization ensures that at least 98% of the target volumes receive
at least 95% of the prescribed dose (V95% ≥ 98%). To avoid overdose the optimization
ensures that less than 2% of the target volumes receive more than 107% of the highest
prescribed dose (V107% ≤ 2%). To achieve a clinically acceptable result, automatically
generated treatment plans from the propagated contours should still fulfill these goals.
Hence, IMPT plans from the propagated contours are evaluated based on the manual
contours. The clinical success rate, as a marker for geometric robustness, is defined as
the percentage of registrations for which the prostate directly meets the dose treatment
criteria: η= n

N {V95% ≥ 98%}. Conservative Success Rate (CSR) is a more conservative
measure of clinical success when all target volumes (the prostate, seminal vesicles
and lymph nodes) meet this dosimetric criterion. For dosimetric coverage calculation
N = 99.

2.3.3 Network training and performance

We implemented the 3D-CNN and GAN-inpainting networks using Tensorflow [73].
For training these networks, we used the LUMC dataset. This dataset was a sufficiently
large dataset to be able to train the neural networks. Since the LUMC dataset only
had one CT scan per patient, it was not used for registration evaluation. From the
418 LUMC patients, 350 patients were used for network training, and 68 patients
for validation. The trained network was then applied without modification to the
CT scans in the EMC and HMC datasets. In order to account for the variations in
voxel size between datasets and scans, all scans were resampled to a fixed voxel size
of 1.0×1.0×2.0 mm. For the 3D-CNN, 100,000 patches of size 96×96×96 voxels
were randomly extracted from the training volumes, making sure they are equally
distributed between foreground and background. For the GAN-inpainting network, all
the slices with gas pockets were eliminated from training. Moreover, all slices were
resampled to a pixel size of 1.0 × 1.0 mm and centrally cropped to 256x256 pixels
so that more patches could fit into memory as well as it would be beneficial for the
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Figure 2.5: Examples of the automatic bladder segmentation using the 3D-CNN
alongside the DSC of the volume. First and second rows represent samples from HMC
and EMC, respectively. (a) and (d) are suboptimal results and the rest are good results.
The red line represents the ground truth and the blue line is the network output.

network to learn the most relevant contextual information to the rectum. Randomly
selected windows of size 64x64 pixels were occluded in order to train the network
to inpaint these regions with a realistic content. Both the 3D-CNN and the 2D-GAN-
inpainting network were trained for 100,000 iterations on the raw CT patches without
any preprocessing except for resampling. All the experiments were carried out using an
NVIDIA GTX1080 Ti with 11 GB of GPU memory. The 3D-CNN bladder segmentation
network obtained a DSC of 85.4%±1.4% on the validation scans. Moreover, the network
was tested on the EMC and HMC datasets and achieved an average DSC of 82.3%±1.5%

and 87.9%±1.2%, respectively. Using a single GPU, the average inference time of the
segmentation and inpainting networks were approximately 2 seconds and 3 seconds
per volume depending on the number of slices per volume. Figure 2.5 shows examples
of the network output.

2.3.4 Parameter optimization and preprocessing analysis

For a fair comparison, the same registration parameters as in [42] were used. For
the weight α that balances the contribution of the bladder segmentation in the cost
function (2.3), we investigated multiple settings based on initial experiments on EMC
and HMC datasets. The weight was set for the coarse (first) resolution only and was
set to zero for the other two resolutions, in order to avoid overfitting issues. Here we
compared four settings for α: 0.2, 0.1, 0.05, and 0.01. For this experiment we did
not use inpainting. The results are shown in Table 2.2 for the HMC dataset where
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Table 2.2: MSD (mm) of the target volumes and OARs of the HMC dataset for different
registration and weight settings after the third stage of registration. Registrations
using 100 and 500 iterations were both tested.

Prostate Seminal vesicles Lymph nodes Rectum Bladder

Method α µ±σ µ±σ µ±σ µ±σ µ±σ
Affine, 200 1.63±0.74 2.92±1.74 1.23±0.49 3.89±1.62 4.37±2.11

B-spline, 100
0.20 1.55±0.90 1.70±0.74 1.63±0.58 2.70±1.12 1.85±1.85
0.10 1.53±0.82 1.72±0.73 1.58±0.50 2.72±1.11 1.85±1.71
0.05 1.50±0.75 1.74±0.79 1.55±0.46 2.75±1.16 1.86±1.56
0.01 1.41±0.36 1.75±0.86 1.57±0.38 2.76±1.15 1.98±1.19

B-spline, 500
0.20 1.49±0.90 1.76±0.80 1.65±0.64 2.87±1.39 1.74±1.63
0.10 1.45±0.77 1.77±0.93 1.59±0.52 2.78±1.19 1.77±1.58
0.05 1.43±0.77 1.78±0.90 1.55±0.47 2.79±1.19 1.81±1.57
0.01 1.36±0.47 1.76±0.82 1.56±0.48 2.81±1.18 1.84±1.24

Table 2.3: MSD (mm) of the target volumes and OARs for different registration settings
and inpainting methods at α = 0.05. Registrations using 100 and 500 iterations were
both tested.

Prostate Seminal vesicles Lymph nodes Rectum Bladder

# It. Inpainting Method µ±σ µ±σ µ±σ µ±σ µ±σ
100

Simple 1.29±0.39 1.48±1.16 1.49±0.44 2.39±1.92 1.72±1.17
GAN 1.29±0.41 1.70±2.12 1.49±0.44 2.65±2.17 1.71±1.16

500
Simple 1.28±0.42 1.36±0.40 1.49±0.44 2.19±1.03 1.67±1.22
GAN 1.28±0.42 1.36±0.38 1.48±0.45 2.33±0.95 1.67±1.22

"Affine" refers to the affine registration defined in Eq. (2), which is considered a
reference method. The weights 0.05 and 0.20 yielded very similar performance. We
opted for a weight of 0.05 to avoid overfitting on the bladder. Since the target areas
(prostate, lymph nodes, and seminal vesicles) obtained slightly better accuracy for a
lower weight and these are important for radiotherapy planning, we selected 0.05. For
the EMC dataset a similar experiment gave a weight of 0.01 (not reported). Therefore,
for the remainder of the paper these weights have been used.

In order to investigate the difference between simple-inpainting and GAN-inpainting,
we run the registration on HMC dataset using both techniques as shown in Table 2.3.
The results shows a very similar performance for simple-inpainting and GAN-inpainting.
Hence, the simple-inpainting is used for gas pocket inpainting for the remainder of
the paper.

From the aforementioned experiments and analysis (Table 2.2 and 2.3), we noticed
a similar performance between 100 and 500 iterations and in order to reduce the
registration time, we considered only the results from 100 iterations for the final
experiments.
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2.3.5 Registration performance

Since the LUMC dataset did not have any follow-up scans, we only consider the EMC
and HMC datasets for evaluating the registration performance. Figure 2.6 shows
example results of the automatically propagated contours. We compared the proposed
method with the intensity-based registration approach of Qiao et al. [42]. For the
HMC data we directly compare with the results reported in [42], as the same dataset
was used. For the EMC data we applied their algorithm, and compare with our results.
The DSC overlap of the proposed algorithm is presented in Table 2.4. For the HMC
dataset, the prostate, lymph nodes, and bladder performed similarly for the proposed
method and Qiao et al., while the seminal vesicles and rectum showed substantial
improvements. The median DSC values of the prostate, seminal vesicles, lymph nodes,
rectum, and bladder were 0.88, 0.70, 0.89, 0.78, and 0.91 ,respectively for Qiao et
al., while they were 0.89, 0.73, 0.89, 0.85, and 0.94, respectively for the proposed
method. For the EMC dataset, the proposed algorithm showed consistent improvement
for the seminal vesicles, rectum, and bladder. The median DSC values of the prostate,
seminal vesicles, rectum, and bladder were 0.91, 0.80, 0.76, and 0.86, respectively
for Qiao et al. and 0.89, 0.81, 0.81, and 0.90, respectively for the proposed method.
For the MSD results shown in Table 2.5, the proposed method outperformed Qiao
et al. for all the target areas and OARs. The MSD of most of the targets and the
OARs was less than one voxel (2 mm). The geometrical success rate was 97%, 93%,
and 87% for the prostate, seminal vesicles, and lymph nodes, respectively for the
HMC dataset and 67% and 71% for the prostate and seminal vesicles for the EMC
dataset. Table 2.6 shows the 95% HD, yielding a significant improvement for the
proposed method over Qiao et al. on the HMC dataset, but less improvement for
the EMC dataset. Moreover, Qiao et al. and the proposed method show a significant
improvement from the affine method except for the lymph nodes. Figure 2.7 shows a
scatter plot depicting the effect of the bladder distension (volume difference between
planning and daily CT) on the Mean Surface Distance (MSD) of different target organs
of the HMC dataset. The figure shows that the MSD of the proposed method is less
than the slice thickness (2 mm) for most of the cases, and that there is little correlation
between registration performance and bladder distensibility. Figure 2.8 shows the
comparison of the registration performance between Qiao et al. (intensity only) and
the proposed method (intensity and bladder segmentation), both using 100 iterations
for the HMC dataset. The comparison illustrates the performance in terms of DSC,
MSD, and 95%HD for the target volumes and OARs. The figure shows a similar
pattern between the proposed method using the manually annotated contours of the
bladder and the contours from the 3D-CNN network. This pattern emphasizes that the
proposed method achieved the upper limit of the system. The average runtime for the
proposed pipeline is 98.3 seconds for each registration at 100 iterations.
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(a) The MSD of the prostate, lymph nodes, and seminal vesicles is 0.8, 1.6, and 1.0 mm, respectively.
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(b) The MSD of the prostate, lymph nodes, and seminal vesicles is 1.4, 1.8, and 1.2 mm, respectively.
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(c) The MSD of the prostate, lymph nodes, and seminal vesicles is 2.1, 1.6, and 1.5 mm, respectively.
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(d) The MSD of the prostate, lymph nodes, and seminal vesicles is 1.5, 1.6, and 11.0 mm, respectively.

Figure 2.6: Examples from the automatic contours propagation of the HMC dataset
and the corresponding dose volume histograms evaluated on the manual contours.
The solid line represents the manual contouring results while the dotted line is the
automatically propagated one.
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(e) The MSD of the prostate, lymph nodes, and seminal vesicles is 1.3, 1.3, and 1.1 mm, respectively.
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(f) The MSD of the prostate, lymph nodes, and seminal vesicles is 0.9, 1.4, and 0.9 mm, respectively.
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(g) The MSD of the prostate, lymph nodes, and seminal vesicles is 1.3, 1.1, and 1.1 mm, respectively.

Figure 2.6: Continued.

2.3.6 Dosimetric performance

Figure 2.6 shows the Dose Volume Histogram (DVH) of the target organs and OARs
for some examples. The clinical constraints in terms of V95% and V107% were calculated
for the prostate, seminal vesicles, and lymph nodes based on the manual contours. In
order to monitor the accumulated dose for the OARs, we calculated V45G y%, V60G y%,
V75G y%, and Dmean for the rectum, as well as V45%, V65G y%, and Dmean for the bladder.
Here Dmean is the structure’s average dose and VxxG y% is the percentage of volume
receiving a dose of xx Gy. Table 2.7 shows a comparison between the propagated
contours from Qiao et al. and the proposed algorithm in terms of the percentage
of scans that achieved the clinical criteria of V95% ≥ 98% and V107% ≤ 2%. The Table
shows a significant improvement for the seminal vesicles, which is a small and difficult
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Figure 2.7: Scatter plot showing the effect of the bladder volume change between
planning and daily scans of the HMC dataset on the performance of the proposed
method in terms of MSD. Red line represents the slice thickness.

Table 2.4: DSC value of the target volumes and the OARs of the HMC and EMC
datasets for different registration methods. † represents a significant difference (at
p = 0.05) between Qiao et al. and the proposed algorithm.

Prostate Seminal vesicles Lymph nodes Rectum Bladder

Method # It. µ±σ µ±σ µ±σ µ±σ µ±σ

H
M

C Affine 200 0.84±0.11 0.46±0.26 0.90±0.08 0.71±0.10 0.77±0.11
Qiao et al. 100 0.87±0.08 0.65±0.18 0.88±0.07 0.77±0.09 0.88±0.11
Proposed 100 0.87±0.08 0.70±0.13† 0.87±0.07 0.82±0.12† 0.89±0.12

EM
C Affine 200 0.78±0.20 0.49±0.32 - 0.62±0.18 0.66±0.25

Qiao et al. 100 0.87±0.13 0.70±0.26 - 0.72±0.16 0.78±0.22
Proposed 100 0.87±0.12 0.75±0.18† - 0.78±0.15† 0.83±0.17†

target organ, while the performance of the prostate and lymph nodes was very similar.
The boxplot in Figure 2.9 illustrates the difference between the dosimetric parameter
values of the manual delineations, calculated by using either the treatment plan
based on the automated delineations or the manual delineations. We can see that the
difference for all dosimetric parameters of all the target organs and OARs is almost 0
% or Gy except for the lymph nodes, which is approximately 1%.

2.4 Discussion

In this study, we developed and evaluated an automatic contour propagation pipeline
using DIR, while considering the robustness, accuracy, and clinical acceptance rate for
the target organs and the OARs of prostate cancer. Online adaptive IMPT is a crucial
step towards treatment with small margins for target organs. In this study we used
margins of 2 mm for the prostate and 3.5 mm for the seminal vesicles and lymph nodes,
respectively. Such small margins are only viable when online and daily re-planning is
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Table 2.5: MSD (mm) of the target volumes and the OARs of the HMC and EMC
datasets for different registration methods. † represents a significant difference (at
p = 0.05) between Qiao et al. and the proposed algorithm.

Prostate Seminal vesicles Lymph nodes Rectum Bladder

Method # It. µ±σ µ±σ µ±σ µ±σ µ±σ

H
M

C Affine 200 1.70±0.96 3.02±1.96 1.26±0.51 3.92±1.59 4.47±2.27
Qiao et al. 100 1.40±0.47 1.85±1.26 1.51±0.44 3.13±1.38 2.38±1.79
Proposed 100 1.29±0.39 1.48±1.16 1.49±0.44 2.39±1.92† 1.72±1.17†

EM
C Affine 200 2.82±3.18 4.42±6.03 - 4.63±3.01 8.03±6.46

Qiao et al. 100 1.41±0.76 2.24±3.14 - 3.21±1.85 5.42±5.84
Proposed 100 1.54±0.67 1.67±1.38† - 2.67±1.76† 3.89±4.00†

Table 2.6: %95HD (mm) of the target volumes and the OARs of the HMC and EMC
datasets for different registration methods. † represents a significant difference (at
p = 0.05) between Qiao et al. and the proposed algorithm.

Prostate Seminal vesicles Lymph nodes Rectum Bladder

Method # It. µ±σ µ±σ µ±σ µ±σ µ±σ

H
M

C Affine 200 3.97±1.96 6.61±3.70 3.12±1.27 11.8±5.98 12.5±7.06
Qiao et al. 100 3.31±1.16 4.59±2.95 3.73±1.02 10.4±5.99 7.41±6.85
Proposed 100 3.07±1.30 3.82±3.19† 3.74±1.02 8.66±6.92† 5.11±4.38†

EM
C Affine 200 5.98±6.19 8.11±7.66 - 13.2±6.88 21.3±16.3

Qiao et al. 100 3.65±2.31 4.80±5.09 - 11.3±6.77 16.5±17.2
Proposed 100 3.93±2.24 4.92±5.13 - 10.4±7.77 11.5±12.5†

Table 2.7: Percentage of registrations that meets the dose constraints for different
registration iterations. Conservative Success Rate (CSR) refers to the percentage of
registrations for which all target volumes (the prostate, seminal vesicles and lymph
nodes) meet the dose constraints.

V95% ≥ 98% V107% ≤ 2%
Prostate SV LN CSR Prostate SV LN

Qiao et al. 83.8% 75.7% 97.9% 65% 100% 100% 100%
Proposed 85.8% 90.9% 98.9% 80% 100% 100% 100%

performed. This re-planning procedure should be accurate as well as robust to avoid
any subsequent adverse side effects. The automatically propagated contours were
validated geometrically on the EMC and HMC datasets as well as dosimetrically on the
HMC dataset in order to investigate whether or not the propagated contours meet the
clinical acceptance criteria for dose coverage. DSC, MSD, and 95%HD were chosen
for geometric validation while V95% ≥ 98% and V107% ≤ 2% were used for dosimetric
coverage validation. Here, V95% ≥ 98% ensures that at least 98% of the target volumes
receive at least 95% of the prescribed dose and V107% ≤ 2% ensures that less than 2%
of the target volumes receive more than 107% of the highest prescribed dose.
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Figure 2.8: Boxplot comparison between Qiao et al. and the proposed algorithm for
image registration on the HMC dataset versus the number of iterations. The columns
show the DSC, MSD, and 95%HD from left to right. Prostate, seminal vesicles, lymph
nodes, rectum, and bladder are shown from top to bottom rows, respectively. The red
box is the method from Qiao et al., the blue box is the proposed method, while the
green box is an upper bound of the proposed method using manual daily contours.

In order to enhance the registration robustness, the segmentation of the bladder
was introduced to steer the optimization. Since the registration process is partially
driven by the bladder segmentation, this segmentation should be as accurate and
robust as possible. Hence, we chose a 3D-CNN for bladder segmentation, and obtained
a DSC of 87.9% and a Jaccard index of 80.2%, which is very comparable to the reported
Jaccard index of 81.9% in [74], where the authors developed a CNN network alongside
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Figure 2.9: Boxplot depicting the difference in dosimetric parameters of the manual
delineations, calculated by using either the treatment plan based on the automated
delineations or the manual delineations for 99 scans of the HMC dataset.

level-sets to segment the bladder in CT urography. Moreover, our proposed network
outperformed the 2D CNN network developed by Zhou et al. [75], where the authors
reported a DSC of 72%. The high performance of the proposed network may be
attributed to the use of a large receptive field as well as replacing the 2D convolutions
with 3D convolutions, which helps the network to embed depth information.
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Applying contrast clipping to the CT scans before registration was beneficial to the
registration process, since the registration is intensity-based, which is consistent with
the findings in [76]. Inpainting gas pockets in the rectum enhanced the registration
of the rectum as well as the seminal vesicles. The presence of these pockets were
challenging for the registration due to the physical non-correspondence between
the daily and planning CT scans. Although the inpainting results from the GAN-
inpainting network were more realistic than the simple-inpainting procedure, a similar
performance with respect to the registration was obtained. Our explanation for this
finding is that the mutual information similarity metric pays more attention to the
overall intensity distribution and since the results from the simple-inpainting were
blended and smoothed with respect to its neighbours, it produces a similar histogram
distribution to the GAN-inpainting and subsequently gives a similar registration
performance.

The initialization of the registration algorithm on the bony structures is a crucial
step for optimal performance, which is consistent with the reported results in [42].
Moreover, masking out the couch using a torso mask removed its disrupting effect
on the registration. Increasing the number of iterations had a minimal effect on the
registration performance while increasing the registration time. We found that the
effect of adding a third registration step focussing on the rectal area, boosted the
performance regarding the rectum and seminal vesicles while there was no detrimental
effect for the prostate, lymph nodes, and bladder.

In this study, we focused on the generalizability and robustness of the registration
represented by performance on different datasets and the number of failed registrations
according to geometrical and dosimetric criteria. This target is achieved through
several steps. First, inpainting the rectum gas pockets. Second, enhancing the CT
image contrast by contrast clipping. Third, introducing the bladder segmentation with
an optimized weights (α = 0.05 and 0.01) to steer the optimization problem to a
better local minimum while avoiding overfitting to the bladder. Fourth, using a third
stage for registration to focus on the rectum and consequently the seminal vesicles
by using a dilated mask for the rectum. Overall, these steps yielded a more robust
registration and substantially decreased the number of registrations with insufficient
quality, especially for the seminal vesicles, rectum, and bladder. Improving the MSD
for the seminal vesicles, which is an important target volume, resulted in a more
precise targeting with potential benefits in terms of local control (lower probability of
recurrences). Moreover, both the rectum and the bladder improved in terms of MSD
and 95% HD, thereby avoiding treatment-induced complications after the therapy,
so a higher probability of better quality-of-life after treatment. For the bladder, 11
of the 18 registrations with an MSD larger than the top whisker in Fig. 2.8, were
belonging to two patients. For these two patients the 3D-CNN achieved an average
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DSC of 0.65, explaining the suboptimal performance of the proposed method on these
cases. From the CT images no apparent reason for this was found. In terms of the
geometric success rate defined by the number of registrations that achieved an MSD
lower than 2 mm (slice thickness), the system achieved 97%, 93%, and 87% for the
prostate, seminal vesicles, and lymph nodes, respectively. This compares to a success
rate of 95%, 78%, and 86% for Qiao et al., i.e. especially improving the performance
for the seminal vesicles. Moreover, the proposed system showed robustness to the
change in bladder distension between planning and daily CT as shown in Figure 2.7.
The proposed registration method achieved quite similar results on the EMC and HMC
datasets, except for the bladder. We suspect this is partially due to the difference in
bladder segmentation performance of the neural network, which was 82% on the EMC
data and 88% on the HMC data. It could also be related to the affine registration
results for the EMC dataset (Table V) being slightly less than HMC dataset. We visually
checked the affine results and noticed that the field of view for some cases were
cropped or zoomed. The average runtime for the proposed pipeline is 98.3 seconds for
each registration at 100 iterations, comparing to 13.5 seconds reported by Qiao et al.
However, the pipeline could be further optimized and adapted for GPU acceleration.
For validating the clinical acceptance of the proposed algorithm, we considered
V95% ≥ 98%, V107% ≤ 2%, and CSR for dosimetric coverage for 99 registrations. All the
scans meet the V107% ≤ 2% constraint. Fourteen out of the 99 registrations (14.1%) did
not directly meet the V95% ≥ 98% constraint for the prostate. After visual inspection
of these failure cases, we found inconsistencies between the manual delineations for
the planning and daily CT scans for 7 cases. These cases had a V95% of 92.5%±0.1%,
meaning that these cases were still close to be dosimetrically acceptable. The proposed
algorithm improved the contouring quality and robustness especially for the seminal
vesicles, which directly increased the percentage of acceptable scans from 75.5% to
90.9% for this important target organ. These success rates imply that the automatically
generated contours have the potential to be employed for online adaptive IMPT.
Moreover, the typical 7 mm margins [77] may be replaced with smaller daily margins,
which means delivering an effective dose with potentially less adverse effects.

The reported performance of the proposed pipeline could be further improved by
correcting the inconsistency present in the manual contouring. Also, the weighting
parameter α could be selected automatically by introducing it as a trainable parameter.
Moreover, the current 3D-CNN was trained using CT scans without contrast material,
and therefore is unlikely to perform well on scans acquired with contrast. In case the
clinical protocol dictates contrast-enhanced CT acquisitions, the network could be
easily retrained. We may further investigate the effect on segmentation performance of
CT clipping as a preprocessing step for the 3D-CNN for bladder segmentation. We also
consider developing an end-to-end neural network to jointly optimize the registration
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and segmentation tasks to further improve the system robustness and accuracy.

2.5 Conclusion

In this study we proposed a registration pipeline for automatic contour propagation
for online adaptive IMPT of prostate cancer using the open source package elastix
software in combination with deep learning. The proposed pipeline achieved a
geometrical success rate of 97%, 93%, and 87% for the prostate, seminal vesicles, and
lymph nodes, respectively for HMC dataset as well as 67% and 71% for the prostate
and seminal vesicles, respectively for ECM dataset. The HMC automatically propagated
contours meet the dose coverage constraints in 86%, 91%, and 99% of cases for these
targets. A Conservative Success Rate (CSR) of 80% was achieved, meaning that 80%
of the automatically generated treatment plans can be directly used without manual
correction. This re-contouring showed a promise for generating daily treatment plans.
Moreover, it showed a substantial improvement in the system robustness compared
to a previous open source method, which means that more treatment plans can be
directly used without manual correction, which is a crucial factor for enabling online
daily adaptation and thus the use of relatively small treatment margins. Therefore, the
proposed method could facilitate online adaptive proton therapy of prostate cancer.
The authors have no relevant conflicts of interest to disclose.
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3
Patient Specific Automatic Segmentation of

Prostate and Organs-at-Risk for Adaptive

Radiotherapy

This chapter was adapted from:

M Elmahdy, T Ahuja, U van der Heide, and M Staring. Patient Specific Automatic
Segmentation of Prostate and Organs-at-Risk For Adaptive Radiotherapy, Inter-
national Symposium on Biomedical Imaging (ISBI), Pages 577-580, 2020.
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Abstract

Contouring of the target volume and Organs-At-Risk (OARs) is a crucial step in
radiotherapy treatment planning. In an adaptive radiotherapy setting, updated
contours need to be generated based on daily imaging. In this work, we leverage
personalized anatomical knowledge accumulated over the treatment sessions, to
improve the segmentation accuracy of a pre-trained Convolution Neural Network
(CNN), for a specific patient. We investigate a transfer learning approach, fine-
tuning the baseline CNN model to a specific patient, based on imaging acquired
in earlier treatment fractions. The baseline CNN model is trained on a prostate
CT dataset from one hospital of 379 patients. This model is then fine-tuned and
tested on an independent dataset of another hospital of 18 patients, each having 7
to 10 daily CT scans. For the prostate, seminal vesicles, bladder and rectum, the
model fine-tuned on each specific patient achieved a Mean Surface Distance (MSD) of
1.64±0.43 mm, 2.38±2.76 mm, 2.30±0.96 mm, and 1.24±0.89 mm, respectively, which
was significantly better than the baseline model. The proposed personalized model
adaptation is therefore very promising for clinical implementation in the context of
adaptive radiotherapy of prostate cancer.
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3.1 Introduction

Prostate cancer is the second leading cause of cancer death in American men, behind
lung cancer. About 1 man in 41 will die of prostate cancer. The American Cancer
Society’s estimates about 174,650 new cases of prostate cancer and about 31,620
deaths from prostate cancer in the United States for 2019 only [36]. Radiation Therapy
(RT) is one of the treatment options for prostate cancer that uses a highly localized
dose distribution to kill cancer cells. RT dose is usually fragmented over 4 to 8 weeks
resulting in 20 to 40 daily fractions [4]. Since the dose is delivered in several sessions,
variations in the size and shape of the target area and Organs-At-Risk (OARs) is bound
to take place. Often these changes are due to organ deformation such as variations
in the rectum and bladder filling [5]. Continuing RT using the initial planning CT
scan and the corresponding dose distribution despite these changes may lead to under-
dosing of the target area or over-dosing the OARs.

Adaptive radiation therapy aims to adapt the treatment dose distribution to the
daily anatomy, in order to achieve safe dose escalation [78] or smaller margins. This
adaptation can be done by re-imaging, re-contouring, and re-planning at every session.
However, manual re-contouring takes a lot of time and consequently new variations in
the size and the shape of the OARs could be introduced meanwhile. Therefore, there
is a need to re-contour the CT images accurately and in a time-efficient manner, i.e.
(semi-)automatically.

Literature of prostate segmentation can be broadly categorized into two approaches,
non-learning and learning approaches. For non-learning approaches, Qiao et al.
used the open source elastix software to apply deformable image registration and
subsequently propagate the contours from the planning to the daily scans [65]. For
learning-based approaches, Elmahdy et al. proposed a hybrid learning and iterative
approach, where they used a CNN network to segment the bladder and explicitly
feed it to the registration model as prior knowledge on the underlying anatomy [46].
A substantial improvement was observed compared to the results reported in [65].
Recently, deep learning and specifically convolutional neural networks (CNNs) are
being used to automatically segment OARs. Deep learning has the power to extract
information from the data rather than depending on hand-crafted features. Milletari et
al. developed an end-to-end CNN network to segment 3D medical images and reported
a Dice Similarity Coefficient (DSC) of 0.869 ± 0.033 on the PROMISE 2012 challenge
dataset [49] (MR data). Tong et al. proposed the use of a shape representation
model, to learn highly representative shape characteristics of OARs and help the final
segmentation of a Fully Convolution Neural Network (FCNN) [79].

To the best of our knowledge, no deep learning based approach has been used to
adapt a CNN model to a particular patient at a certain time point. In this study, we
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propose to adapt a baseline CNN model as the patient goes through their RT treatment.
Thus, instead of depending on a static deep learning model, we accumulate the
knowledge over successive sessions for the same patient. This accumulated knowledge
is then used to encourage the model into predicting a more personalized segmentation.
Moreover, we study the performance of the fine-tuned network when more and more
imaging becomes available over the course of treatment.

3.2 Materials and methods

3.2.1 Dataset

This study includes two different datasets from two different institutes and scanners,
for patients who underwent intensity-modulated RT for prostate cancer. First, a
dataset from Leiden University Medical Center (LUMC), Netherlands, has a total
of 379 patients with one CT scan each. The scans were acquired using a Toshiba
scanner, having 68 to 240 slices with a voxel size of approximately 1.0 × 1.0 × 3.0 mm.
The second dataset is from Haukeland University Hospital, Norway, and includes 18
patients with 8-11 CT scans each corresponding to multiple fractions. These scans were
acquired using a GE scanner, having 90 to 180 slices with a voxel size of approximately
0.9 × 0.9 × 3.0 mm. The target structures (prostate and seminal vesicles) as well as
OARs (bladder and rectum) were manually delineated by oncologists. For the LUMC
data informed consent was waived by the local Medical Ethical Committee, while for
the Haukeland data informed consent was given by all included patients.

3.2.2 Baseline segmentation CNN model

In this study, for the baseline CNN model we adopted the network introduced in
Elmahdy et al. [46], which has a straightforward architecture, but increased the
number of the output labels from 2 to 5 for multi-organ segmentation. Similar to
the standard U-net, it has an encoder and decoder path with four resolutions. Each
encoder block consists of 3 × 3 × 3 convolutions with a stride of two in each dimension,
followed by a rectified linear unit (ReLu). In the synthesis path, each block of the
decoder consists of 3 × 3 × 3 convolutions with a stride of one in each dimension,
followed by a ReLu and an upsampling of 2 × 2 × 2. For a better localization, high
resolution features from the contracting path are combined with the upsampled output,
using skip connections. This aids to recover fine-grained details that were lost during
the compression phase. The upsampling path is then followed by one Fully Connected
(FC) layer, similar to the original paper, or three FC layers. These models are denoted
by basea and baseb , respectively. A softmax layer finalizes the models.

3.2.3 Patient-specific daily model adaptation

In order to adapt the model to the patient-specific anatomy, we update the model
with the anatomical knowledge from previous treatment sessions for the same patient.
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We thus personalize the pre-trained baseline CNN and utilize the available imaging
of the patient. Since the new data (daily scans) as well as the task (segmentation)
are the same as the base models, we re-use the base model weights as initialization
to the model adaptation, as in a transfer learning approach. The weights in the FC
layers are then fine-tuned using the imaging from previous fractions, while all other
weights remain fixed. For each patient, at the first fraction we fine-tune the base
model based on the planning scan. At subsequent fractions we start with the previous
fine-tuned model and continue fine-tuning based on the scan and segmentation pair
of the previous fraction. Here we consider that the segmentation can be manually
corrected to clinical quality before the start of the current fraction. To be precise,
let M0 be the base model and M j the fine-tuned model at fraction j , Φ the model
adaptation process, (I j ,S j ) the image and segmentation pair at fraction j . Model
adaptation is then performed as follows:

M j =Φ(M j−1; I j−1,S j−1). (3.1)

The segmentation prediction of the current fraction is then given by M j (I j ). The base
models are trained on the LUMC dataset. The networks are adapted to the Haukeland
dataset, which has multiple follow-up scans per patient, mimicking an adaptive RT
scenario.

3.3 Experiments and results

3.3.1 Evaluation measures and implementation

The Dice Similarity Coefficient (DSC), Mean Surface Distance (MSD), and 95%
Hausdorff Distance (HD) are used to evaluate the error between the ground truth
delineations and the segmentations predicted by the models. These are evaluated for
the prostate, seminal vesicles, bladder, and rectum. A Wilcoxon signed rank test at
p = 0.05 is used to assess statistical significance. Evaluation results are shown for the
Haukeland data only, as only this dataset has follow-up scans.

We used the Tensorflow library for the implementation of the 3D CNNs. Out of
the 379 LUMC patients, 70% (259 cases) were used for training the baseline models
and the remaining 30% (111 cases) were used for validation. A total of 1000 patches
of size 128 × 128 × 128 were extracted from each CT volume, sampling the classes
with a uniform distribution to handle class imbalance. All scans were resampled to a
fixed voxel size of 1 × 1 × 2 mm in order to handle variations in voxel size. The Dice
Similarity Coefficient (DSC) is deployed as a cost function and the network was trained
using the state-of-the-art Rectified Adam (RAdam) optimizer introduced in [80], with
a fixed learning rate of 10−4. The network was trained for 1,000,000 iterations with
a batch size of 4 using an NVIDIA Titan Xp GPU with 12 GB of memory. For model
adaptation, a total of 2000 patches were extracted from a single CT volume with the
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Table 3.1: DSC values of the target volumes and OARs.

#Itr Prostate†‡ SV†‡ Rectum†‡ Bladder†‡

µ±σ µ±σ µ±σ µ±σ
basea 0.76±0.06 0.55±0.19 0.79±0.08 0.86±0.14

proposeda 500 0.78±0.06 0.61±0.17 0.79±0.07 0.89±0.09
proposeda 2000 0.80±0.05 0.63±0.17 0.80±0.07 0.90±0.07
proposeda 5000 0.82±0.05 0.65±0.16 0.80±0.07 0.91±0.07

baseb 0.77±0.07 0.46±0.20 0.78±0.08 0.87±0.08
proposedb 500 0.80±0.05 0.50±0.18 0.81±0.06 0.91±0.07
proposedb 2000 0.83±0.04 0.56±0.15 0.83±0.05 0.91±0.06
proposedb 5000 0.83±0.04 0.55±0.17 0.83±0.05 0.91±0.06

Table 3.2: MSD values of the target volumes and OARs.

#Itr Prostate†‡ SV†‡ Rectum†‡ Bladder†‡

µ±σ µ±σ µ±σ µ±σ
basea 2.70±0.88 3.78±4.76 2.77±1.23 2.66±9.46

proposeda 500 2.38±0.64 2.58±2.67 2.76±1.05 1.62±1.28
proposeda 2000 2.03±0.55 2.38±2.76 2.66±1.03 1.48±1.17
proposeda 5000 1.78±0.52 2.41±3.17 2.59±1.00 1.39±1.12

basea 2.29±0.70 5.08±5.33 2.78±1.17 1.83±0.96
proposedb 500 1.95±0.53 5.21±16.71 2.46±1.05 1.40±1.03
proposedb 2000 1.64±0.43 3.18±3.34 2.30±0.96 1.24±0.89
proposedb 5000 1.61±0.41 4.67±16.96 2.30±0.96 1.25±0.91

same patch size, cost function, and learning rate as the base model. For investigating
the effect of the number of adaptation iterations on the network performance, we
varied this parameter between 500, 2000, and 5000 iterations. This adaptation can be
performed offline, and took less than an hour per fraction at 2000 iterations.

3.3.2 Results

Tables 3.1, 3.2 and 3.3 show the quantitative results of all the models, averaged over
all the treatment fractions. Adapted models are denoted by proposeda and proposedb .
Here, † and ‡ represent a statistically significant difference between basea vs proposeda ,
and baseb vs proposedb at 2000 iterations, respectively. In terms of DSC, MSD, and
95% HD, the larger baseb model is slightly better than basea , except for the seminal
vesicles. This pattern is also visible for the proposed models. All proposed models
outperform the baseline models, sometimes by a margin. Furthermore, adapting the
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Table 3.3: 95% HD value of the target volumes and OARs.

#Itr Prostate†‡ SV†‡ Rectum Bladder†‡

µ±σ µ±σ µ±σ µ±σ
basea 9.1±3.7 12.2±10.7 14.4±7.0 8.7±12.9

proposeda 500 7.9±2.8 9.2±8.4 14.7±6.7 7.9±6.7
proposeda 2000 6.4±2.1 8.6±9.0 14.3±6.7 7.2±6.5
proposeda 5000 5.9±2.4 8.8±10.6 14.0±6.6 6.5±6.1

baseb 6.9±1.9 15.5±9.7 13.9±9.5 7.0±4.5
proposedb 500 6.1±1.7 14.6±20.4 13.5±9.1 6.2±5.8
proposedb 2000 5.2±1.4 11.9±9.3 13.5±8.4 5.6±5.3
proposedb 5000 5.2±1.4 13.9±20.9 13.3±8.5 5.7±5.6

Figure 3.1: The effect of model adaptation over sessions in terms of MSD (mm). B is
base model, Si after session i .

network for 5000 iterations seems as good as 2000 iterations as shown in the tables.
Predicting a segmentation took ∼0.6 seconds.

To investigate the relation between the amount of patient-specific data available
for fine-tuning and segmentation performance, we applied the models M j , j ∈ {0,5} on
scan I6 from each patient. Boxplots of the results are shown in Figure 3.1 for the MSD.
Segmentation of most structures tend to improve when more data is available, while
such a trend is not visible for the rectum. Some example segmentation results are
given in Figure 3.2 for the models baseb and proposedb at 2000 iterations.
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Figure 3.2: Three example results for the baseb model (top row) and the proposedb at
2000 itr model (bottom row). The red, yellow, blue and green contours represent the
bladder, prostate, rectum, and seminal vesicles, respectively. The solid line indicates
manual contouring, while the dotted line the automatic prediction.

3.4 Discussion and conclusion

In this study we investigated the hypothesis of personalizing the automatic contouring
by deep learning, of the target organs and OARs for adaptive radiotherapy of prostate
cancer. Unlike traditional CNN networks, the proposed model adaptation strategy
predicts the segmentation of the daily CT based on the accumulated anatomical
knowledge from the previous scans of the same patient. We demonstrate that adapting
the model to a specific patient anatomy boosted the performance of the network.
Furthermore, increasing the network capacity by adding more fully connected layers
was beneficial. Moreover, from Fig. 3.1 we observe that the rectum delineation did not
benefit from fine-tuning, which may be explained by the normal variation in rectum
filling over treatment fractions. Such variations in the rectum and seminal vesicles
could be further investigated in future work by more sophisticated networks and
model generalization methods.

To conclude, we proposed an adaptive training mechanism for personalized
automatic contour segmentation for prostate cancer. This adaptation showed potential
for improving the prediction of the daily anatomy based on personalized imaging
accumulated over factions. Since the segmentation time is less than a second, the
adaptation mechanism is therefore very promising for clinical implementation in the
context of adaptive radiotherapy of prostate cancer.
Acknowledgements. This study was financially supported by Varian Medical Systems
and ZonMw, grant number 104003012. The Haukeland dataset was provided by
oncologist Svein Inge and physicist Liv Bolstad; they are gratefully acknowledged.
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4
Adversarial Optimization for Joint

Registration and Segmentation in Prostate CT

Radiotherapy

This chapter was adapted from:

M Elmahdy, J Wolterink, H Sokooti, I Išgum, and M Staring. Adversarial optimization
for joint registration and segmentation in prostate CT radiotherapy, International
Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI),
Pages 366-374, 2019.
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Abstract

Joint image registration and segmentation has long been an active area of research
in medical imaging. Here, we reformulate this problem in a deep learning setting
using adversarial learning. We consider the case in which fixed and moving images
as well as their segmentations are available for training, while segmentations are not
available during testing; a common scenario in radiotherapy. The proposed framework
consists of a 3D end-to-end generator network that estimates the deformation vector
field (DVF) between fixed and moving images in an unsupervised fashion and applies
this DVF to the moving image and its segmentation. A discriminator network is
trained to evaluate how well the moving image and segmentation align with the
fixed image and segmentation. The proposed network was trained and evaluated on
follow-up prostate CT scans for image-guided radiotherapy, where the planning CT
contours are propagated to the daily CT images using the estimated DVF. A quantitative
comparison with conventional registration using elastix showed that the proposed
method improved performance and substantially reduced computation time, thus
enabling real-time contour propagation necessary for online-adaptive radiotherapy.
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4.1 Introduction

Joint image registration and segmentation (JRS) has long been an active area of
research in medical imaging. Image registration and segmentation are closely related
and complimentary in applications such as contour propagation, disease monitoring,
and data fusion from different modalities. Image registration could be enhanced and
improved using an accurate segmentation, and vice versa registration algorithms could
be used to improve image segmentation.

An important application in which coupling of image registration and segmentation
is crucial, is online adaptive image-guided radiotherapy. In this application, clinically
approved contours are propagated from an initial planning CT scan to daily inter-
fraction CT scans of the same patient. Image registration can be used to correct
for anatomical variations in shape and position of the underlying organs, as well as
to compensate for any misalignment in patient setup. Ideally, contours should be
propagated quickly to allow immediate computation of a new dose distribution.
With these propagated contours, margins can be smaller and treatment-related
complications may be reduced. Thus, it is important that the daily contours are
of high quality, are consistent with the planning contours, and are generated in near
real-time.

In the last decade, researchers have been working on fusing image registration
and segmentation. Lu et al. [81] proposed a Bayesian framework for modelling
segmentation and registration such that these could alternatingly constrain each other.
Yezzi et al. [82] proposed using active contours to register and segment images. Unal
et al. [83], generalizing on [82], proposed to use partial differential equations without
any shape prior. Most of these methods require long computation times and complex
parameter tuning. Recently, the widespread adoption of deep learning techniques
has led to remarkable achievements in the field of medical imaging [53]. Among
these techniques are generative adversarial networks (GANs), which are defined by
joint optimization of a generator and discriminator network [54]. GANs have boosted
the performance of traditional networks for image segmentation [84] as well as
registration [85]. Recently, Mahapatra et al. [86] proposed a GAN for joint registration
and segmentation of 2D chest X-ray images. However, this method requires reference
deformation vector fields (DVFs) for training. In practice, these are often unavailable
and it may be more practical to perform unsupervised registration [87], i.e. training
without reference DVFs.

In this paper, we introduce a fast unsupervised 3D GAN to jointly perform de-
formable image registration and segmentation. A generator network estimates the
DVF between two images, while a discriminator network is trained simultaneously
to evaluate the quality of the registration and the segmentation and propagate the
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feedback to the generator network. We consider the use-case in which fixed and
moving images as well as their segmentations are available for training, which is a
common scenario in radiation therapy. However, no segmentations are required for
DVF estimation during testing. This paper has the following contributions. First, we
propose an end-to-end 3D network architecture, which is trained in an adversarial
manner for joint image registration and segmentation. Second, we propose a strategy
to generate well-aligned pairs to train the discriminator network with. Third, we
leverage PatchGAN as a local quality measure of image alignment. Fourth, the proposed
network is much faster and more accurate than conventional registration methods.
We quantitatively evaluate the proposed method on a prostate CT database, which
shows that the method compares favorably to elastix software [62].

4.2 Methods

Image registration is the transformation of a moving image Im to the coordinate system
of a fixed image I f . In this paper, we assume that all image pairs are affinely registered
beforehand, and we focus on local non-linear deformations. In conventional contour
propagation algorithms, registration and segmentation are disjoint. First, the DVF Φ is
estimated using image registration, and then Φ is used to warp the contours Sm to the
fixed coordinate space. Afterwards, during system evaluation, a similarity measure
such as the Dice similarity coefficient (DSC) can be used to measure the quality of
the propagated contours w.r.t. ground truth contours, but this information is not fed
back to the registration algorithm. We call this an open loop system. In contrast, this
paper proposes an end-to-end closed loop system to improve image registration based
on feedback on the registration as well as the segmentation quality.

4.2.1 Adversarial training

We propose to train a GAN containing two CNNs: a generator network that predicts
the DVF Φ given I f and Im , and a discriminator network that assesses the alignment
of I f (x) and Im(Φ(x)) as well as the overlap between S f (x) and Sm(Φ(x)). Hence, we
assume that S f and Sm are both available, but during training only. The GAN is trained
using a Wasserstein objective [88], which has empirically been shown to improve
training stability and convergence compared to the GAN objective in [54]. Equations
(4.1) and (4.2) list the generator loss LG AN

G and the discriminator loss LG AN
D of WGAN:

LG AN
G = E

[
D(I f (x), Im(Φ(x)),Sm(Φ(x)))

]
, (4.1)

LG AN
D = E

[
D(I f (x), Im(Φ(x)),Sm(Φ(x)))

]− [
D(I f ,Θ(I f ),S f )

]
, (4.2)

where G and D denote the generator and discriminator networks with trainable
parameters and Φ is the DVF provided by G. In a GAN, the discriminator is trained to
distinguish between real and fake samples. In this case, fake samples are the triple
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(I f , Im(Φ),Sm(Φ)), while real samples should be well-aligned images. As we perform
unsupervised registration, and assume no knowledge about the ideal alignment of two
images, we synthesize such image based on the fixed image and its segmentation alone:
(I f ,Θ(I f ),S f ). Hence, Θ in Equation (4.2) is a random combination of disturbance
functions, as follows. First, to mimic imaging noise, Gaussian noise and Gaussian
smoothing are added with zero mean and a standard deviation of 0.04. Second, to
mimic contrast variations, we apply gamma correction with a random gamma factor
in the range [−0.4,0.4]. Third, we mimic interpolation errors by applying a random
deformation of less than 0.5 mm and resample the images using that deformation
using linear interpolation.

In addition to these image-based quality measures, we include the segmentation of
the deformed moving image as input to the discriminator in order to enforce DVFs
that are consistent with the moving segmentation. We test two designs. The first
design concatenates the segmentation as a third input channel in the discriminator,
next to the fixed and moving image channels. The second design multiplies the fixed
and moving image channel with the corresponding segmentation, so that the network
learns to focus on the target structures and organs-at-risk instead of on the bowels
and other less relevant soft tissue. These designs are named JRS-GANa and JRS-GANb ,
respectively.

We found that training the network using WGAN loss only, resulted in slow
convergence and suboptimal registrations. Thus, a similarity loss Lsi m , based on
image similarity and segmentation overlap, was added to the generator:

Lsi m = (1−DSC(Sm(Φ(x)),S f (x)))+ (1−NCC(Im(Φ(x)), I f (x))), (4.3)

where DSC is the Dice similarity coefficient and NCC is normalized cross-correlation.
Adding the DSC to Lsi m ensures that the registration improves the segmentation
and vice versa. Furthermore, to ensure smooth and continuous DVFs, the bending
energy penalty of the DVF, Lsmooth , was added as a regularization term to the overall
generator loss, which was defined as:

LG = Lsi m +λ1Lsmooth +λ2LG AN
G , (4.4)

where λ1 and λ2 are weights for the DVF smoothness and the generator loss.
During training of the network, for every iteration of the generator we used 100

iterations of the discriminator, for the first 25 iterations. After that we used the
ratio 1:5. In each iteration, weights of the discriminator were clipped to the range
[−0.01,0.01] [88].

4.2.2 Network architectures

Generator Network To estimate the parametric mapping function Φ between the fixed
and moving images we use a 3D network similar to the U-net [89]. Figure 4.1 shows
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Figure 4.1: The proposed generator (top) and discriminator (bottom) networks, where
k, s, and p represent the kernel size, stride size, and padding option, respectively. The
numbers above the different layers represent the feature maps.

the network design in more detail. The input to the network is the concatenation of
I f and Im . The network encodes the image pairs through a set of 3×3×3 convolution
layers followed by LeakyReLU and batch normalization layers. Strided convolutions
are used in the contractive path and upsampling layers are used in the expanding path.
The output size of the network is smaller than the input size in order to consider a
larger field of view. A resampling network adopted from NiftyNet [90] is used to warp
the images using the estimated DVF during training time so that the network can be
trained end-to-end.

Discriminator Network The discriminator is responsible for assessing whether the
image pairs are well-aligned or not, as well as assessing whether the segmentations
overlap. Figure 4.1 shows the network design, which is similar to the contracting
path of the generator. The discriminator network was trained using PatchGAN [91].
Hence, instead of representing the quality of the whole patch with a single number,
the network could quantify the sub-patch quality locally.

4.3 Experiments and results

4.3.1 Dataset, evaluation criteria and implementation details

This study includes eighteen patients who underwent intensity-modulated radiation
therapy for prostate cancer in 2007 at Haukeland university hospital [67]. Each patient
had a planning CT as well as 7 to 10 inter-fraction repeat CT scans. The prostate,
lymph nodes, seminal vesicles, as well as the rectum and bladder were annotated.
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Table 4.1: MSD (mm) values for different experiments, where † and ‡ represent a
significant difference compared to elastix-MI and Reg-CNN, respectively.

Prostate Seminal vesicles Lymph nodes Rectum Bladder
Evaluation µ±σ µ±σ µ±σ µ±σ µ±σ
elastix-NCC 1.81±0.7 2.80±1.6 1.19±0.4 3.79±1.2 5.31±2.6
elastix-MI 1.73±0.7 2.70±1.6 1.18±0.4 3.68±1.2 5.26±2.6
Reg-CNN 1.44±0.5† 2.09±1.7† 1.22±0.3 2.59±1.3† 4.18±2.6†

JRS-CNN 1.18±0.4†‡ 1.91±1.6†‡ 1.02±0.3†‡ 2.32±1.3†‡ 2.37±2.0†‡

Reg-GAN 1.40±0.5† 2.14±1.7† 1.06±0.3†‡ 2.72±1.3† 4.31±2.8†

JRS-GANa 1.13±0.4†‡ 1.81±1.6†‡ 1.00±0.3†‡ 2.21±1.3†‡ 2.29±2.0†‡

JRS-GANb 1.17±0.4†‡ 1.90±1.5†‡ 1.01±0.3†‡ 2.34±1.3†‡ 2.41±2.1†‡

Each scan has 90 to 180 slices with a slice thickness of around 2 to 3 mm. All the slices
were of size 512 × 512 with an in-plane resolution of around 0.9 mm. All the volumes
were affinely registered using elastix. The volumes were resampled to isotropic
voxel size of 1×1×1 mm. All volumes intensities were scaled to [-1, 1]. We split the
dataset into 111 image pairs (from 12 patients) for training and validation and 50
image pairs (6 patients) for testing.

The quality of registration is quantified geometrically in 3D by comparing the
manual delineations of the daily CT with the automatically propagated contours.
We use the mean surface distance (MSD), and the 95% Hausdorff distance (HD). A
Wilcoxon signed rank test at p = 0.05 is used to compare results.

The networks were implemented using TensorFlow (version 1.13) [73] with the
RMSProp optimizer using a learning rate of 10−5. The networks were trained and
tested on an NVIDIA Tesla V100 GPU with 16 GB of memory. From each image
pair, 1000 patches of size 96×96×96 voxels were sampled within the torso mask. To
improve stability, the network was trained to warp the fixed patch to the moving patch
and vice versa at the same training iteration. The magnitude of the three loss terms in
Equation (4.3) was scaled by setting λ1 = 1 and λ2 = 0.01.

4.3.2 Experiments and results

Tables 4.1 and 4.2 provide quantitative results comparing the following methods.
First, we include conventional iterative methods using elastix software [62] with
NCC (elastix-NCC) and MI (elastix-MI) similarity measures, using the settings
from [42]. Second, we evaluate two unsupervised deep learning-based methods
without adversarial feedback: One uses the generator trained with the NCC loss
(Reg-CNN), similar to [87]; the other uses the generator with both the NCC and DSC
loss (JRS-CNN). Third, we evaluate several versions of our GAN-based approach. To
study the effect of adversarial training without added segmentations, we perform
an experiment named Reg-GAN. Finally, we evaluate the proposed JRS-GANa and
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Table 4.2: %95HD (mm) values for different experiments, where † and ‡ represent a
significant difference compared to elastix-MI and Reg-CNN, respectively.

Prostate Seminal vesicles Lymph nodes Rectum Bladder
Evaluation µ±σ µ±σ µ±σ µ±σ µ±σ
elastix-NCC 4.2±1.8 6.1±3.3 2.8±1.0‡ 11.0±5.2 15.4±8.4‡

elastix-MI 4.0±1.7 6.0±3.7 2.8±1.0‡ 10.9±5.2 15.3±8.3‡

Reg-CNN 5.3±2.5 6.2±3.5 4.4±1.4 11.0±6.5 16.6±9.3
JRS-CNN 3.6±1.5†‡ 5.4±3.4†‡ 3.1±0.9‡ 10.3±6.7†‡ 11.6±10.5†‡

Reg-GAN 4.3±2.1‡ 6.0±3.6 3.4±1.0‡ 11.1±6.4 16.2±9.6‡
JRS-GANa 3.4±1.4†‡ 5.3±3.3†‡ 3.1±0.9‡ 10.0±6.7†‡ 11.0±10.3†‡

JRS-GANb 3.5±1.4†‡ 5.6±3.7‡ 3.0±1.0‡ 10.5±6.8†‡ 11.4±10.6†‡
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Figure 4.2: Boxplots for the evaluated methods in terms of MSD (mm).

JRS-GANb methods.

The MSD values in Table 2.5 show that for all organs, the GAN-based methods
significantly improved over elastix. This is further shown in Figure 4.2. The
results indicate a significant improvement when performing joint registration and
segmentation instead of disjoint registration. Furthermore, the boxplot indicates that
performance for JRS-GANa and JRS-GANb was very similar. Similarly, the 95% HD
values in Table 2.6 show improvements in contour accuracy when the GAN-based
method is used. Especially the organs-at-risk showed large improvements. The
standard deviations of the Jacobian determinant of the estimated DVFs were 0.08±0.01

and 0.17±0.04 for elastix-MI and JRS-GANa , respectively. The average runtime for
the proposed pipeline is 0.6 seconds on the GPU for a volume of size 2563 voxels,
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Figure 4.3: An example result for three of the methods. Top row shows the fixed
image with propagated contours (solid line is manual; dotted is automatic result).
The red, yellow, cyan, violet, and green contours represent the bladder, lymph nodes,
prostate, rectum, and seminal vesicles, respectively. Bottom row shows heatmaps of
absolute difference images between fixed and deformed moving image.

while the average runtime of elastix at 100 iterations is 13 seconds per volume on
an Intel Xeon E51620 CPU using 4 cores. Figure 4.3 illustrates the segmentation and
registration for an example case.

4.4 Discussion and conclusion

In this study, we investigated the performance of an end-to-end joint registration and
segmentation network for adaptive image-guided radiotherapy. Unlike conventional
registration methods, our network encodes and learns the most relevant features for
joint image registration and segmentation, and exploits the combined knowledge on
unseen images without segmentations.

We demonstrate that including the segmentation during training boosts the system’s
performance by a margin. Furthermore, adversarial feedback had a small benefit on
performance, when comparing Reg-CNN with Reg-GAN. Results indicate a noticeable
benefit of including segmentation masks as input to the discriminator during training.
How exactly segmentation masks were embedded during training was less relevant,
with only small differences observed for the seminal vesicles. This could be due to
the small size and irregular nature of the seminal vesicles. A key advantage of the
proposed deep learning-based contour propagation method is its runtime on new and
unseen data, i.e. 0.6 s.

This work has shown that adversarial feedback can help improve registration, i.e.
that a discriminator can learn a measure of image alignment. This is a promising
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aspect that could be further explored in future work. This will include improved GAN
objectives, such as the use of gradient penalty regularization.

To conclude, we have proposed a 3D adversarial network for joint image registra-
tion and segmentation with a focus on prostate CT radiotherapy. The proposed method
demonstrated the effectiveness of training the registration and segmentation jointly.
Moreover, it showed a substantial reduction in the computation time making it a strong
candidate for online adaptive image-guided radiotherapy of prostate cancer. Since the
proposed method did not only improve accuracy for the target areas, but substantially
so for the organs-at-risk, this may aid reducing treatment-induced complications.
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5
Joint Registration and Segmentation via

Multi-Task Learning for Adaptive

Radiotherapy of Prostate Cancer

This chapter was adapted from:

M Elmahdy, L Beljaards, S Yousefi, H Sokooti, F Verbeek, U van der Heide, and
M Staring. Joint Registration and Segmentation via Multi-Task Learning for
Adaptive Radiotherapy of Prostate Cancer, IEEE Access, 2021.
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Abstract

Medical image registration and segmentation are two of the most frequent tasks in
medical image analysis. As these tasks are complementary and correlated, it would be
beneficial to apply them simultaneously in a joint manner. In this paper, we formulate
registration and segmentation as a joint problem via a Multi-Task Learning (MTL)
setting, allowing these tasks to leverage their strengths and mitigate their weaknesses
through the sharing of beneficial information. We propose to merge these tasks not
only on the loss level, but on the architectural level as well. We studied this approach in
the context of adaptive image-guided radiotherapy for prostate cancer, where planning
and follow-up CT images as well as their corresponding contours are available for
training. At testing time the contours of the follow-up scans are not available, which is
a common scenario in adaptive radiotherapy. The study involves two datasets from
different manufacturers and institutes. The first dataset was divided into training
(12 patients) and validation (6 patients), and was used to optimize and validate the
methodology, while the second dataset (14 patients) was used as an independent
test set. We carried out an extensive quantitative comparison between the quality of
the automatically generated contours from different network architectures as well
as loss weighting methods. Moreover, we evaluated the quality of the generated
deformation vector field (DVF). We show that MTL algorithms outperform their Single-
Task Learning (STL) counterparts and achieve better generalization on the independent
test set. The best algorithm achieved a mean surface distance of 1.06±0.3 mm, 1.27±0.4

mm, 0.91±0.4 mm, and 1.76±0.8 mm on the validation set for the prostate, seminal
vesicles, bladder, and rectum, respectively. The high accuracy of the proposed method
combined with the fast inference speed, makes it a promising method for automatic re-
contouring of follow-up scans for adaptive radiotherapy, potentially reducing treatment
related complications and therefore improving patients quality-of-life after treatment.
The source code is available at https://github.com/moelmahdy/JRS-MTL.

https://github.com/moelmahdy/JRS-MTL
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5.1 Introduction

Medical image analysis aims to extract clinically useful information that aids the
diagnosis, prognosis, monitoring and treatment of diseases [92, 93]. Two of the most
common tasks in such analyses are image registration and segmentation [94]. Image
segmentation aims to identify and cluster objects that prevail similar characteristics
into distinctive labels, where these labels can be used for diagnosis or treatment
planning. Image registration is the task of finding the geometrical correspondence
between images that were acquired at different time steps or from different imaging
modalities. These two tasks are complementary, as for example image atlases warped
by image registration algorithms are often used for image segmentation [21, 22],
while image contours can be used to guide the image registration method in addition
to the intensity images [23, 17, 24]. Contours are also used for evaluating the quality
of the registration [25, 26]. However, each of these tasks has its own strengths and
weaknesses. For instance, image segmentation algorithms can directly delineate images
based on texture and surrounding anatomy, and may therefore be robust to large
organ deformations. However it sometimes has difficulties with low contrast areas and
irregularly shaped organs. On the other hand, image registration algorithms have the
ability to encode prior knowledge of the patient’s anatomy and therefore may perform
better on low quality images. However, such methods sometimes have difficulty with
large deformations. Therefore, coupling of image registration and segmentation tasks
and modeling them in a single network could leverage their strengths and mitigate
their weaknesses through the sharing of beneficial information.

Adaptive image-guided radiotherapy is an exemplar application where the coupling
of image registration and segmentation is vital. In radiotherapy, treatment radiation
dose is delivered over a course of multiple inter-fraction sessions. In an adaptive
setting, re-imaging of the daily anatomy and automatic re-contouring is crucial to
compensate for patient misalignment, to compensate for anatomical variations in
organ shape and position, and an enabler for the reduction of treatment margins or
robustness settings [95, 96]. These have an important influence on the accuracy of
the dose delivery, and improve the treatment quality, potentially reducing treatment
related side-effects and increasing quality-of-life after treatment [97]. Automatic
contouring can be done by direct segmentation of the daily scan, or by registration
of the annotated planning scan with the daily scan followed by contour propagation.
Image registration has the advantage of leveraging prior knowledge from the initial
planning CT scan and the corresponding clinical-quality delineations, which may
especially be helpful for challenging organs. On the other hand, image segmentation
methods may better delineate organs that vary substantially in shape and volume
between treatment fractions, which is often the case for the rectum and the bladder.
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In this study, we propose to fuse these tasks at the network architecture level as well
as via the loss function. Our key contributions in this paper are as follows:

1. We formulate image registration and segmentation as a multi-task learning
problem, which we explore in the context of adaptive image-guided radiotherapy.

2. We explore different joint network architectures as well as loss weighting
methods for merging these tasks.

3. We adopt the cross-stitch network architecture for segmentation and registration
tasks and explore how these cross-stitch units facilitate information flow between
these tasks.

4. Furthermore, we compare MTL algorithms against single-task networks. We
demonstrate that MTL algorithms outperform STL networks for both segmenta-
tion and registration tasks. To the best of our knowledge this is the first study to
investigate various MTL algorithms on an architectural level as well as on a loss
weighing level for joint registration and segmentation tasks.

5. We thoroughly investigate the internals of the STL and MTL networks and
pinpoint the best strategy to merge this information to maximize the information
flow between the two tasks.

Initial results of this work were presented in [98], focusing on the cross-stitch unit
in a proposed joint architecture. In the current paper we extend this study to the archi-
tectural fusion of these tasks as well as different loss weighting mechanisms. Moreover,
an extensive analysis of the different methodologies was performed, detailing the
effect of architectural choices, information flow between the two tasks, etc.

The remainder of this paper is organized as follows: Section 5.2 introduces single-
task networks, multi-task networks, and loss weighting approaches. In Section 5.3 we
introduce the datasets and details about the implementation as well as the experiments.
In Sections 5.5 and 5.6, we discuss our results, provide future research directions, and
present our conclusions.

5.1.1 Related work

In the last decade, researchers have been exploring the idea of fusing image seg-
mentation and registration. Lu et al. [99] and Pohl et al. [100] proposed modeling
these tasks using a Bayesian framework such that these tasks would constrain each
other. Yezzi [101] proposed to fuse these tasks using active contours, while Unal et
al. [102] proposed to generalize the previous approach by using partial differential
equations without shape priors. Mahapatra et al. [24] proposed a Joint Registration
and Segmentation (JRS) framework for cardiac perfusion images, where the temporal
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intensity images are decomposed into sparse and low rank components corresponding
to the intensity change from the contrast agent and the motion, respectively. They
proposed to use the sparse component for segmentation and the low rank component
for registration. However, most of the aforementioned methods require complex
parameter tuning and yield long computation times.

Recently, deep learning-based networks have shown unprecedented success in
many fields especially in the medical image analysis domain [20, 103, 104, 105,
106, 13], where deep learning models perform on par with medical experts or even
surpassing them in some tasks [107, 108, 109, 110]. Several deep learning-based
approaches have been proposed for joint registration and segmentation. The joining
mechanisms in the literature can be classified in two categories, namely joining via the
loss function and via the architecture as well as the loss function. Selected exemplar
methods of the first approach are Hue et al. [111], who proposed to join segmentation
and registration via a multi-resolution Dice loss function. Elmahdy et al. [23] proposed
a framework that is a hybrid between learning and iterative approaches, where a
CNN network segments the bladder and feeds it to an iterative-based registration
algorithm. The authors integrated domain-specific knowledge such as air pocket
inpainting as well as contrast clipping, moreover they added an extra registration
step in order to focus on the seminal vesicles and rectum. Elmahdy et al. [17] and
Mahapatra et al. [112] proposed a GAN-based (Generative Adversarial Network)
approach, where a generative network predicts the correspondence between a pair
of images and a discriminator network for giving feedback on the quality of the
deformed contours. Exemplar methods of the second category are Xu et al. [113], who
presented a framework that simultaneously trains a registration and a segmentation
network. The authors proposed to jointly learn these tasks during training, however
the networks can be used independently during test time. This enables prediction
of only the registration output, when the labels are not available during test time.
Estienne et al. [114] proposed to merge affine and deformable registration as well as
segmentation in a 3D end-to-end CNN network. Recently Liu et al. [115] proposed an
end-to-end framework called JSSR that registers and segments multi-modal images.
This framework is composed of three networks: a generator network, that synthesizes
the moving image to match the modality of the fixed image, a registration network
that registers the synthesized image to the fixed image, and finally a segmentation
network that segments the fixed, moving, and synthesized images.

All the previous methods explored the idea of joining segmentation and registration,
where to the best of our knowledge none have explored how these tasks are best
connected and how to optimize the information flow between them on both the loss
and architectural levels.
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Figure 5.1: The proposed network architectures introduced in the paper. (a) is the base
STL network architecture for either segmentation or registration, but also represents
the dense parameter sharing MTL network architecture; (b) is the architecture with a
shared encoder, while (c) is the Cross-stitch network architecture. Details about the
number of feature maps are presented in Section 5.3.2.

5.2 Methods

5.2.1 Base network architecture

The base architecture for the networks in this paper is a 3D CNN network inspired by
the U-Net and BIRNet architectures [116, 117]. Figure 5.1a shows the architecture of
the base network. The network encodes the input through 3×3×3 convolution layers
with no padding. LeakyReLU [118] and batch normalization [119] are applied after
each convolutional layer. We used strided convolutions in the down-sampling path
and trilinear upsampling layers in the upsampling path. Through the upsampling path,
the number of feature maps increases while the size of the feature maps decreases,
and vice versa for the down-sampling path. The network has three output resolutions
and is deeply supervised at each resolution. Each resolution is preceded by a 1×1×1

fully convolution layer (Fconv) so that at coarse resolution, the network can focus on
large organs as well as large deformations, while vice versa at fine resolution. In order
to extract the groundtruth for different resolutions, we perform cropping of different
sizes as well as strided sampling so that for every input patch of size n3, the sizes of
the coarse, mid, and fine resolution are ( n

4 −7)3, ( n
2 −18)3, and (n −40)3, respectively.
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5.2.2 Single task learning

Single-task networks are designed to solve one task and therefore require a large
amount of labeled training samples, which are scarce in the medical domain since it
takes time and trained medical personnel to contour these images. The segmentation
and registration networks have the same architecture as the base network depicted in
Figure 5.1a, but differ in the input and output layers. Here, single-task networks are
considered baseline networks for comparing with the performance of the proposed
multi-task networks.

5.2.2.1 Segmentation network

The input to the segmentation network is the daily CT scan, referred to as the fixed
image I f , where the network predicts the corresponding segmentation Spred

f . Spred
f

represents the probability maps for the background, target organs, and organs-at-risk.
The network was trained using the Dice Similarity Coefficient (DSC) loss, which
quantifies the overlap between the network prediction Spred

f and the groundtruth S f

as follows:

LDSC = 1− 1

K

K∑
k=1

2∗∑
x Spred

k (x) ·Sk (x)∑
x Spred

k (x)+∑
x Sk (x)

, (5.1)

where K is the number of structures to be segmented, x is the voxel coordinate, Sk is
the ground truth segmentation, and Spred

k the predicted probabilities. The network has
779,436 trainable parameters.

5.2.2.2 Registration network

The input to the registration network is the concatenation of the planning scan,
referred to as the moving image Imand the daily scan I f . The network predicts
the geometrical correspondence between the input images. This correspondence is
represented by the displacement vector field (DVF), referred to as φpred. This DVF is
then used to warp Im . In an ideal scenario, the warped moving image I warped

m would be
identical to I f . The network is trained using Normalized Cross Correlation (NCC) in
order to quantify the dissimilarity between I warped

m and I f . Since the images are from
a single imaging modality (CT) with a similar intensity distribution, NCC is an obvious
choice abundantly used in the registration literature. Moreover, the implementation is
straightforward and efficient when using plain convolution operations. NCC is defined
by the following equation:

LNCC = 1−
∑

x [(I f (x)−I f )·(I warped
m (x)−I warped

m )]
σI f

σ
I

warped
m

, (5.2)

where x is the voxel coordinate, and σI f and σ
I warped

m
are the standard deviation of the

fixed and warped images, respectively. In order to encourage the network to predict a
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smooth DVF, a bending energy penalty term is added for regularization:

LBE = 1

N

∑
x
‖H(φpr ed (x))‖2

2, (5.3)

where H is the Hessian matrix. Now the total registration loss becomes:

LRegistration =LNCC +w ·LBE, (5.4)

where w is the bending energy weight. For more details on the selection of w , see
Section 5.4.1. The network has 779,733 trainable parameters.

5.2.3 Multi task learning

In Multi-Task Learning (MTL), related tasks regularize each other by introducing an
inductive bias, thus making the model agnostic to overfitting compared to its STL
counterparts [120]. MTL can also be considered as an implicit data augmentation
strategy, since it effectively increases the training sample size while encouraging the
model to ignore data-dependent noise. Because different tasks have different noise
patterns, modeling these tasks simultaneously enables the model to generalize well
[121]. Moreover, in MTL models, some features can be more easily learned by one
task than another, thus encouraging information cross-talk between tasks [122].

Also, in real-world scenarios, physicians usually incorporate knowledge from
different imaging modalities or previous tasks in order to come up with a diagnosis or
better understanding of the underlying problem. This illustrates that the knowledge
embedded in one task can be leveraged by other tasks and hence it is beneficial to
jointly learn related tasks.

Choosing the architecture of an MTL network is based on the following two factors
[123]: what to share and how to share. What to share defines the form in which
knowledge is shared between tasks. This knowledge sharing can be done through
hand-crafted features, input images, and model parameters. How to share determines
the optimal manner in which this knowledge is shared. In this paper, we focus on
parameter-based sharing.

In the following sections, we investigate different MTL network architectures in
order to best understand how segmentation and registration tasks share information
on the architectural level. The investigated networks predict two sets of contours, one
set resulting from the segmentation task and one from the registration task. In this
paper, we select the best set of contours as the final output, based on the validation
results. More sophisticated strategies are discussed in Section 5.5.

5.2.3.1 Joint registration and segmentation via the registration network

The network in this method, dubbed JRS-reg, has the same architecture as the STL
registration network from Section 5.2.2.2, except that this network is optimized using
a joint loss as presented in Eq. 5.6.
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5.2.3.2 Dense parameter sharing

In this architecture both segmentation and registration tasks are modeled using a
single network, where both tasks share all parameters except for the task-specific
parameters in the output layer, see Figure 5.1a. The network architecture is the same
as the base network (see Section 5.2.1) except for the input and output layers. This
dense sharing eliminates overfitting issues since it enforces the parameters to model all
the tasks at once, however it does not guarantee the best representation for individual
tasks [123]. The input to the network is the concatenation of Im , I f , and Sm . The
network predicts the φpred between input images as well as Spred

f . The network has
781,164 trainable parameters.

5.2.3.3 Encoder parameter sharing

Since the input to the segmentation and registration tasks are both CT scans, this
means they both encode similar features in the down-sampling path of the network.
Therefore in this network both tasks share the encoding path and then splits into two
upsampling task specific decoder paths. We call this network the Shared Encoder
Double Decoder (SEDD) network. Figure 5.1b shows the architecture of the network.
The input to the network is the concatenation of Im , I f , and Sm . The network predicts
φpred between the input images from the registration path while predicting Spred

f from
the segmentation path. The network has 722,936 trainable parameters.

5.2.3.4 Cross-stitch network

A flexible approach to share parameters is via a Cross-Stitch (CS) network [124]. In
contrast to the heuristic approach of manually choosing which layers are shared and
which are task-specific, the CS network introduces a learning-based unit to determine
the amount of feature sharing between tasks. The CS units learn to linearly combine
feature maps from the two networks, one for segmentation and one for registration,
as shown in Figure 5.1c. The unit itself is defined as:[

X̄ `,k
S

X̄ `,k
R

]
=

[
α`,k

SS α`,k
SR

α`,k
RS α`,k

RR

][
X `,k

S

X `,k
R

]
, (5.5)

where X `,k
S and X `,k

R represent the feature maps k at layer l for the segmentation and
registration networks, respectively. α`,k

SS , α`,k
SR , α`,k

RS , and α`,k
RR represent the learnable

parameters of the CS unit. X̄ `,k
S and X̄ `,k

R are the output feature maps for the
segmentation and registration networks, respectively. The advantage of CS units
is that the network can dynamically learn to share the feature maps in case this is
beneficial in terms of the final loss value. In case there is no benefit, an identity
matrix can be learned, so that the feature maps become task-specific. This allows the
network to learn a smooth sharing between the tasks at a negligible increase in the
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number of parameters. As suggested by the original paper, we placed the CS units
after the downsampling and upsampling layers resulting in a total of 4 CS units. The
CS network has 779,000 trainable parameters.

5.2.4 Loss weighting

The loss function for the MTL networks is defined by:

L = w0 ·LNCC +w1 ·LDSC−R +w2 ·LDSC−S +w3 ·LBE, (5.6)

where wi are the loss weights. They are chosen based on the relative contribution of
their corresponding tasks, so that different tasks would learn at the same pace. These
weights can be chosen manually based on empirical knowledge, or automatically. A
simple choice would be to weigh the losses equally with a fixed weight of 1. Following
are some exemplar algorithms for choosing the loss weights automatically. Chen et al.
proposed GradNorm [125] to weigh different tasks by dynamic tuning of the gradient
magnitudes of the tasks. This tuning is achieved by dynamically changing the learning
rate for each task so that all tasks would be learning at the same speed. The drawback
of this approach is that it requires access to the internal gradients of the shared layers
which could be cumbersome. Moreover, one needs to choose which shared layer to
back propagate to in case of multiple shared layers. Kendall et al. [126] proposed to
weigh each task by considering the homoscedastic uncertainty of that task, so that
tasks with high output variance will be weighted less than tasks with low variance.
This approach only adds few trainable parameters, namely equal to the number of
loss functions. Inspired by GradNorm, Liu et al. proposed Dynamic Weight Averaging
(DWA) [127], where each task is weighted over time by considering the rate of change
of the relative loss weights. Contrary to GradNorm, DWA only requires the numerical
values of the loss functions rather than their derivatives. In this paper, we compared
equal weights versus homoscedastic uncertainty and DWA. For all the experiments,
we set the weight of the bending energy to a fixed value of 0.5 (for more details see
Section 5.4.1) instead of a trainable one. This is to prevent the network to set it too
low in order to improve the DSC of the deformed contours on the account of the
smoothness of the predicted DVF.

5.2.4.1 Homoscedastic uncertainty

Homoscedastic uncertainty was proposed as a loss weighting method by Kendall et al.
[126]. This is a task-dependant uncertainty which is not dependant on the input data
but rather varies between tasks. The authors derived their finding by maximizing the
Gaussian likelihood while considering the observational noise scalar σ that represents
the homoscedastic uncertainty term related to each task. The following equation
describes the weight loss using homoscedastic uncertainty, where σ is a trainable
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parameter:

Lhomoscedastic =
T∑

i=1

1

σ2
i

Li + log σi , (5.7)

where T is the number of tasks. The higher the uncertainty of task i , the lower the
contribution of its associated loss Li to the overall loss. The log term can be viewed as
a regularization term, so that the network would not learn a trivial solution by setting
the uncertainty of all tasks to extreme values.

5.2.4.2 Dynamic weight averaging

Dynamic Weight Averaging (DWA) was proposed by Liu et al. [127]. Similar to
GradNorm [125], DWA weights the losses via the rate of change of the loss of each
task over the training iterations t . In contrast to GradNorm, DWA does not require
access to the internal gradients of the network, but only requires the numerical loss
values. According to DWA, the weight w of the loss L associated with the task k is
defined as:

wk (t ) = K exp(rk (t −1)/tmp)∑
i exp(ri (t −1)/tmp)

, rk (t −1) = Lk (t −1)

Lk (t −2)
, (5.8)

where rk is the relative loss ratio and tmp is the temperature that controls the
smoothness of the the task weighting. Here, we set tmp = 1 as suggested by the
original paper. For the initial two iterations, rk (t ) is set to 1.

5.3 Datasets, implementation, and evaluation

5.3.1 Datasets

This study involves two datasets from two different institutes and scanners for patients
who underwent intensity-modulated radiotherapy for prostate cancer. The first dataset
is from Haukeland Medical Center (HMC), Norway. The dataset has 18 patients
with 8-11 daily CT scans, each corresponding to a treatment fraction. These scans
were acquired using a GE scanner and have 90 to 180 slices with a voxel size of
approximately 0.9 × 0.9 × 2.0 mm. The second dataset is from Erasmus Medical
Center (EMC), The Netherlands. This dataset consists of 14 patients with 3 daily CT
scans each. The scans were acquired using a Siemens scanner, and have 91 to 218
slices with a voxel size of approximately 0.9 × 0.9 × 1.5 mm. The target structures
(prostate and seminal vesicles) as well as organs-at-risk (bladder and rectum) were
manually delineated by radiation oncologists. All datasets were resampled to an
isotropic voxel size of 1 × 1 × 1 mm. All scans and corresponding contours were
affinely registered beforehand using elastix [128], so that corresponding anatomical
structures would fit in the network’s field of view. The scan intensities were clipped to
[-1000, 1000] .
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5.3.2 Implementation and training details

All experiments were developed using Tensorflow (version 1.14) [129]. The convo-
lutional layers were initialized with a random normal distribution (µ= 0.0, σ= 0.02).
All parameters of the Cross-stitch units were initialized using a truncated normal
distribution (µ= 0.5, σ= 0.25) in order to encourage the network to share information
at the beginning of the training. In order to ensure fairness regarding the number of
parameters in all the networks, the number of filters for the Cross-stitch network were
set to [16, 32, 64, 32, 16], while for the other networks the numbers were scaled byp

2 resulting in [23, 45, 91, 45, 23] filtermaps. This results in approximately 7.8×105

trainable parameters for each network. The networks were trained using the RAdam
optimizer [130] with a fixed learning rate of 10−4. Patches were sampled equally
from the target organs, organs-at-risk and torso. All networks were trained for 200K
iterations using an initial batch size of 2. The batch size is then doubled by switching
the fixed and moving patches so that the network would warp the fixed patch to the
moving patch and vice versa at the same training iteration.

The networks were trained and optimized on the HMC dataset, while the EMC
dataset was used as an independent test set. Training was performed on a subset of
111 image pairs from 12 patients, while validation and optimization was carried out
on the remaining 50 image pairs from 6 patients.

From each image, 1,000 patches of size 96 × 96 × 96 voxels were sampled. The
size of the patch was chosen so that it would fit in the GPU memory, while still
producing a patch size of 173 at the lowest resolution, which is a reasonable size
to encode the deformation from the surrounding region. Losses from the deeply
supervised resolutions were weighted equally, 1

3 each. Training was performed
on a cluster equipped with NVIDIA RTX6000, Tesla V100, and GTX1080 Ti GPUs
with 24, 16 and 11 GB of memory, respectively. The source code is available at
https://github.com/moelmahdy/JRS-MTL.

5.3.3 Evaluation metrics

The automatically generated contours are evaluated geometrically by comparing them
against the manual contours for the prostate, seminal vesicle, rectum, and bladder.
The Dice similarity coefficient (DSC) measures the overlap between contours:

DSC =∑ 2 | S f ∩Sg |
| S f | + | Sg | , (5.9)

where Sg is the generated contour from either the segmentation or the registration
network. The distance between the contours is measured by the Mean Surface Distance
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Table 5.1: The effect of network input for the different architectures on the validation
set (HMC) in terms of MSD (mm). Lower values are better. Here, ⊕ is the concatenation
operation, and ·‖· represents the inputs to the segmentation network (left of ‖) and the
inputs to the registration network (right of ‖). Stars denote one-way ANOVA statistical
significance with respect to the Cross-stitch network with I f || I f ⊕ Im ⊕Sm as inputs.

Prostate Seminal vesicles Rectum Bladder
Network Input Output path µ±σ median µ±σ median µ±σ median µ±σ median

Seg

I f 1.49±0.3∗ 1.49 2.50±2.6 2.09 3.39±2.2 2.73 1.60±1.1∗ 1.13
I f ⊕Sm 1.31±0.4 1.23 1.63±0.9 1.26 2.88±3.4 2.06 1.12±0.5 0.97
I f ⊕ Im 3.06±0.6∗ 3.01 5.36±4.4 3.71 14.57±9.4∗ 11.58 1.46±1.3 1.12

I f ⊕ Im ⊕Sm 1.26±0.4 1.20 2.08±2.2 1.27 2.79±1.6 2.45 1.05±0.4 0.97

Reg
I f ⊕ Im 1.43±0.8∗ 1.29 1.71±1.4∗ 1.37 2.44±1.1∗ 2.17 3.40±2.3∗ 2.71

I f ⊕ Im ⊕Sm 1.91±1.3 1.59 1.92±1.5 1.44 2.58±1.1 2.33 3.88±2.5 3.16

JRS-reg
I f ⊕ Im 1.16±0.3 1.16 1.32±0.6 1.11 2.08±1.0 1.82 2.57±2.0 2.04

I f ⊕ Im ⊕Sm 1.20±0.4 1.13 1.35±0.7 1.16 2.08±1.0 1.82 2.63±2.3 1.90

Cross-stitch

I f || I f ⊕ Im
Segmentation 1.47±0.3∗ 1.48 2.93±3.0∗ 2.08 2.93±2.0∗ 2.25 1.19±1.0 0.89
Registration 1.10±0.3 1.07 1.38±0.7 1.17 2.12±1.0 1.89 2.55±2.1 1.89

I f || I f ⊕ Im ⊕Sm
Segmentation 1.06±0.3 0.99 1.27±0.4 1.15 1.76±0.8 1.47 0.91±0.4 0.82
Registration 1.10±0.3 1.06 1.30±0.6 1.13 2.00±1.0 1.75 2.45±2.1 1.81

I f ⊕Sm || I f ⊕ Im ⊕Sm
Segmentation 2.05±0.7∗ 2.00 3.66±4.4∗ 2.19 2.44±1.0∗ 2.35 1.09±0.5∗ 0.93
Registration 1.40±0.4 1.35 1.31±0.6 1.17 2.27±1.0 2.02 2.56±1.9 1.96

I f ⊕ Im ⊕Sm || I f ⊕ Im ⊕Sm
Segmentation 1.08±0.3 1.05 1.54±0.9∗ 1.28 1.88±1.0 1.61 1.01±0.7 0.82
Registration 1.20±0.3 1.18 1.35±0.7 1.16 2.12±1.1 1.87 2.54±2.2 1.80

(MSD) and Hausdorff Distance (HD) defined as follows:

MSD = 1

2

(
1

N

n∑
i=1

d
(
ai ,Sg

)+ 1

M

m∑
i=1

d
(
bi ,S f

))
, (5.10)

HD = max

{
max

i

{
d

(
ai ,Sg

)}
,max

j

{
d

(
bi ,S f

)}}
, (5.11)

where {a1; a2; . . . ; an} and {b1; b2; . . . ; bm} are the surface mesh points of the
manual and generated contours, respectively, and d

(
ai ,Sg

) = min j ‖b j −ai‖. For all
the experiments, we apply the largest connected component operation on the network
prediction.

In order to evaluate the quality of the deformations, we calculate the determinant
of the Jacobian matrix. A Jacobian of 1 indicates that no volume change has occurred;
a Jacobian > 1 indicates expansion, a Jacobian between 0 and 1 indicates shrinkage,
and a Jacobian ≤ 0 indicates a singularity, i.e. a place where folding has occurred.
We can quantify the smoothness and quality of the DVF by indicating the fraction of
foldings per image and by calculating the standard deviation of the Jacobian alongside
the MSD of the segmentation.

A repeated one-way ANOVA test was performed using a significance level of
p = 0.05. P-values are only stated for the comparisons between the best network with
the other networks.
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5.4 Experiments and results

In the paper we present two single-task networks dubbed Seg and Reg networks (see
Sections 5.2.2.1 and 5.2.2.2 for more details). Moreover, we investigated multiple
multi-task networks, namely JRS-reg, dense, SEDD, and Cross-stitch (see Sections
5.2.3.1, 5.2.3.2, 5.2.3.3, and 5.2.3.4 for more details). We compared our proposed
methods against three state-of-the-art methods that were developed for prostate
CT contouring. These methods represent three approaches, namely an iterative
conventional registration method, a deep learning-based registration method, and a
hybrid method. For the iterative method, we used elastix software [128] with the
NCC similarity loss using the settings proposed by Qiao et. al. [131]. In the deep
learning method proposed by Elmahdy et. al. [17], a generative network is trained
for contour propagation by registration, while a discrimination network evaluates
the quality of the propagated contours. Finally, we compare our methods against the
hybrid method proposed by Elmahdy et. al. [23], where a CNN network segments the
bladder and then feeds it to the iterative registration method as prior knowledge.

Following, we optimize some of the network settings on the validation set (HMC),
in order to investigate the influence of the bending energy weight, network inputs,
weighting strategy and network architecture on the results. Then, on the independent
test set, we present the final results comparing with methods from the literature.

5.4.1 Bending energy weight

We compared the single-task registration, the JRS-reg method and the Cross-stitch
network for a set of bending energy weights, see Equations (5.4) and (5.6), while the
weights of the other loss functions are set to 1. Figure 5.2 shows the performance of
the aforementioned methods using different bending energy weights. The optimal
performance of the registration network occurs at a bending weight of 0.5, while
the optimal bending weight for both JRS-reg and Cross-stitch network is much lower
but with higher standard deviation of the Jacobian. Therefore, for the remainder of
the paper we set the weight of the bending energy to 0.5 since it achieves the best
compromise between the contour performance in terms of MSD and the registration
performance in terms of the std. of the Jacobian determinant.

5.4.2 Optimization of the networks inputs

During training, validation, and testing, we have access to the fixed image I f , the
moving image Im , and the moving segmentation Sm . In Table 5.1 we compared
different sets of inputs on the validation dataset. This experiment helps to better
understand how these network interpret and utilize these inputs and how this would
reflect on the network outcome represented by the MSD metric. For this experiment
we used equal loss weights for the MTL networks.
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Figure 5.2: The performance of the registration, JRS-registration and Cross-stitch
networks with different bending energy weights on the validation set (HMC), in terms
of mean MSD averaged over the four organs. The annotation at each point represents
the standard deviation of the determinant of the Jacobian.

Feeding Sm to the segmentation network improves the results substantially com-
pared to only feeding I f , especially for the seminal vesicles, while feeding Im deteri-
orates the results. For the registration and JRS-reg networks, feeding Sm alongside
I f and Im resulted in a similar performance compared to not feeding it. Since the
Cross-stitch network is composed of two networks, one for segmentation and the other
for registration, we experimented with various combinations of inputs. The results are
very consistent with our previous findings on the single-task networks on the effect of
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Table 5.2: MSD (mm) values for the different networks and loss weighting methods for
the HMC dataset. Lower values are better. Stars and daggers denote one-way ANOVA
statistical significance for inter-network experiments with respect to Homoscedastic
weights and intra-network experiments with respect to Cross-stitch with Equal weights,
respectively. Grey numbers represent the values of the worst path between the
segmentation and registration paths, while bold numbers represent the best results.

Prostate Seminal vesicles Rectum Bladder
Network Weight Output path µ±σ median µ±σ median µ±σ median µ±σ median

JRS-reg
Equal Registration 1.20±0.4 1.13 1.35±0.7 1.16 2.08±1.0 1.82 2.63±2.3∗ 1.90
Homoscedastic Registration 1.20±0.3 1.20 1.22±0.5 1.07 2.05±1.0 1.81 2.34±2.2 1.60
DWA Registration 1.22±0.3 1.18 1.37±0.7∗ 1.20 2.29±1.1∗ 2.04 3.18±2.4∗ 2.43

Dense

Equal
Segmentation 1.14±0.4 1.06 1.73±2.1 1.12 1.91±0.9 1.64 1.04±0.7 0.87
Registration 1.20±0.3 1.11 1.33±0.7∗ 1.10 2.16±1.1 1.85 2.56±1.9 1.90

Homoscedastic
Segmentation 1.09±0.3 1.04 1.51±1.2 1.13 1.86±0.8 1.69 0.99±0.4 0.91
Registration 1.17±0.3 1.15 1.31±0.6 1.13 2.17±1.0 1.96 2.63±2.0∗ 1.95

DWA
Segmentation 1.12±0.3∗† 1.04 1.74±2.0 1.13 1.99±0.9∗ 1.77 1.00±0.4 0.85
Registration 1.14±0.3 1.14 1.27±0.6 1.07 2.24±1.1∗ 1.97 2.72±1.9 2.13

SEDD

Equal
Segmentation 1.47±0.6∗† 1.31 2.81±4.6 1.34 1.97±1.0 1.59 1.21±1.0 0.94
Registration 1.28±0.4∗ 1.19 1.50±0.9∗ 1.26 2.26±1.1∗ 1.94 2.61±2.1∗ 1.83

Homoscedastic
Segmentation 1.15±0.3† 1.14 1.47±1.0 1.22 2.12±1.1 1.91 0.99±0.2 0.94
Registration 1.19±0.3 1.21 1.23±0.5 1.13 2.15±1.0 1.92 2.31±2.0 1.64

DWA
Segmentation 1.22±0.3∗† 1.18 1.44±0.8 1.21 2.12±1.4 1.73 1.10±0.6 0.93
Registration 1.22±0.3 1.22 1.32±0.6∗ 1.10 2.30±1.1∗ 2.01 2.86±1.9∗ 2.41

Cross-stitch

Equal
Segmentation 1.06±0.3 0.99 1.27±0.4 1.15 1.76±0.8 1.47 0.91±0.4 0.82
Registration 1.10±0.3∗ 1.06 1.30±0.6 1.13 2.00±1.0∗ 1.75 2.45±2.1 1.81

Homoscedastic
Segmentation 1.23±0.3† 1.16 1.51±1.2 1.17 2.37±1.0 2.09 0.92±0.2 0.89
Registration 1.24±0.3 1.24 1.32±0.6 1.13 2.12±1.0 1.89 2.45±1.9 1.97

DWA
Segmentation 1.34±0.4∗† 1.27 1.75±1.7 1.29 2.32±0.9† 2.11 1.17±0.8∗ 0.91
Registration 1.22±0.3 1.19 1.27±0.6 1.09 2.21±1.0∗ 2.00 2.93±2.3∗ 2.27
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Figure 5.3: The evolution of the loss weights during training for different multi-task
networks on the validation dataset (HMC).

using Sm as an input.
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Figure 5.4: The evolution of the Cross-stitch units weights during training using equal
weights. CS#1 and CS#2 are placed in the down-sampling path, while CS#3 and
CS#4 are placed in the upsampling path. The solid lines represent the mean of the
weights across the diagonal of the CS unit, while the dashed lines represent the mean
of the off-diagonal weights.

For the remainder of this paper, we chose to use I f as input for the segmentation
network, and I f and Im as inputs for the registration network. Although adding Sm

proved to be better especially for the segmentation network, here we exclude it, since
these two methods act as a baseline and this is the standard setting in single-task
networks. For dense, SEDD, and JRS-reg networks, we select a concatenation of Im ,
I f , and Sm for the final network. For the Cross-stitch network, we select I f for the
segmentation network and the concatenation of Im , I f , and Sm for the registration
network.

5.4.3 Optimization of loss weighting strategy

In this experiment we investigate the performance of the various loss weighting
strategies introduced in Section 5.2.4 in order to select the best weighting method for
the underlying tasks.

Table 5.2 shows the results of the different weighting strategies for the MTL
networks in terms of MSD. For the JRS-reg network architecture, weighting the
losses with homoscedastic uncertainty achieved comparable results to using equal
weights, while DWA scored somewhat less. For the dense and SEDD architectures,
homoscedastic weighting achieved a slightly better performance, while equal weights
was best for the Cross-stitch network. For these architectures (dense, SEDD, and
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Figure 5.5: The effect of the bladder volume deviation from the planning volume
on the performance of the Seg, Reg, and Cross-stitch networks for the validation set
(HMC).

Cross-stitch), the segmentation output path showed improvement over the registration
output path.

Figure 5.3 illustrates the evolution of the loss weights wi during training, for
different multi-task network architectures and weighting strategies.

For the remainder of this paper and based on the previous findings, we chose
the homoscedastic uncertainty weighting strategy for the JRS-reg, dense and SEDD
networks, while using equal weights for the Cross-stitch network.

5.4.4 Analysis of cross-stitch units

Analysis of the behavior of the Cross-stitch units during training facilitates the
understanding of how the segmentation and registration networks interacts in the
MTL settings. Figure 5.4 shows the mean of the CS units across the diagonal and off-
diagonal (See Equation (5.5)). Higher weights on the diagonal means that the network
tends to separate the task-specific feature maps, while higher weights off-diagonal
means that the network tends to share the corresponding feature maps.

5.4.5 Effect of the bladder filling

For the HMC dataset, which was used for training and validation, a bladder filling
protocol was in place, meaning that the deformation of the bladder between daily and
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Figure 5.6: The effect of the bladder volume deviation from the planning volume
on the performance of the STL and the Seg, Reg, and Cross-stitch networks for the
independent test set (EMC).

planning scans is not large. However, this is not the scenario for the EMC dataset, the
test set.

Figure 5.5 and 5.6 illustrates the effect of the bladder volume variation from the
planning scan on the performance of the Seg, Reg, and Cross-stitch networks. The
Cross-stitch network is resilient to bladder filling for both the HMC and EMC datasets.

5.4.6 Evaluation of the quality of the DVF

The smoothness of the predicted DVF is an important parameter to evaluate the
predicted deformation field. Table 5.5 shows a detailed analysis of the DVF in terms
of the standard deviation of the determinant of the Jacobian as well as the folding
fraction for the registration path of the different networks.

5.4.7 Comparison against the state-of-the-art

Table 5.3 and 5.4 show the results for the validation set (HMC) and test set (EMC),
respectively. The first two networks in each table are single-task networks. For both
sets, the registration network outperformed the segmentation network for all organs
except the bladder. The mean MSD for the independent test set is higher than the
corresponding numbers in the validation set for most organs. However, the median
values are on par. For the MTL networks, the segmentation path of the networks
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Table 5.3: MSD (mm) values for the different networks on the validation set (HMC).
Lower values are better.

Prostate Seminal vesicles Rectum Bladder
Network Output path µ±σ median µ±σ median µ±σ median µ±σ median
Seg Segmentation 1.49±0.3 1.49 2.50±2.6 2.09 3.39±2.2 2.73 1.60±1.1 1.13
Reg Registration 1.43±0.8 1.29 1.71±1.4 1.37 2.44±1.1 2.17 3.40±2.3 2.71
JRS-reg Registration 1.20±0.3 1.20 1.22±0.5 1.07 2.05±1.0 1.81 2.34±2.2 1.60

Dense
Segmentation 1.09±0.3 1.04 1.51±1.2 1.13 1.86±0.8 1.69 0.99±0.4 0.91
Registration 1.17±0.3 1.15 1.31±0.6 1.13 2.17±1.0 1.96 2.63±2.0 1.95

SEDD
Segmentation 1.15±0.3 1.14 1.47±1.0 1.22 2.12±1.1 1.91 0.99±0.2 0.94
Registration 1.19±0.3 1.21 1.23±0.5 1.13 2.15±1.0 1.92 2.31±2.0 1.64

Cross-stitch
Segmentation 1.06±0.3 0.99 1.27±0.4 1.15 1.76±0.8 1.47 0.91±0.4 0.82
Registration 1.10±0.3 1.06 1.30±0.6 1.13 2.00±1.0 1.75 2.45±2.1 1.81

Elastix [131] Registration 1.73±0.7 1.59 2.71±1.6 2.45 3.69±1.2 3.50 5.26±2.6 4.72
Hybrid [23] Registration 1.27±0.3 1.25 1.47±0.5 1.32 2.03±0.6 1.85 1.75±1.0 1.26
JRS-GAN [17] Registration 1.14±0.3 1.04 1.75±1.3 1.44 2.17±1.1 1.89 2.25±1.9 1.54

Table 5.4: MSD (mm) values for the different networks on the independent test set
(EMC). Lower values are better. Results for JRS-GAN are not available for this dataset.

Prostate Seminal vesicles Rectum Bladder
Network Output path µ±σ median µ±σ median µ±σ median µ±σ median
Seg Segmentation 3.18±1.8 2.57 9.33±10.1 5.82 5.79±3.4 5.18 1.88±1.5 1.50
Reg Registration 2.01±2.5 1.18 2.86±5.2 1.18 2.89±2.5 2.23 5.98±4.7 4.44
JRS-reg Registration 1.94±2.6 1.16 2.48±4.8 1.01 2.67±2.4 2.05 4.80±4.6 2.12

Dense
Segmentation 2.01±2.6 1.15 4.08±7.2 1.23 3.70±5.4 2.03 2.75±3.1 1.23
Registration 1.93±2.5 1.15 2.53±4.7 1.01 2.67±2.3 2.13 5.08±4.4 3.01

SEDD
Segmentation 1.99±2.4 1.24 6.26±8.9 3.01 4.21±4.9 2.12 2.43±2.9 1.04
Registration 1.92±2.5 1.19 2.43±4.5 1.07 2.72±2.4 2.17 4.86±4.4 2.22

Cross-stitch
Segmentation 1.88±1.9 1.30 2.76±3.5 1.28 4.87±6.8 2.49 1.66±1.7 0.85
Registration 1.91±2.3 1.23 2.41±4.5 0.95 2.78±2.4 2.16 4.90±4.0 2.84

Elastix [131] Registration 1.42±0.7 1.17 2.07±2.6 1.24 3.20±1.6 3.07 5.30±5.1 3.27
Hybrid [23] Registration 1.55±0.6 1.36 1.65±1.3 1.22 2.65±1.6 2.36 3.81±3.6 2.26

Table 5.5: Analysis of the determinant of the Jacobian for the validation and the
independent test sets. Lower values are better.

Validation set (HMC) Independent test set (EMC)
Network Std. Jacobian Folding fraction Std. Jacobian Folding fraction
Reg 0.2935±0.1022 0.0049±0.0039 0.4129±0.2258 0.0112±0.0115
JRS-reg 0.2543±0.0505 0.0030±0.0014 0.3148±0.1106 0.0066±0.0062
Dense 0.2062±0.0431 0.0018±0.0012 0.2558±0.0899 0.0036±0.0027
SEDD 0.2626±0.1167 0.0019±0.0016 0.4287±0.3000 0.0066±0.0074
Cross-stitch 0.2241±0.0784 0.0024±0.0018 0.3301±0.1869 0.0071±0.0070

achieved better performance than the registration path on both datasets except for the
seminal vesicles. The Cross-stitch network achieved the best results compared to the
other MTL networks.

The proposed STL and MTL networks were compared against other state-of-the-art
methods that were evaluated using the HMC dataset. For the validation set, the STL
network achieved comparable results, while the Cross-stitch network outperformed
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Cross-stitch Manual Cross-stitch Manual Cross-stitch Manual

Figure 5.7: Example contours from the validation dataset (HMC) generated by the
proposed STL and MTL networks. From left to right, the selected cases are the first,
second, and third quartile in terms of the prostate MSD of the Cross-stitch network.
The contours of the bladder, prostate, seminal vesicles, and rectum are colored in red,
yellow, green, and blue, respectively.

these methods for both output paths. On the test set, elastix [131] and the Hybrid
method [23] performed better except for the bladder, although the median values of
the MTL networks were better.

For the quality of the predicted contours, Figure 5.7 and 5.8 show example contours
from the HMC and EMC datasets for the Seg, Reg, and Cross-stitch networks. The
examples show that the Cross-stitch network achieves better results compared to the
Seg and Reg networks especially for the seminal vesicles and rectum with large gas
pockets.

5.5 Discussion

In this study, we proposed to merge image registration and segmentation on the
architectural level as well as the loss, via a multi-task learning setting in order to
leverage their strengths and mitigate their weaknesses through the sharing of beneficial
information. We studied different network architectures and loss weighting methods in
order to explore how these tasks interact, and thereby leverage the shared knowledge
between them. Moreover, we carried out extensive quantitative analysis in the context
of adaptive radiotherapy, and compared the proposed multi-task methods to their
single-task counterparts. In this paper, a substantial number of experiments were
executed, where we explored the following methodological choices: the bending
energy weight, the input to the STL and MTL networks, and the loss weighting
method. We also performed a thorough analysis on how Cross-stitch units and loss

71



Seg Reg Seg Reg Seg Reg

Cross-stitch Manual Cross-stitch Manual Cross-stitch Manual

Figure 5.8: Example contours from the independent test set (EMC) generated by the
proposed STL and MTL networks. From left to right, the selected cases are the first,
second, and third quartile in terms of the prostate MSD of the Cross-stitch network.

weights evolve during training. Finally, we compared our proposed methods against
state-of-the-art methods.

In all the experiments we fixed the weight of the bending energy weight so that
the network would not set it too low in order to improve the DSC of the deformed
contours on the account of the smoothness of the predicted DVF. As shown in Figure
5.2 low bending energy weights result in better contour quality on the account of the
smoothness of the predicted DVF.

For the inputs to the STL networks, additionally feeding Sm to the segmentation
network resulted in a statistically significant improvement especially for the seminal
vesicles. Apparently the network considers Sm as an initial estimation for S f and
subsequently uses it as a guidance for its final prediction. When feeding Imthe results
deteriorated; this may confuse the network as I f and Im have the same anatomy but
with different shapes and local positions. The addition of both Im and Sm performed
similar to the addition of only Sm , which indicates that the networks learned to ignore
Im . For the registration network, the addition of Sm resulted in a sub-optimal result,
since the Sm contours on its own does not represent the underlying deformation well.

For the inputs to the MTL networks, in the JRS-reg network, feeding Sm alongside
I f and Im resulted in a similar performance compared to not feeding it. This indicates
that the incorporation of Sm via the DSC loss, already enables the JRS-reg network
to exploit this extra information, and that additionally adding Sm as a network
input does not provide further benefits. In the Cross-stitch network, we found that
adding Sm to the registration network results in a statistically significant improvement.
Furthermore, feeding Sm to one of the networks is sufficient, proving that segmentation
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and registration networks communicate their knowledge efficiently through the Cross-
stitch units.

We selected the STL networks with I f (for segmentation) and I f alongside Im

(for registration) as input to our baseline methods. Between these two networks,
the registration network performed better overall, since the registration network
leverages prior knowledge from the organs in the moving image. For the bladder, the
segmentation network achieved better results; Apparently the registration network
had difficulties finding the correspondence between the bladder in the fixed and
moving images, since it tends to deform considerably between visits. However, the
segmentation network failed to segment the seminal vesicles for five cases. That is
explained by the fact that the seminal vesicles is a difficult structure to segment, due
to its relatively small size, undefined borders, and poor contrast with its surroundings.
The registration network on the other hand is able to employ the surrounding anatomy
as context, to accurately warp the seminal vesicles.

For the multi-task networks, we demonstrated that fusing segmentation and
registration tasks is performing better than its single-task counterparts. Merging
these tasks using Cross-stitch network achieved the best results on both the validation
and testing datasets.

Different loss weighting methods achieved comparable results as shown in Table
5.2. In Figure 5.3, homoscedastic uncertainty tended to weigh all losses equally, using
almost a fixed weight of 0.9 during most of the training iterations. On the contrary,
DWA tended to fluctuate during training as the weights are updated based on the
ratio of the loss from previous iterations, which fluctuates due to the batch-based
training. Since the fixed and moving images are affinely registered beforehand, DWA
tended to down-weigh the registration loss and the associated DSC at the beginning
of the training, while weighting the segmentation network loss more in order to
improve its prediction. Later during training, all the weights stabilized around 0.9
similar to homoscedastic uncertainty. Although both methods stabilized by the end
of the training around the same value (0.9), the homoscedastic uncertainty achieved
slightly better results compared to DWA and equal weighting methods, except for the
Cross-stitch network. Our reasoning behind this is that homoscedastic uncertainty,
unlike other methods, is learnable during the training and highly dependent on the
underlying task uncertainty.

By analyzing the performance of the Cross-stitch units as demonstrated in Figure
5.4, we found that the Cross-stitch units tended to average feature maps for the
down-sampling path, while preferring to be more task-specific for the upsampling
path. This somewhat mimics the shared encoder double decoder (SEDD) network,
but in contrast to this network, the Cross-stitch network does not completely split the
decoder paths. This finding confirms that the segmentation and registration tasks are
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correlated and thereby encode similar features.

We carried out an experiment to study the effect of the bladder filling protocol
between the HMC and EMC datasets. As shown in Figure 5.5, the HMC dataset
has a bladder filling protocol so the volume of the bladder changes slightly around
100 mL between different sessions, which is not the case for the EMC dataset as
shown in Figure 5.6. Since the registration-based networks and joint networks were
trained on small bladder deformations, they failed on large deformations, however the
segmentation network was not affected since it does not depend on the deformation
but rather the underlying texture to segment the bladder.

In terms of the smoothness of the predicted DVF shown in Table 5.5, MTL networks
achieved lower numbers for the standard deviation of the Jacobian as well as for the
folding fraction, compared to the STL network (Reg), on both the test and validation
set. Our reasoning is that joining the segmentation task to the registration task works
as an additional regularization to the registration network. Due to the fact that the
higher the quality of the predicted DVF, the higher the quality of the propagated
contours and subsequently the lower the DSC loss. The numbers on the test set are
slightly higher than the validation set, but this is due to the variance between the
deformations between both sets and the fact that the network has not seen the test set
before. This can be addressed using transfer learning as suggested by Elmahdy et al.
[106] or by using synthetic deformations that mimic the one presented in the EMC
dataset.

In the paper, we compared our algorithm against different algorithms from
various categories: non-learning (elastix [128], a popular conventional tool); hybrid
[23], and GAN-based [17]. The presented multi-task networks outperformed these
approaches on the validation set and performed on par to these methods for the test
set. However, the test time for the hybrid and elastix methods are in the order
of minutes, while the presented methods have the advantage of fast prediction in
less than a second. This enables online automatic re-contouring of daily scans for
adaptive radiotherapy. Moreover, in our hybrid study [23] we carried out an extensive
dosimetric evaluation alongside the geometric evaluation. The predicted contours
from that study met the dose coverage constraints in 86%, 91%, and 99% of the
cases for the prostate, seminal vesicles, and lymph nodes, respectively. Since our
multi-task networks outperformed the geometrical results in that study, we expect
that our contours would achieve a higher success rate in terms of the dose coverage.
This could potentially reduce treatment related complications and therefore improve
patient quality-of-life after treatment.

A promising direction for future research is the addition of a third task, potentially
radiotherapy dose plan estimation. Hence, we can generate contours that are consis-
tent with an optimal dose planning. Further studies could also focus on sophisticated
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MTL network architectures similar to sluice networks [132] or routing networks
[133]. Moreover, we can study how to fuse the contours from the segmentation and
registration paths in a smarter way rather than simply selecting one of them based on
the validation set.

5.6 Conclusion

In this paper, we propose to formulate the registration and segmentation tasks as
a multi-task learning problem. We presented various approaches in order to do
so, both on an architectural level and via the loss function. We experimented with
different network architectures in order to investigate the best setting that maximizes
the information flow between these tasks. Moreover, we compared different loss
weighting methods in order to optimally combine the losses from these tasks.

We proved that multi-task learning approaches outperform their single-task coun-
terparts. Using an adaptive parameter sharing mechanism via Cross-stitch units gives
the networks freedom to share information between these two tasks, which resulted
in the best performance. An equal loss weighting approach had similar performance
to more sophisticated methods.

The cross stitch network with equal loss weights achieved a median MSD of 0.99
mm, 0.82 mm, 1.13 mm and 1.47 mm on the validation set and 1.09 mm, 1.24
mm, 1.02 mm, and 2.10 mm on the independent test set for the prostate, bladder,
seminal vesicles, and rectum, respectively. That is equal or less than slice thickness
(2 mm). Due to the fast inference of the methods, the proposed method is highly
promising for automatic re-contouring of follow-up scans for adaptive radiotherapy,
potentially reducing treatment related complications and therefore improving patient
quality-of-life after treatment.
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Abstract

Adaptive intelligence aims at empowering machine learning techniques with the
additional use of domain knowledge. In this work, we present the application of
adaptive intelligence to accelerate MR acquisition. Starting from undersampled k-
space data, an iterative learning-based reconstruction scheme inspired by compressed
sensing theory is used to reconstruct the images. We developed a novel deep neural
network to refine and correct prior reconstruction assumptions given the training
data. The network was trained and tested on a knee MRI dataset from the 2019
fastMRI challenge organized by Facebook AI Research and NYU Langone Health. All
submissions to the challenge were initially ranked based on similarity with a known
groundtruth, after which the top 4 submissions were evaluated radiologically. Our
method was evaluated by the fastMRI organizers on an independent challenge dataset.
It ranked #1, shared #1, and #3 on respectively the 8x accelerated multi-coil, the 4x
multi-coil, and the 4x single-coil tracks. This demonstrates the superior performance
and wide applicability of the method.



6.1 Introduction

Magnetic Resonance Imaging (MRI) is a widely applied non-invasive imaging modality,
with excellent soft tissue contrast and high spatial resolution. Unlike Computed
Tomography (CT) scanning, MRI does not expose patients to any ionizing radiation,
making it a compelling alternative. MR images are essential for clinical assessment
of soft tissue as well as functional and structural measurements, which leads to early
detection and diagnosis of many diseases. However, MRI is relatively slow compared
to other imaging modalities. The total examination time can vary from 15 minutes for
knee imaging to an hour or more for cardiac imaging. Remaining still for this long in
a confined space is challenging for any patient, being especially difficult for children,
elderly and patients under pain. Motion artifacts are not only difficult to correct,
which may require a complete re-scan [134]. Furthermore, the acquisition time affects
the temporal resolution and subsequently limits the potential of MRI for dynamic
imaging, where high temporal resolution and robustness against motion are critical
for diagnosis. Moreover, the relatively long scan times lead to high costs that limit the
availability of MRI scanners [135]. Therefore, fast acquisition and reconstruction are
crucial to improve the performance of current MR scanners, which led in recent years
to the development of techniques such as parallel reception, compressed sensing and
multi-band accelerations. However, there is still a need for further scan acceleration.

The long acquisition time is intrinsic to the scanner and physics properties of
MRI. For the majority of scans performed in clinical practice, this acquisition is
done through consecutive reading-out of single lines in k-space. These readouts are
constrained by physical limitations of the hardware, the contrast generating principle,
and human physiology. The scanning time could be shortened by reducing the number
of acquired lines in k-space, i.e. by undersampling the 2D or 3D k-space. However,
this could violate the Nyquist criterion, resulting in aliasing and blurriness in the
reconstructed images, rendering them unqualified for clinical purpose. Compressed
Sensing (CS) and Parallel Imaging are the most common solutions for acceleration
by undersampling, while maintaining image quality. Compressed Sensing, the focus
of this paper, introduced by Donoho [28], Lustig [29] and Candes [30], leverages
the fact that MR images can be compressed in some domain, restoring the missing
k-space data through an iterative reconstruction algorithm [31]. Parallel Imaging uses
multiple receive coils that provide an additional signal encoding mechanism, allowing
to reduce the number of necessary k-space lines to reconstruct an image, thus partially
parallelizing the data acquisition [136].

When CS is used to accelerate MR acquisitions, the k-spaces is sampled pseudo-
randomly and the image is subsequently reconstructed by promoting a sparse solution.
In the optimal setting, the reconstructed image will be identical to the Fourier
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transform of the full k-space and have a limited number of large coefficients when
transformed to the sparse domain. Equation (6.1) shows the optimization function
that describes the CS algorithm:

min
x

{∥ MFx−My ∥2
2 +λ ∥Ψx ∥1

}
, (6.1)

where x is the reconstructed image, y is the fully measured k-space data, F is the
Fourier transform, M (mask) is the undersampling operation, Ψx represents the
sparsity transform coefficients, and λ is the regularization parameter. The `1 norm is
used to enforce sparsity of the solution in a domain specified by the transformation Ψ.
The `2 norm is used as a similarity measure between the measured k-space data My

and the reconstructed k-space MFx, called the “data consistency” term. Note that, in
case of multi-coil acquisitions, the data consistency term is given by:∑

q
∥ MF

(
Sq ·x

)−Myq ∥2
2, (6.2)

where q denotes the coil element and Sq the corresponding coil sensitivity map. The
coil sensitivity maps S are computed using the fully centered region of k-space. A
low-passed version of the coil images xlpf

q is obtained by cropping the available region
of k-space. The sensitivity map Sq , for the individual coil element is computed as
follows:

Sq =
xlpf

q√∑
j

(
xlpf

j

)2
(6.3)

To simplify notation, without loss of generality, the single-coil data consistency term
will be used throughout this paper.

Recently, deep learning has shown promising results for speeding up MR acquisition
by adopting Convolutional Neural Networks (CNN) and Generative Adversarial Net-
works (GAN). In contrast to iteratively solving optimization problems, deep learning
offers a solution for reconstructing highly-accelerated scans by adopting learnable
reconstruction schemes.

The literature of deep learning-based reconstruction algorithms can be divided
into two categories [137]. First, data-driven approaches, where a neural network is
trained to find the optimal transformation from the zero-filled k-space to the desired
reconstruction. Here, the network is completely dependent on the underlying training
dataset without any task-specific prior knowledge on the domain; following are
selected exemplar algorithms of this approach. Quan et al. [138] developed a GAN
network for MR reconstruction starting from undersampled data. Their network
consists of two consecutive networks, one for reconstruction and one for refining
the results. They used a cyclic data consistency term alongside the WGAN loss.
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Mardani et al. [139] developed a GAN network for CS. The proposed network corrects
aliasing artifacts of MR images. Guo et al. [140] proposed a WGAN with recurrent
context-awareness to reconstruct MRI images from highly undersampled k-space data.
Schlemper et al. propose a cascaded CNN-based compressive sensing (CS) technique
for the reconstruction of diffusion tensor cardiac MRI [141]. Yang et al. proposed
a conditional GAN-based architecture for de-aliasing and fast CS-MRI [142, 143].
Putzky et al. [144] treated the MR reconstruction problem as an inverse problem.
They applied the previously introduced invertible Recurrent Inference Machine (i-
RIM) model [145], which iteratively updates its current state based on the output
of the forward model. The model was trained and evaluated on the single- and
multi-coil data at 4x and 8x accelerations from the fastMRI challenge (see Section
6.2 for more details). AUTOMAP [146] reports good reconstruction results with
an architecture that learns to directly transform k-space into image data. Lee et al.
[147] introduced two separate deep residual networks for magnitude and phase. The
proposed networks successfully reconstructed images even when obtained with high
undersampling factors.

Second, hybrid approaches are presented in the literature. This class of algo-
rithms builds on top of existing reconstruction solutions and integrate learning-based
approaches to substitute part of the original computations, often by adopting an
unrolled implementation of an iterative algorithm [32]. A notable example is the
Variational network presented by Hammernik et al. [33] utilizing learned filters in
an existing iterative optimization scheme, while Yang et al. presented the Deep
ADMM-Net [34], which extends the Alternating Direction Method of Multipliers
(ADMM) [148] approach by integrating learnable operators.

Aggarwal et al. [149] introduced a model based deep learning architecture named
MoDL to solve the inverse problem, including MR reconstruction. The proposed model
consists of a series of recursive linear CNN networks. These networks share weights
for regularization and reduction in the number of parameters. The proposed network
imitates the CS algorithm and for numerical optimization, the authors introduced a
data consistency term using a conjugate gradient (CG) optimization scheme at every
iteration. The model was trained on multi-coil brain MR slices from 4 patients and
tested on one patient. Ramzi et al. [150] provided a reproducible benchmark of deep
learning based reconstruction methods on the single-coil part of the fastMRI dataset
[151]. The benchmark consists of a U-net [116], cascade net [152], KIKI-net [153],
and PD-net [154]. Cascade net has been inspired by a dictionary learning approach
[155]. This approach is composed of residual convolutional blocks applied in image
space followed by data consistency layers. The data consistency layers enforce the
k-space values be close to the original k-space measurements. KIKI-net is a cascaded
network where a non-residual convolutional block has been added to perform k-space

81



completion, while PD-net provides a learnable and unrolled version of the Primal Dual
Hybrid Gradient optimization algorithm [156]. Seitzer et al. discussed the inadequacy
of loss function for training a CS-MRI reconstruction CNN [157]. In that study they
proposed a refinement method which incorporates both loss functions in a harmonious
way to improve the training stability.

Recently, Zhang and Ghanem [158] developed a deep learning approach called
ISTA-Net that mimics the conventional ISTA algorithm, but enriches it by replacing
the sparsifying transform and the thresholding with learned operations. The resulting
network does not implement a fully iterative algorithm, but it simulates it by adopting
a fixed number of iterations, effectively enabling the implementation of a deep neural
network that can be trained by the backpropagation algorithm. Inspired by the work
of Zhang and Ghanem [158], in this paper we propose a deep-learning based solution,
Adaptive-CS-Network, that mimics the ISTA algorithm, but introduces strong prior
information, i.e., inductive biases, to better constrain the reconstruction problem.
The main contributions of this work are: i) we propose a novel CNN network that
integrates and enhances the conventional CS approach; ii) it integrates multiscale
sparsification, inspired by wavelet transforms, but in a learnable manner; iii) we adopt
domain-specific knowledge, such as data consistency, a prior on known phase behavior,
and the location of the background: these computations cannot be easily learned by a
CNN; iv) the proposed model exploits the correlation between neighbouring slices by
adopting a 2.5D learning approach. In addition, we propose a hierarchical training
strategy that leverages the available data. We conducted extensive experiments to
investigate the performance of the network, and show that domain specific information
is crucial for reconstructing high-quality MR images. The proposed network showed
superior performance by winning one, and co-winning a second track out of the three
tracks of the fastMRI challenge [151].

6.2 FastMRI challenge

The fastMRI challenge is a challenge organized by Facebook AI Research and NYU
Langone Health [151]. The aim of the challenge is to advance and encourage AI-based
research in MR reconstruction in order to allow acceleration of the acquisition and,
subsequently, to reduce the examination time. The challenge is divided in three tracks:
4x single-coil, 4x multi-coil, and 8x multi-coil accelerations. Eight teams participated
in the multi-coil track and 17 teams in the single-coil track [159].

6.2.1 Dataset

The challenge organizers released a large-scale dataset of raw MR data of the knee
[160]. The data was acquired with a 2D protocol in the coronal direction with a 15
channel knee coil array using Siemens MR machines at two different field strengths:
1.5T and 3T [151]. The data was acquired using two pulse sequences: a proton
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density weighting with (PDFS) and without (PD) fat suppression. The data is divided
approximately equally between these pulse sequences. The pixel size is 0.5 mm × 0.5
mm with a slice thickness of 3 mm.

The dataset is divided in 4 categories: training (973 volumes, 34,742 slices),
validation (199 volumes, 7,135 slices), test (118 volumes, 4,092 slices), and challenge
(104 volumes, 3,810 slices). These numbers are the same for multi-coil and single-coil
data, with the exception of the test and challenge categories, where single-coil data has
respectively 10 and 12 volumes less than the multi-coil data. The training, validation
and test sets were publicly available since late November, 2018, while the challenge set
was available since September 2019. The full k-space was available for all the datasets
except for the test and challenge sets. Training and validation sets were considered for
training and optimizing our model, while the test set was used for evaluating model
performance on a public leaderboard. The final model was evaluated by the organizers
on the independent challenge set.

The k-space data provided in the challenge were undersampled using a Cartesian
mask, where k-space lines are set to zero in the phase encoding direction. The
sampling density is dependent on the acceleration rate (4x or 8x), where the sampled
lines are randomly selected. All masks, however, are fully sampled in the central
area of k-space which corresponds to the low frequencies of the image. For the 4x
accelerated scans, this percentage is 8% while it is 4% for 8x acceleration. Besides
making the reconstruction problem easier to solve, such lines allow for obtaining a
low-pass filtered version of the image that is used to compute the coil sensitivity maps
Sq as presented in Equation (6.3) using a root sum of square approach [151].

6.2.2 Quantitative evaluation

In order to measure the accuracy of the reconstructed volumes r compared to the
target volumes t, the following metrics were considered:

6.2.2.1 Normalized mean square error (NMSE)

measures the square of the Euclidean norm between a pair of images:

NMSE= ||r− t||22
||t||22

(6.4)

6.2.2.2 Peak signal-to-noise ratio (PSNR)

the ratio between the maximum intensity and the underlying distortion noise:

PSNR= 10log10
max(t)2

1
N ||r− t||22

(6.5)
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6.2.2.3 Structural similarity index metric (SSIM)

measures image similarity using human perception aspects [161]. SSIM is calculated
by measuring three image distortions including luminance l (·), contrast c(·) and
structure s(·):

SSIM= l (r,t)αc(r,t)βs(r,t)γ, (6.6)

where α,β,γ are the distortion weights, here chosen as 1. In this study, similar to the
fastMRI challenge, the SSIM score is computed on the magnitude version of the 2D
MR scans, leading to grayscale images.

6.2.3 Radiological evaluation on the challenge dataset

We submitted the reconstructions on the challenge dataset via an online form, which
were then evaluated independently by the fastMRI organizers, described in detail by
Knoll et al. [159]. All submissions were ranked by the SSIM metric, after which only
the 4 highest ranking submissions were evaluated by a panel of 7 radiologists. The
panel was asked to evaluate the reconstructions on a scale from 1 to 5 on four different
categories, where 1 is the best and 5 is the worst. The 4 categories were the rating of
artifacts, reconstruction sharpness, perceived contrast-to-noise ratio and diagnostic
confidence. The radiological scores were subsequently averaged and translated to a
final ranking.

6.3 Methods

In this section we present the background of our solution, first by introducing the
Iterative Shrinkage-Thresholding Algorithm (ISTA) [162] and, second, by introducing
its deep learning-based variant, ISTA-Net [158]. Then, we present our solution, the
Adaptive-CS-Network, that builds on top of the ISTA-Net framework by introduc-
ing several improvements, including strong inductive biases derived from domain
knowledge on the reconstruction problem.

6.3.1 ISTA background

ISTA is an optimization algorithm to solve (6.1) in an iterative fashion, starting
from the reconstruction x0, which is often obtained by reconstructing the zero-filled
undersampled k-space. The initial estimate is refined using the following update rules:

ri+1 = xi −ρF T (MFxi −My), (6.7)

xi+1 = argmin
x

1

2
∥ x− ri+1 ∥2

2 +λ ∥Ψx ∥1, (6.8)

where F T denotes inverse Fourier transform, ri+1 is an update of the estimate xi ,
where the error in the measured data My is corrected by a step ρ. Equation (6.8) is a
special case of the proximal mapping, with a regularization weight λ, and a crucial
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Figure 6.1: Proposed adaptive Adaptive-CS-Net architecture. The input and output of
the network are stacks of three consequent knee MR images.

step for optimization algorithms such as ISTA, ADMM [148] and AMP [163]. When Ψ
is a wavelet transform W, it can be proven that

xi+1 = W−1so f t (Wri+1,λ), (6.9)

where so f t is the soft-tresholding operator defined as so f t (u,λ) = max(|u|−λ,0) · u
|u| .

In general, solving (6.8) is not straightforward for non-linear operators Ψ, limiting
the applicability of the ISTA framework to simple transforms. Another problem of
this family of algorithms, is the difficulty of tuning the hyperparameters λ and ρ in
addition to its slow convergence, hence requiring a lot of iterations to achieve the
optimal solution of (6.1).

6.3.2 ISTA-Net

Recently, Zhang and Ghanem introduced a deep-learning approach to overcome the
limitations of the ISTA framework for image-to-image reconstruction. Their solution,
called ISTA-Net [158], replaces the handcrafted transform Ψ with a learned operator
S (·), which consists of a 2D learnable convolution followed by a rectified linear unit
(ReLU) and a second convolution. By replacing Ψ with S (·) in (6.8), we can rewrite
the update rule as

xi+1 = argmin
x

1

2
∥ x− ri+1 ∥2

2 +λ ∥S (x) ∥1, (6.10)

and, by defining Ŝ as the inverse of S , i.e., Ŝ ◦S = I , Zhang and Ghanem propose to
update (6.9) as follows:

xi+1 = Ŝ (so f t (S (ri+1),λ)), (6.11)

where Ŝ has a similar architecture as S .
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The model is trained end-to-end, where the iterations of the ISTA algorithm are
“unrolled”, i.e., a number b of identical reconstruction blocks are created. Note that in
the ISTA-Net approach, the learnable parameters are shared among all the blocks in
the unrolled network, unlike our solution. The training loss is defined as a combination
of the reconstruction and discrepancy loss:

L =Lr econstr ucti on +σLdi scr epanc y (6.12)

Lr econstr ucti on =∥ xb −F T y ∥2
2 (6.13)

Ldi scr epanc y =
1

b

b∑
i=1

∥ Ŝ (S (xi ))−xi ∥2
2 (6.14)

The reconstruction loss encodes the need for the final reconstruction, defined as xb , to
be as close as possible in the least squares sense to the ground-truth image, i.e., F T y.
The discrepancy loss stimulates that Ŝ ◦S = I . The σ parameter allows to control
the weight given to the discrepancy loss, and it is chosen to be arbitrarily small, e.g.,
σ = 0.01. An extension, called ISTA-Net+ is also presented by the authors, where
residual computations are adopted.

6.3.3 Adaptive-CS-Network

Starting from the network developed by Zhang and Ghanem, we developed the
Adaptive-CS-Network approach. Our solution builds on top of the ISTA-Net solution
based on three key innovations, here ordered by importance to the final network
performance: i) the use of multi-scale and ii) multi-slice computations, together with
iii) the introduction of soft MRI priors. We present them independently, building
towards the update rule of the Adaptive-CS-Network model as presented in (6.16).
Fig. 6.1 illustrates the proposed network.

First, many non-learned CS algorithms make use of multi-scale transforms to
sparsify the signal. An example is given in (6.9), where W is a wavelet transform; a
decomposition of the signal into a set of basis functions at different scales. We include
this inductive bias in our design, and adopt a multi-scale transform U , and its inverse
Û . As an additional design choice, we decide to sparsify and learn only the residual,
therefore our update rule is written as follows:

xi+1 = Û (so f t (U (ri+1),λs, fs ))+ ri+1, (6.15)

where U comprises of 2D convolutions and non-linearities in the form of Leaky-ReLU
to counteract the problem of dying neurons. To generate a multiscale representation,
a max-pooling layer is used and the resulting features are then processed again by
convolutional blocks and non-linearities. The exact design of U is presented in Fig. 6.1.
The feature maps produced at the different scales are then thresholded using the soft-
max function. Differently from ISTA-Net+, we learn a lambda parameter and feature
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channel fs for each scale s. This approach gives the network the flexibility of tuning the
thresholds independently, hence reducing the complexity of the transforms learned by
the convolutional operators. Finally, the filtered channels are transformed back into the
image domain by the inverse Û , consisting of interpolation, 2D convolutions and Leaky-
ReLU operators. Note that, contrary to the latest literature in deep learning networks,
we decided not to adopt strided convolutions for sub- and up-sampling, which would
increase the risk of creating checkerboard artifacts [164]; instead we took the more
conservative approach of adopting pooling and interpolation layers for achieving
better image quality. Overall, the computation represented by Û (so f t (U (ri+1),λs, fs ))

is implemented with a UNet-like architecture [116], where the feature maps before
the skip connections are filtered according to the parameter λs, fs .

Second, it is important to note that the slice thickness of the dataset is much
higher than the in-plane resolution. This indicates that inter-slice correlations are less
useful for finer scales, and potentially damaging as they will become a confounder for
the network. However, such information becomes beneficial at coarser scales, e.g.,
to facilitate the delineation of the bone in several slices. Since our transform U is
multi-scale by nature, we found it beneficial to inject neighboring slices into the
model, while leaving it to the network to identify at which scale the information will
be used. To reduce the memory footprint of the model, we adopted a 2.5D convolution
approach by concatenating neighbouring slices into the input tensor along the channel
dimension, enabling to “reinvest” the saved GPU memory as compared to a truly 3D
convolution approach, into more unrolled iterations. More details on the number of
slices used and the definition of the loss function are given in Section 6.4.3.

Finally, we adopted a hybrid- or nudge- approach to incorporate additional prior
knowledge into the reconstruction algorithm. We therefore computed additional
information derived from the current estimate xi together with k-space My. These
soft priors, which are presented in the next section, capture some properties of an MR
image that cannot be easily learned by a deep neural network due to the limited size
of the receptive field. The priors come in the form of images, and are provided as extra
input channel to the transform U . In this way, they are integrated in the computations
performed by U whenever this is beneficial for the optimization of the loss function.

6.3.4 Final design

The overall update for a block Bi+1 in the Adaptive-CS-Network model is defined as
follows:

xi+1 = Bi+1(xi ) =
xi + Ûi

(
so f t

(
Ui

(
xi ,edc,i ,eφ,i ,ebg,i

)
,λs, fs

))
.

(6.16)

Each block in the network learns different transforms Ui and Ûi , enabling each block
to focus on different properties of the image and effectively increasing the network
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capacity. Note that Ui and Ûi are different for every reconstruction block i .
In our final design, the transform Ui does not receive the data consistent image

ri , as defined in (6.7), but rather the current estimate xi together with the data
consistency prior edc,i computed as follows:

edc,i =F T (MFxi −My). (6.17)

This “soft data-consistency” update allows the network to evaluate the reliability of
the acquired data and potentially compensate errors in the coil combination defined
by F in (6.1).

The second prior we provided to the network, eφ,i , represents the known phase
response for spin-echo MR sequences. Theoretically, spin-echo sequences have zero
phase everywhere in the image. In practice, however, slowly varying phase will occur,
i.e. nonzero phase only in the low frequencies, due to hardware and acquisition
imperfections. Taking this into account, it is noted that the final reconstructed image
should be a real valued image after removal of the slowly varying phase. This
information is captured in the following prior:

eφ,i =
{

xi ·
x∗i ,lpf

‖xi ,lpf‖2

}
i mag

, (6.18)

where ∗ denotes the complex conjugate, and lpf refers to low pass filtering. The low
pass filter is chosen such that it corresponds to the center part of k-space which is fully
sampled. By doing so, the low pass filtered image xi ,lpf can be derived beforehand only
once, hence xi ,lpf is replaced by x0,lpf.

Finally, we adopt a simple approach to estimate the location in xi where the
background is found, which is common in parallel imaging techniques. The following
prior is applied:

ebg,i =
xi

‖xi ,lpf‖2
. (6.19)

This prior will penalize estimated signal content where ‖xi ,lpf‖ is low, i.e., within the
background. Again, xi ,lpf is replaced by x0,lpf. Because x0,lpf is based on the fully
measured central part of k-space, the image is artefact free albeit at low spatial
resolution, leading to a reliable background identification.

In Fig. 6.1 the design of the Adaptive-CS-Network is shown, including the multi-
scale transforms, the multi-slice computation and the priors provided as input. Note
how the spin-echo and background priors are computed only for the central slice, in
order to save GPU memory.

6.3.5 Network training and implementation details

We implemented our models in PyTorch [165]. All the optimization experiments were
performed on an NVIDIA V100 GPU with 16 GB RAM and the final network was trained
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on two NVIDIA V100 GPU with 16 GB RAM. In order to run as many experiments as
possible given the challenge deadline, model optimization (see Section 6.4) was done
with a relatively small model (≤ 10 blocks), which we trained for 20 epochs. All the
optimization networks were trained and validated on the highest acceleration rate
of the challenge, i.e. 8x and for single-coil data, except for the number of the blocks
which was performed for both 4x and 8x, and for the priors which are more relevant
for the multi-coil data. Since the ground truth for the test set was not available, all the
quantitative comparisons were only done on the validation set.

For the challenge, we trained the final model using the training and validation
datasets for 25 epochs and accelerations randomly selected from 2x to 10x. The
residual connections designed on a per-iteration basis, facilitates the learning and
prevents the degradation of the error gradient throughout the architecture. The
model was subsequently fine-tuned on eight data sub-populations identified by the
acceleration (4x and 8x), the protocol (PD and PDFS) and the scanner field strength
(1.5T and 3T). Fine-tuning was then performed for 10 epochs on the sub-populations.
This procedure was performed independently for the single- and multi-coil datasets,
resulting in a total of 8 models. All models were trained using an exponentially
decaying learning rate of 10−4. The final models have 33M trainable parameters each;
for the single-coil data this leads to an inference time of approximately 327 ms, while
it takes approximately 518 ms to compute the reconstruction of a multi-coil dataset
on an NVIDIA V100 GPU.

6.4 Experiments and results: Model optimization

In this section we present how we optimized the network configuration, on a smaller
model with 10 reconstruction blocks, using the quantitative measures reported in
Section 6.2.2 for validation. We performed experiments on the number of the blocks,
the loss functions, the influence of using adjacent slices, the optimizer, and the soft
priors. A repeated measure one-way ANOVA test was performed on the SSIM values
using a significance level of p = 0.05. P-values are only stated for the comparisons
between the best method and the other methods. In all the experiments a learning
rate of 0.0001 was used.

6.4.1 Number of blocks

The proposed model consists of multiple blocks, related to the number of unrolled
iterations of the ISTA scheme. Increasing the number of blocks leads to an increase
in the number of parameters of the model, and subsequently training time and GPU
memory usage as well as an increase in risk of overfitting. In this experiment we
investigated the effect of the number of the blocks on the quality of reconstructed
images. Tests were ran with the 2D network for 4x and 8x acceleration rates without
neighboring slices, MSE as loss function, RMSprop as optimizer, and with the Unet-like
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Figure 6.2: The effect of the number of blocks on performance, using the 4x and 8x
single-coil validation data. The variance values are shown by the bars. The stars in the
first plot show one-way ANOVA statistical significance.

Table 6.1: The effect of the loss function on performance, using the 8x single-coil
validation data. Stars denote one-way ANOVA statistical significance.

Loss function
SSIM NMSE PSNR

p-value
µ±σ µ±σ µ±σ

MSE 0.657±0.149∗ 0.046±0.029 30.2±2.8 ¿0.001
Perceptual loss 0.664±0.157∗ 0.061±0.044 29,2±3.2 ¿0.001
Huber 0.664±0.148∗ 0.062±0.041 29.1±3.0 ¿0.001
`1 0.664±0.148∗ 0.062±0.041 29.1±3.0 ¿0.001
SSIM 0.662±0.145∗ 0.065±0.041 28.9±2.8 ¿0.001
MSSIM [168] 0.671±0.143∗ 0.050±0.034 30.1±3.1 ¿0.001
Eq. (6.21) 0.673±0.143 0.048±0.033 30.3±3.1

architecture of 16 filter maps for each convolutional layer. Fig. 6.2 reports the relative
changes to a single block of our quantitative metrics. Based on the experiments,
increasing the number of the blocks will improve the performance of the network.
Therefore, the final network was configured with the maximum number of blocks
that could be fitted into GPU memory: 25 blocks. However, for the optimization
experiments below only 10 blocks were employed to limit the duration of the training.

6.4.2 Loss functions

In this experiment we investigated the effect of a wide range of differentiable loss func-
tions on the performance of our network. Here, we used the single slice reconstruction
network with only 10 blocks, RMSprop as the optimizer, and 16 filter maps for each
convolutional layer. The models were trained for 20 epochs to ensure convergence of
the model. The evaluated loss functions included MSE, perceptual loss (PL) [166], `1,
Huber [167] and multi-scale structural similarity index (MSSIM) [168]. The PL loss
function was calculated using a pre-trained VGG-16 at layers relu1_2, relu2_2, and
relu3_3.

MSSIM [168] builds upon SSIM (see Section 6.2.2.3) by incorporating structural
similarity at multiple image resolutions, thereby supplying more flexibility compared
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to SSIM, and is defined as follows:

MSSIM= [
lM (rc,tc)

]αM
M∏

i=1

[
ci (rc,tc)

]βi
[
si (rc,tc)

]γi , (6.20)

where rc ,tc , denote the reconstructed and target images respectively, M is the number
of scales used, lM , ci and si are the luminance, contrast, and structure as defined
in [161], αM , βi , and γi are the weights of the distortion factors at different resolution
levels. We adopted the same weights as reported in [168].

Zhao et al. [169] reported that a linear combination of SSIM and `1 preserves the
different properties of an image better than each separately: SSIM encourages the
network to preserve structural and contrast information, while `1 enforces sensitivity
to uniform biases to preserve luminance [170]. Since MSSIM reached higher metric
values than SSIM (see Table 6.1), we deployed a weighted summation of MSSIM [168]
and `1:

L =αMSSIM(rc,tc)+ (1−α)‖rc − tc‖1, (6.21)

where α = 0.84 was chosen, following Zhao et al. [169]. Note that, compared to
the ISTA-Net approach, we found it beneficial not to adopt the discrepancy loss as
presented in Eq. (6.12) for two reasons. First, we empirically found that tuning the
loss multiplier θ is not straightforward, leading to sub-optimal results in terms of the
reconstruction loss. Secondly, computing the discrepancy loss is very demanding in
terms of GPU memory, requiring to perform a second forward pass where only the
thresholding operation is ignored. While feasible, it requires to make the model signif-
icantly smaller in terms of learnable parameters, hence reducing model performance
significantly.

Table 6.1 reports the quantitative results for the different loss functions. The
weighted linear combination of MSSIM and `1 yielded the best results, where the
p-values indicate that the improvement achieved thanks to our modifications is highly
consistent across all scans, despite the small improvements on SSIM-values. Fig. 6.3
shows two example results for the different loss functions, confirming the favorable
results for the model trained using a combination of MSSIM and `1. Therefore, this
loss function was selected for training the final model. For the remainder of the
experiments, MSSIM is used as loss function.

6.4.3 Multi-slice network

The resolution of the images in the dataset is anisotropic with a voxel size of 0.5×0.5×3

mm3. Due to the correlation between adjacent slices with respect to anatomical
structures in MRI images, we performed an experiment to assess whether inclusion
of neighbouring slices into the reconstruction might improve the performance. We
compared the 2D scheme using only the center slice with three alternative 2.5D
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Figure 6.3: Two examples of single-coil 4x for the different loss functions. A small
network is used to test several losses. SSIM values are shown in yellow.

Table 6.2: The effect of adopting a 2.5D approach on the 8x single-coil data using
the small model. W denotes the loss weight applied to the neighboring slices. Stars
denote one-way ANOVA statistical significance.

Network
SSIM NMSE PSNR

p-value
µ±σ µ±σ µ±σ

2D 0.671±0.143∗ 0.050±0.034 30.1±3.1 ¿0.001
2.5D W0.1 0.549±0.128∗ 0.089±0.034 26.8±2.1 ¿0.001
2.5D W0.2 0.548±0.128∗ 0.090±0.033 26.8±2.1 ¿0.001
2.5D 0.674±0.143 0.048±0.033 30.3±3.1

schemes: i) the neighboring slices were used together with the center slice as input,
but only the center slice was used in the loss function (network 2.5D); ii) and iii) the
neighboring slices are also used in the loss, with different weights (0.1 vs 0.2 for the
neighbors; 1.0 for the center slice). To compute the first and last slice, we pad the
volume with replicas of the edge slices. MSSIM was used for the loss function, 10
blocks, RMSprop as the optimizer, and 16 feature maps.

Table 6.2 shows the results of this experiment, showing that the 2.5D schema very
consistently improves over the 2D scheme, and that the loss should only be defined on
the center slice. For the final model, this scheme was selected.

6.4.4 Optimizer

We experimented with different optimizers including RMSprop, rectified Adam (RAdam)
[130], LookAhead [171] and Ranger [172]. RAdam exploits a dynamic rectifier to
adjust the adaptive momentum of Adam [173]. LookAhead not only uses an adaptive
learning rate and accelerated schemes but also iteratively updates two sets of weights,
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Table 6.3: The effect of the optimizer on performance, using the 8x single-coil
validation data. Stars denote one-way ANOVA statistical significance.

Optimizer
SSIM NMSE PSNR

p-value
µ±σ µ±σ µ±σ

RMSprop 0.673±0.143∗ 0.048±0.033 30.3±3.1 ¿0.001
LookAhead 0.668±0.140∗ 0.050±0.032 30.0±2.9 ¿0.001
Ranger 0.668±0.140∗ 0.050±0.032 30.0±2.9 ¿0.001
RAdam 0.674±0.141 0.048±0.032 30.3±3.0

Table 6.4: Adaptive-CS-Net vs ISTA-Net+ on the 8x single-coil dataset. ISTA-Net+ has
0.75M trainable parameters, while ISTA-Net-L+ and A-CS-Net have 2.12M trainable
parameters. Stars denote one-way ANOVA statistical significance.

Model
SSIM NMSE PSNR

p-value
µ±σ µ±σ µ±σ

ISTA-Net+ 0.547±0.117∗ 0.169±0.022 23.8±1.9 ¿0.001
ISTA-Net-L+ 0.543±0.119∗ 0.103±0.038 26.2±2.0 ¿0.001
A-CS-Net 0.671±0.143 0.050±0.034 30.1±3.1

i.e. fast and slow weights. Ranger combines Radam and LookAhead optimizers into
a single one. We used the 2D network with 10 blocks and 16 feature maps for each
layer, and MSSIM the loss function.

Table 6.3 tabulates the results for the different optimizers. Since the best results
were obtained for the RAdam optimizer, very consistently improving over the other
optimizers, this was used for the final network.

6.4.5 Adaptive-CS-Net vs ISTA-Net+

In this experiment, we compare the proposed model to ISTA-Net+ [158]. For this
experiment, a 2D network with 10 blocks and 16 feature maps per layer was used,
SSIM as loss function, and RAdam as the optimizer. Since ISTA-Net+ uses a much
smaller single scale architecture with much fewer network parameters, we added
an experiment increasing the feature maps for ISTA-Net+ such that the number of
parameters was the same as for our architecture. According to the results reported in
Table 6.4, the proposed model outperforms ISTA-Net+ significantly. Figure 6.4 shows
a qualitative comparison between ISTA-Net+ and Adaptive-CS-Net on the single-coil
4x dataset. Although for the first image Adaptive-CS-Net reconstructed a better output
in terms of the anatomical structure, the output of ISTA-Net-L+ has a higher SSIM
value. This implies that the radiological evaluation is a complementary step to judge
the quality of the results.
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Figure 6.4: Qualitative comparison of Adaptive-CS-Net vs ISTA-Net+ on the single-coil
4x dataset. The SSIM values are shown in yellow.

Table 6.5: The effect of adding priors to the final network on performance, using the
multi-coil test data.

Acceleration prior SSIM NMSE PSNR

4x
− 0.772 0.025 30.98
+ 0.773 0.028 33.49

8x
− 0.674 0.038 30.90
+ 0.675 0.044 30.27

6.4.6 Soft priors

To assess the contribution of the additional soft priors, we compared the full model
against a version without known phase behaviour eφ,i and without background
information ebg,i . Visually, we observed only small differences. To verify the differences
in a realistic setting, we submitted the results to the public leaderboard of the fastMRI
challenge. As shown in Table 6.5, the network with all priors performed better in
terms of the SSIM metric, although the results worsened in terms of NMSE and PSNR.
Despite the fact that the improvement was minimal, we decided to adopt all priors
for the final model to ensure our participation in the last challenge phase, since the
selection was based on SSIM.
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Figure 6.5: Final network, each block has the same structure as shown in Fig. 6.1 and
is defined by U ,Û [number of scales, kernel size, number of feature maps in the first
scale]. For all layers Leaky ReLU was used as the activation function.

6.5 Adaptive-CS-NET: Submitted model

In this section, we describe the configuration of the submitted model [174] and analyze
the resulting reconstructions. The final performance is evaluated with the quantitative
metrics on the test and challenge datasets, and by presenting the radiological scores
for the challenge dataset as performed by the fastMRI challenge organizers.

Following our model optimization study, the configuration of the final model was
determined as follows. The linear combination of MSSIM and `1 (6.21) was chosen as
the loss function. The 2.5D scheme was chosen with two neighboring slices, with the
loss applied only on the central slice. For training the model, the RAdam optimizer was
deployed. Fig. 6.5 shows the structure of the final network. Each block is determined
by three parameters for the denoiser: 1) the number of scales for the denoiser U ,Û ,
2) the kernel size used in the convolutions and, 3) the number of feature maps
in the first convolutional layer, which is then doubled at each scale. According to
the experiments presented in Fig. 6.2, the number of reconstruction blocks greatly
affects the reconstruction performance, empirically observing that performance still
improves when 15 blocks are used. The available GPU memory is a limiting factor
when designing a deep neural network. To allow for a large number of blocks, we
chose a different design in each block, mixing a less powerful design (16 filters) with
more powerful ones (64 filters). By adopting this strategy, our final design contained
25 reconstruction blocks and has 33M parameters.

Fig. 6.6 shows example results of the final network for the multi-coil track from
the validation dataset. Fig. 6.7 shows examples from the test and challenge datasets.
Table 6.6 shows the SSIM, NMSE, and PSNR values for the test and challenge set (as
described in Section 6.2.1), for the images with and without fat suppression and both
combined, for both single- and multi-coil MRI scans. For the radiological evaluation,
our method scored 2.285, 1.286, and 2.714 for multi-coil 4x, multi-coil 8x, and single-
coil 4x, respectively (the closer to 1, the better). The average runtimes for the model
are 518 and 327 milliseconds for the multi-coil and the single-coil data, respectively.
More details on the results for the challenge were presented in [159].
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Table 6.6: Results for the final model for single- and multi-coil data on the test and
challenge dataset.

Dataset Coil Detail SSIM NMSE PSNR

Test

multi

4x
ALL 0.928 0.005 39.9
PD 0.961 0.002 41.7
PDFS 0.891 0.009 37.9

8x
ALL 0.888 0.009 36.8
PD 0.937 0.005 38.5
PDFS 0.843 0.013 35.3

single

4x
ALL 0.777 0.027 33.7
PD 0.877 0.010 36.9
PDFS 0.685 0.043 30.7

8x
ALL 0.680 0.042 30.5
PD 0.777 0.019 32.4
PDFS 0.575 0.067 28.5

Challenge
multi

4x ALL 0.927 0.005 39.9
8x ALL 0.901 0.009 37.4

single 4x ALL 0.751 0.030 32.7
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Figure 6.6: Example results of the final model for the multi-coil track accelerated
by 8x on the validation dataset. Top row depicts the target image, bottom row the
reconstructed images with the SSIM value in yellow.

6.6 Discussion

In this paper we propose a general method, named Adaptive-CS-Net, for reconstructing
undersampled MRI data, combining ideas from compressed sensing theory with ideas
from MR physics and deep learning. The method was developed in the context of
the 2019 fastMRI challenge, which focused on accelerating knee MR imaging. The
proposed network is an unrolled iterative learning-based reconstruction scheme, in
which a large number of reconstruction blocks refine the MR image by denoising the
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Figure 6.7: Example results of the final network from the test and challenge datasets,
for which no ground truth reconstructions are available.

signal in a learned and multi-scale fashion. Moreover, we added neighboring slices as
input to the sparsifying transform, as well as a number of soft priors that encode MRI
domain knowledge.

The main driver of the performance of our network is the multi-scale architecture,
as demonstrated in a direct comparison with ISTA-Net+ that is corrected by the
number of trainable parameters. According to the experimental results on the number
of blocks for 4x and 8x accelerations of both single- and multi-coil data, we showed
that the number of blocks has a large impact on model performance. Therefore, it
was decided to use the maximum number of blocks that we could fit into the GPU
memory, where we adopted different model designs for the different blocks to save
memory. It might be expected that beyond a certain number of blocks, overfitting
of the data might occur. However, signs of overfitting were not observed during
training and the final number of blocks was only marginally larger than tested in
the optimization experiments. Whether further increase in the number of blocks
could result in even better performance could be the topic of further experiments.
This would, however, need better hardware, as the current design is memory- and
time-bound during training. With the current configuration, final model training took
approximately 7 days on two V100 GPUs.

We experimented with a large variety of loss functions. Results showed that the
linear summation of MSSIM and `1 performed best. Figure 6.6 showed that poor SNR
data yield very low SSIM scores. Surprisingly, within high SNR data, a large variance
of SSIM scores is also found. This highlights the fact that further research is required
in order to develop better quality metrics. Moreover, we defined a 2.5D scheme to
train the network in which three adjacent slices were reconstructed while the loss
function was calculated only for the central slice. The proposed scheme outperformed
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the 2D network as well as 2.5D networks in which the loss was calculated over all
slices. By incorporating the neighbouring slices, the network can exploit existing
correlations into the reconstruction of the target slice, which is our main target as
defined by our loss. It can be expected that for MRI acquisition with less asymmetric
voxel sizes, the inclusion of information of neighbouring slices would become more
important. However, weighing the loss of the neighbouring slices resulted in less
optimal results since it forces the network to solve a more difficult problem: the
network has to reconstruct multiple slices instead of a single one. This reduces the
effective network capacity per slice, leading to a degradation of the reconstruction
performance. We tested different optimizers, where the newly introduced RAdam
outperformed the others and we used it for training the final network. We also
incorporated prior knowledge, including data consistency, known phase behaviour
and background discrimination to support the network in the reconstruction process.
We observed that these priors provided only limited extra performance to the network,
resulting in visually similar images and minimal difference in the metrics.

We can conclude that the Adaptive-CS-Net is sufficiently powerful to learn directly
from the data how to reconstruct the undersampled k-space, being the multi-scale
structure and the use of many reconstruction blocks the main driver of our performance.
As a future work, we want to better understand how much the network is relying
on the priors by adopting interpretable AI techniques such as differentiable image
parameterizations for feature visualization [175]. Stronger use of the priors via the
loss function is an additional option.

As mentioned before, the radiologist scores were based on the visual quality of the
reconstructed images and not on diagnostic interchangeability. Therefore, designing a
network based on the diagnosis can be considered a point for further research. We
furthermore observed that optimizing for SSIM was needed for reaching the final stage
of the challenge, but is not necessarily an ideal representative of radiological image
quality. This observation was very recently confirmed in a comparative study by others
[176]. The proposed method outperforms the benchmark networks, including U-net
[116], cascade net [152], KIKI-net [153], and PD-net [154], on the single-coil track
as reported in [150]. It outperforms as well the i-RIM model [145] on the Multi-coil
track but not the single coil track [159].

6.7 Conclusion

In this paper we propose an adaptive intelligence algorithm called Adaptive-CS-Net,
which was developed in the context of the 2019 fastMRI challenge. In the two
clinically relevant tracks of the challenge, using multi-coil MRI acquisitions, the
proposed method was leading, while on a simulated single-coil track the method
ranked 3rd.
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7
Summary and Future Work

Adapting a radiotherapy treatment plan to the daily anatomy is a crucial task to ensure
adequate irradiation of the target without unnecessary exposure of healthy tissue.
This adaptation can be performed by automatically generating contours of the daily
anatomy together with fast re-optimization of the treatment plan. These measures
can compensate for the daily variation and ensure the delivery of the prescribed dose
distribution at small margins and high robustness settings. In this thesis, we focused on
developing a deep learning-based methodology for automatic contouring for real-time
adaptive radiotherapy either guided by CT or MR imaging modalities. In this chapter,
we summarize the previous chapters, discuss overall results found in this thesis, and
give potential directions of future research.

7.1 Summary

In the first chapter, we introduced adaptive radiotherapy and gave background about
automatic contouring methods as well as MR image reconstruction. In Chapter 2,
we proposed a contour propagation pipeline that is a hybrid between iterative-based
registration and deep learning-based segmentation. The pipeline was trained and
evaluated using three datasets and performed better than only using iterative-based
methods. In Chapter 3, we proposed an adaptive training mechanism for personalized
automatic contour segmentation. This adaptation showed potential for improving
the prediction of the daily anatomy based on personalized imaging accumulated
over fractions. In Chapter 4, We proposed a 3D adversarial network for joint image
registration and segmentation. This work showed that that a discriminator can learn a
measure of image alignment to improve registration. In Chapter 5, we further studied
joining registration and segmentation in a multi-task learning setting. We showed that
training these tasks jointly can substantially improve the network outcome. All the
networks in the previous chapters were trained and tested on CT images for adaptive
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CT-guided radiotherapy, however this can be generalized for MR-guided radiotherapy
by retraining these networks. The remaining problem would be developing a fast MR
reconstruction algorithm, which we proposed in Chapter 6.

Chapter 2 In this chapter, we developed and validated a robust registration pipeline
for automatic contour propagation for online adaptive IMPT of prostate cancer using
elastix software and deep learning. A 3D CNN network was trained for automatic
bladder segmentation of the CT scans. The automatic bladder segmentation alongside
the CT scan are jointly optimized to add explicit knowledge about the underlying
anatomy to the registration algorithm. We included three datasets. The first was used
for training and testing the ConvNet, where the second and the third were used for
the evaluation of the proposed pipeline. The propagated contours were validated
clinically as well. The segmentation network achieved a DSC of 88% and 82% on the
test datasets. The proposed pipeline achieved a MSD of 1.29±0.39, 1.48±1.16, and
1.49±0.44 mm for the prostate, seminal vesicles, and lymph nodes, respectively on
the second dataset and a MSD of 2.31±1.92 and 1.76±1.39 mm for the prostate and
seminal vesicles on the third dataset. The automatically propagated contours met the
dose coverage constraints in 86%, 91%, and 99% of the cases for the prostate, seminal
vesicles, and lymph nodes, respectively. A Conservative Success Rate (CSR) of 80%
was obtained, compared to 65% when only using intensity-based registration. With
80% of the automatically generated treatment plans directly usable without manual
correction, a substantial improvement in system robustness was reached compared to
a previous approach. The proposed method therefore facilitates more precise proton
therapy of prostate cancer, potentially leading to fewer treatment related adverse side
effects.

Chapter 3 In this chapter, we leveraged personalized anatomical knowledge
accumulated over the treatment sessions, to improve the segmentation accuracy of a
pre-trained CNN network, for a specific patient. We investigated a transfer learning
approach, where we fine-tuned the baseline CNN model to a specific patient, based on
imaging acquired in earlier treatment fractions. The baseline CNN model is trained on
a prostate CT dataset from one hospital of 379 patients. This model is then fine-tuned
and tested on an independent dataset of another hospital of 18 patients, each having
7 to 10 daily CT scans. For the prostate, seminal vesicles, bladder and rectum, the
model fine-tuned on each specific patient achieved a Mean Surface Distance (MSD) of
1.64±0.43 mm, 2.38±2.76 mm, 2.30±0.96 mm, and 1.24±0.89 mm, respectively, which
was significantly better than the baseline model. The proposed personalized model
adaptation is therefore very promising for clinical implementation in the context of
adaptive radiotherapy of prostate cancer.

Chapter 4 proposed to combine the registration and segmentation tasks in a deep
learning setting using adversarial learning. We considered the case in which fixed and
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moving images as well as their segmentations are available for training, while seg-
mentations are not available during testing; a common scenario in radiotherapy. The
proposed framework consists of a 3D end-to-end generator network that estimates the
deformation vector field (DVF) between fixed and moving images in an unsupervised
fashion and applies this DVF to the moving image and its segmentation. A discriminator
network is trained to evaluate how well the moving image and segmentation align with
the fixed image and segmentation. The proposed network was trained and evaluated
on follow-up prostate CT scans for image-guided radiotherapy, where the planning
CT contours are propagated to the daily CT images using the estimated DVF. The
proposed GAN network achieved a MSD of 1.13±0.4 mm, 1.81±1.6 mm, 1.00±0.3 mm,
2.21±1.3 mm, and 2.29±2.0 mm, respectively, which was significantly better than the
deep learning baseline model as well as the conventional algorithm. The inference
time of the proposed model is 0.6 sec., thus enabling real-time contour propagation
necessary for online-adaptive radiotherapy.

In Chapter 5, we formulated registration and segmentation jointly via a deep
learning-based Multi-Task Learning setting, allowing these tasks to leverage their
strengths and mitigate their weaknesses through the sharing of beneficial information.
We propose to merge these tasks not only on the loss level, but on the architectural
level as well. The study involves two datasets from different manufacturers and
institutes. We carried out an extensive quantitative comparison between the quality
of the automatically generated contours from different network architectures as well
as loss weighting methods. Moreover, we evaluated the quality of the generated
deformation vector field (DVF). We show that MTL algorithms outperform their Single-
Task Learning (STL) counterparts and achieve better generalization on the independent
test set. The best algorithm achieved a mean surface distance of 1.06±0.3 mm, 1.27±0.4

mm, 0.91±0.4 mm, and 1.76±0.8 mm on the validation set for the prostate, seminal
vesicles, bladder, and rectum, respectively. The high accuracy of the proposed method
combined with the fast inference speed, makes it a promising method for automatic
re-contouring of follow-up scans for online adaptive radiotherapy.

Chapter 6 presented a fast MR reconstruction algorithm, which enables the
application of the automatic contouring methods proposed in the previous chapters for
online adaptive MR-guided radiotherapy. Starting from undersampled k-space data, an
iterative learning-based reconstruction scheme inspired by compressed sensing theory
is used to reconstruct the images. We developed a novel deep neural network to refine
and correct prior reconstruction assumptions given the training data. The proposed
network was ranked #1, shared #1, and #3 on respectively the 8x accelerated multi-
coil, the 4x multi-coil, and the 4x single-coil tracks in the 2019 fastMRI competition
organized by Facebook and New York University (NYU). The average runtimes for the
model are 0.5 and 0.3 seconds for the multi-coil and the single-coil data, thus enabling
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fast reconstruction for MR guided adaptive radiotherapy. This superior performance
in terms of reconstruction quality and time makes the model a good candidate for MR
guided adaptive radiotherapy.

7.2 Discussion and future work

The aim of the work presented in this thesis was to develop and investigate various
methods of automatic contouring for adaptive radiotherapy. Despite the fact that all
experiments presented in this thesis were validated on prostate CT scans, all proposed
methods are generic and can potentially be applied to MR images as well, thus enabling
adaptive CT as well as MR guided radiotherapy. So far the remaining technical
bottleneck for applying these methods on MRIgRT would be the fast reconstruction of
the MR images, which we addressed in the last chapter of the thesis.

In Chapters 4 and 5, we showed that joining segmentation and registration tasks is
very beneficial and clinically important, especially for applications where the output
from both tasks is required such as for dose accumulation and dose planning. We
concluded that the best mechanism to combine both tasks is by modeling these tasks
using a cross-stitch network that shares internal parameters across the tasks. Using
a cross-stitch network, we were able to achieve superior performance in the order
of 1 mm for the mean surface distance of the target organs and OARs. However, on
the independent test set, the deep joint method achieved a result in the order of 2
mm. Compared to the performance of the deep joint network in chapter 5, the hybrid
method presented in Chapter 2 had a better generalization since it is a non-learnable
method and registers image pairs in an iterative manner. However, the hybrid method
running time is in the order of minutes while the joint method takes less than a second,
which makes it a better candidate for online adaptive radiotherapy. The generalization
of the deep joint method could be further improved, however, by deploying one of the
following strategies. First, we could re-train the model and include patients similar to
the test data distribution. This way one could adapt the general model to, for example,
a specific hospital. Second, we could augment the existing training data with realistic
deformations instead of random ones, since such random deformations did not show
improvement in our earlier experiments. This realistic deformation can be drawn from
a generative mechanical model such as the ones presented in [177, 178]. Using such
realistic augmentation would help the network to learn various types and scales of
deformations that might not be available in the original training dataset. At last, we
can adopt a transfer learning strategy similar to the one proposed in Chapter 3, where
we proposed to leverage personalized anatomical knowledge accumulated over the
treatment sessions. In that chapter, we demonstrated that adapting the model to a
specific patient anatomy can improve the performance of the network especially for
the organs that do not deform much from the planning scan as shown in Figure 3.1.
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For the organs that deform between sessions such as the rectum and the bladder, the
performance of the adapted network did not improve significantly as shown in Table
3.2. This adaptation strategy is effective for any existing model, therefore it can be
used to adapt or personalize a pre-shipped model on in-house data without the need
to re-train the model from scratch. This would improve model performance over time
at a minimal cost while maintaining data privacy. Moreover, by adjusting the transfer
learning strategy it can be used for continuously improving model prediction after
being corrected by clinical radiologists.

The networks developed in Chapters 2, 3, 4, and 5 focused primarily on automatic
contour propagation for prostate CT. These networks, however, can be generalized to
MR images for MRIgRT. Various CNN networks with a U-Net variant architecture have
already been proposed in literature for MR prostate segmentation [179, 180, 181,
182] as well as other anatomies such as the brain [183, 184, 185] and the heart [186,
187]. Furthermore, similar networks were successfully adopted for MR registration at
different anatomical sites [16, 117, 188]. The success of the aforementioned methods
that use similar network architecture, makes it very promising our proposed deep
joint networks to generalize to MR images of the prostate and potentially for other
anatomical sites. In order to validate that hypothesis, we need to conduct a study
that involves multiple datasets from different anatomical sites as well as imaging
modalities.

For MRIgRT application, the acquisition and reconstruction time of the MR images
themselves are still a bottleneck for online MRIgRT application. In Chapter 6, we
addressed this problem, where we developed a fast reconstruction algorithm that
works for both single-coil and multi-coil MR images. The output from the network was
clinically acceptable based on the clinical evaluation performed by radiologists [159].
The outcome of this clinical evaluation makes it very promising and encouraging
to be deployed in clinical trials after doing further clinical assessment on different
anatomical sites.

In terms of the clinical readiness of the proposed deep joint registration and
segmentation network, in Chapter 2 we performed an extensive dosimetric evaluation
on the automatically generated contours from the hybrid method. We found that
improving the quality of the generated contours in terms of MSD, resulted in a boost
of the dosimetric measures in terms of V95 and the Conservative Success Rate (CSR)
compared to when only using intensity-based registration. Since the cross-stitch
network achieved an even better geometric performance, we hypothesize that this
improvement would also result in a boost in the corresponding dosimetric measures
and we are currently validating this hypothesis.

A promising direction for future research for the joint network is the addition
of a third task, potentially being radiotherapy dose plan estimation. Hence, we can
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generate contours that are consistent with an optimal dose planning. Further studies
could also focus on sophisticated MTL network architectures like sluice networks [132]
or routing networks [133]. Moreover, we can study how to fuse the contours from the
segmentation and registration paths in a smarter way rather than simply selecting one
of them based on the validation set. It also worth investigating semi-supervised training
techniques [189] in order to improve the generalizability of the proposed networks.
For the fast MR reconstruction network, as a future direction, it will be beneficial
to better understand how much the network is relying on the priors by adopting
interpretable AI techniques such as differentiable image parameterizations for feature
visualization [175]. Stronger use of the priors via the loss function is an additional
option. Considering the end goal of MRIgRT which is to extract image contours and
to subsequently generate a dose planning, it would be interesting to investigate if we
can sacrifice image quality without losing segmentation and registration performance,
which may even further accelerate the MR imaging, going from minutes to seconds.
This could then in the future lead to an almost realtime steering and control modality,
which has benefits for more rapidly moving organs like the lungs and heart.

7.3 General conclusions

In conclusion, this thesis proposes a deep learning based automatic contouring method-
ology for real time adaptive radiotherapy. The proposed networks were evaluated on
prostate CT images, a commonly used modality for treatment planning, but may be
generalized for MR images. Moreover, we proposed a fast MR reconstruction algorithm
in order to accelerate MR acquisition so that our models can be used potentially for
MR guided adaptive radiotherapy as well. All deep learning methods proposed in
this thesis have a runtime of less than a second, thus enabling real-time automatic
contouring necessary for online-adaptive radiotherapy.
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Samenvatting en toekomstig werk

Het aanpassen van een behandelplan voor radiotherapie aan de dagelijkse anatomie is
een cruciale taak, om te zorgen voor een adequate bestraling van het doelwit zonder
onnodige blootstelling van gezond weefsel. Deze aanpassing kan worden uitgevoerd
door automatisch contouren van de dagelijkse anatomie te genereren, samen met
een snelle heroptimalisatie van het behandelplan. Deze maatregelen kunnen de
dagelijkse variatie compenseren en zorgen voor de aflevering van de voorgeschreven
dosisverdeling met kleine marges en hoge robuustheidsinstellingen. In dit proefschrift
hebben we ons gericht op het ontwikkelen van een op deep learning gebaseerde
methodologie voor automatische contouren voor realtime adaptieve radiotherapie,
ofwel geleid door CT- ofwel MR-beeldvormingsmodaliteiten. In dit hoofdstuk vatten
we de voorgaande hoofdstukken samen, bespreken we de algemene resultaten die
in dit proefschrift zijn gevonden en geven we mogelijke richtingen voor toekomstig
onderzoek.

Samenvatting

In het eerste hoofdstuk hebben we adaptieve radiotherapie geïntroduceerd en achter-
grondinformatie gegeven over automatische contouring methoden en MR beeldrecon-
structie. In hoofdstuk 2 stelden we een contour propagatie pijplijn voor die een
hybride is tussen iteratieve registratie en segmentatie op basis van deep learning. De
pijplijn werd getraind en geëvalueerd met behulp van drie datasets en presteerde
beter dan alleen met behulp van iteratieve-gebaseerde methoden. In Hoofdstuk 3
stelden we een adaptief trainingsmechanisme voor gepersonaliseerde automatische
contoursegmentatie voor. Deze aanpassing toonde potentieel voor het verbeteren
van de voorspelling van de dagelijkse anatomie op basis van gepersonaliseerde
beeldvorming geaccumuleerd over fracties. In Hoofdstuk 4 stelden we een 3D
adversarial netwerk voor voor gezamenlijke beeldregistratie en segmentatie. Dit
werk toonde aan dat een discriminator een maat voor beelduitlijning kan leren om de
registratie te verbeteren. In Hoofdstuk 5 bestudeerden we verder het samenvoegen
van registratie en segmentatie in een multi-task learning setting. We toonden aan
dat het gezamenlijk trainen van deze taken het resultaat van het netwerk aanzienlijk
kan verbeteren. Alle netwerken in de voorgaande hoofdstukken zijn getraind en
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getest op CT-beelden voor adaptieve CT-geleide radiotherapie, maar dit kan worden
gegeneraliseerd voor MR-geleide radiotherapie door deze netwerken te hertrainen.
Het resterende probleem zou de ontwikkeling van een snel MR-reconstructiealgoritme
zijn, dat we in hoofdstuk 6 hebben voorgesteld.

Hoofdstuk 2 In dit hoofdstuk hebben we een robuuste registratie pipeline on-
twikkeld en gevalideerd voor automatische contour propagatie voor online adaptieve
IMPT van prostaatkanker met behulp van elastix software en deep learning. Een 3D
CNN netwerk werd getraind voor automatische blaassegmentatie van de CT scans. De
automatische blaassegmentatie naast de CT scan zijn gezamenlijk geoptimaliseerd om
expliciete kennis over de onderliggende anatomie toe te voegen aan het registratie
algoritme. We hebben drie datasets in de studie opgenomen. De eerste werd
gebruikt voor het trainen en testen van het ConvNet, terwijl de tweede en de derde
werden gebruikt voor de evaluatie van de voorgestelde pijplijn. De gepropageerde
contouren werden ook klinisch gevalideerd. Het segmentatie netwerk behaalde een
DSC van 88% en 82% op de test datasets. De voorgestelde pijplijn bereikte een
MSD van 1,29±0,39, 1,48±1,16, en 1,49±0,44 mm voor de prostaat, zaadblaasjes,
en lymfeklieren, respectievelijk op de tweede dataset en een MSD van 2,31±1,92 en
1,76±1,39 mm voor de prostaat en de zaadblaasjes op de derde dataset. De automatisch
gepropageerde contouren voldeden in 86%, 91% en 99% van de gevallen aan de
dosisvoorwaarden voor respectievelijk de prostaat, de zaadblaasjes en de lymfeknopen.
Een conservatief succespercentage (CSR) van 80% werd verkregen, vergeleken met
65% wanneer alleen gebruik werd gemaakt van registratie op basis van intensiteit.
Met 80% van de automatisch gegenereerde behandelplannen die direct bruikbaar zijn
zonder handmatige correctie, werd een aanzienlijke verbetering van de robuustheid
van het systeem bereikt in vergelijking met een eerdere aanpak. De voorgestelde
methode maakt dus een nauwkeurigere protonentherapie van prostaatkanker mogelijk,
wat mogelijk leidt tot minder behandelingsgerelateerde bijwerkingen.

Hoofdstuk 3 In dit hoofdstuk maken we gebruik van gepersonaliseerde anatomis-
che kennis, opgebouwd tijdens de behandelingssessies, om de segmentatienauwkeurigheid
van een voorgetraind CNN netwerk te verbeteren, voor een specifieke patiënt. We
hebben een transfer-learning aanpak onderzocht, waarbij we het baseline CNN model
hebben afgestemd op een specifieke patiënt, gebaseerd op beeldvorming verkregen in
eerdere behandelingsfracties. Het baseline CNN model is getraind op een prostaat CT
dataset van 379 patiënten van één ziekenhuis. Dit model wordt vervolgens verfijnd
en getest op een onafhankelijke dataset van een ander ziekenhuis van 18 patiënten,
die elk 7 tot 10 CT-scans per dag hebben. Voor de prostaat, de zaadblaasjes, de
blaas en het rectum bereikte het op elke specifieke patiënt afgestemde model een
gemiddelde oppervlakte-afstand (MSD) van respectievelijk 1,64±0,43 mm, 2,38±2,76

mm, 2,30±0,96 mm, en 1,24±0,89 mm, wat aanzienlijk beter was dan het basismodel.
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De voorgestelde gepersonaliseerde modelaanpassing is daarom veelbelovend voor
klinische toepassing in het kader van adaptieve radiotherapie van prostaatkanker.

Hoofdstuk 4 stelde voor om de registratie en segmentatie taken te combineren
in een deep learning setting met behulp van adversarial learning. We beschouwden
het geval waarin vaste en bewegende beelden en hun segmentaties beschikbaar zijn
voor training, terwijl segmentaties niet beschikbaar zijn tijdens het testen; een veel
voorkomend scenario in radiotherapie. Het voorgestelde raamwerk bestaat uit een
3D end-to-end generator netwerk dat zonder toezicht het vervormingsvectorveld
(DVF) tussen vaste en bewegende beelden schat en dit DVF toepast op het bewegende
beeld en de segmentatie daarvan. Een discriminator-netwerk wordt getraind om
te evalueren hoe goed het bewegende beeld en de segmentatie overeenkomen met
het vaste beeld en de segmentatie. Het voorgestelde netwerk werd getraind en
geëvalueerd op follow-up prostaat CT-scans voor beeldgestuurde radiotherapie, waarbij
de planning CT-contouren worden doorgegeven aan de dagelijkse CT-beelden met
behulp van de geschatte DVF. Het voorgestelde GAN-netwerk bereikte een MSD van
respectievelijk 1,13±0,4 mm, 1,81±1,6 mm, 1,00±0,3 mm, 2,21±1,3 mm, en 2,29±2,0

mm, wat significant beter was dan het deep learning basismodel en het conventionele
algoritme. De inferentietijd van het voorgestelde model is 0,6 sec., waardoor real-time
contourpropagatie mogelijk is, noodzakelijk voor online-adaptieve radiotherapie.

In Hoofdstuk 5 hebben we registratie en segmentatie gezamenlijk geformuleerd
via een deep learning-gebaseerde Multi-Task Learning setting, waardoor deze taken
hun sterke punten kunnen benutten en hun zwakke punten kunnen verzachten door
het delen van nuttige informatie. We stellen voor om deze taken niet alleen op
loss niveau samen te voegen, maar ook op architecturaal niveau. De studie omvat
twee datasets van verschillende fabrikanten en instituten. We hebben een uitge-
breide kwantitatieve vergelijking uitgevoerd tussen de kwaliteit van de automatisch
gegenereerde contouren van verschillende netwerkarchitecturen en loss wegingsmeth-
oden. Bovendien hebben we de kwaliteit van het gegenereerde deformatievectorveld
(DVF) geëvalueerd. We tonen aan dat MTL algoritmen beter presteren dan hun
Single-Task Learning (STL) tegenhangers en een betere generalisatie bereiken op de
onafhankelijke testset. Het beste algoritme bereikte een gemiddelde oppervlakte-
afstand van 1,06± 0,3 mm, 1,27± 0,4 mm, 0,91± 0,4 mm, en 1,76± 0,8 mm op de
validatie set voor de prostaat, zaadblaasjes, blaas, en rectum, respectievelijk. De
hoge nauwkeurigheid van de voorgestelde methode gecombineerd met de snelle
inferentiesnelheid, maakt het een veelbelovende methode voor automatische re-
contouring van vervolgscans voor online adaptieve radiotherapie.

Hoofdstuk 6 presenteerde een snel MR-reconstructie-algoritme, dat de toepassing
mogelijk maakt van de automatische contourmethodes die in de vorige hoofdstukken
zijn voorgesteld voor online adaptieve MR-geleide radiotherapie. Uitgaande van

109



onderbemonsterde k-ruimtegegevens, wordt een iteratief, op leren gebaseerd re-
constructieschema, geïnspireerd door compressed sensing theorie, gebruikt om de
afbeeldingen te reconstrueren. We hebben een nieuw diep neuraal netwerk ontwikkeld
om eerdere reconstructie-aannames te verfijnen en te corrigeren op basis van de
trainingsgegevens. Het voorgestelde netwerk werd gerangschikt als #1, gedeeld
#1 en #3 op respectievelijk de 8x versnelde multi-coil, de 4x multi-coil en de 4x
single-coil tracks in de fastMRI-wedstrijd van 2019, georganiseerd door Facebook en
New York University (NYU). De gemiddelde looptijden voor het model zijn 0,5 en 0,3
seconden voor de multi-coil en de single-coil data, waardoor een snelle reconstructie
voor MR-geleide adaptieve radiotherapie mogelijk wordt. Deze superieure prestatie in
termen van reconstructiekwaliteit en tijd maakt het model een goede kandidaat voor
MR-geleide adaptieve radiotherapie.

Discussie en toekomstig werk

Het doel van het werk dat in dit proefschrift wordt gepresenteerd was het ontwikkelen
en onderzoeken van verschillende methoden van automatische contouring voor
adaptieve radiotherapie. Ondanks het feit dat alle experimenten in dit proefschrift
gevalideerd zijn op CT-scans van de prostaat, zijn alle voorgestelde methoden generiek
en kunnen ze mogelijk ook worden toegepast op MR-beelden, waardoor zowel
adaptieve CT als MR-geleide radiotherapie mogelijk is. Tot nu toe zou het resterende
technische knelpunt voor het toepassen van deze methoden op MRIgRT de snelle
reconstructie van de MR-beelden zijn, die we in het laatste hoofdstuk van het
proefschrift hebben besproken.

In de hoofdstukken 4 en 5, hebben wij aangetoond dat het combineren van
segmentatie- en registratietaken zeer gunstig en klinisch belangrijk is, vooral voor
toepassingen waarbij de output van beide taken vereist is, zoals voor dosisaccumulatie
en dosisplanning. Wij hebben geconcludeerd dat het beste mechanisme om beide taken
te combineren is door deze taken te modelleren met behulp van een kruissteeknetwerk
dat interne parameters over de taken deelt. Met behulp van een kruissteeknetwerk
waren we in staat om superieure prestaties te bereiken in de orde van grootte
van 1 mm voor de gemiddelde oppervlakteafstand van de doelorganen en OAR’s.
Op de onafhankelijke testreeks behaalde de diepe gezamenlijke methode echter
een resultaat in de orde van grootte van 2 mm. Vergeleken met de prestatie van
de hybride methode, gepresenteerd in hoofdstuk 2, had de hybride methode een
betere generalisatie, omdat het een niet-leerbare methode is en beeldparen op een
iteratieve manier registreert. De looptijd van de hybride methode ligt echter in de
orde van minuten, terwijl de gezamenlijke methode er minder dan een seconde
over doet, wat het een betere kandidaat maakt voor online adaptieve radiotherapie.
De generalisatie van de diepe gezamenlijke methode kan echter verder worden
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verbeterd door een van de volgende strategieën toe te passen. Ten eerste kunnen
we het model opnieuw trainen en patiënten includeren die vergelijkbaar zijn met
de verdeling van de testgegevens. Op die manier zou men het algemene model
kunnen aanpassen aan, bijvoorbeeld, een specifiek ziekenhuis. Ten tweede kunnen we
de bestaande trainingsgegevens uitbreiden met realistische vervormingen in plaats
van willekeurige, aangezien dergelijke willekeurige vervormingen geen verbetering
vertoonden in onze eerdere experimenten. Deze realistische vervormingen kunnen
worden ontleend aan een generatief mechanisch model zoals gepresenteerd in [177,
178]. Het gebruik van een dergelijke realistische vergroting zou het netwerk helpen
om verschillende soorten en schalen van vervormingen te leren die misschien niet
beschikbaar zijn in de oorspronkelijke trainingsdataset. Tenslotte kunnen we een
transfer-leerstrategie toepassen die vergelijkbaar is met die voorgesteld in Hoofdstuk
3, waar we voorstelden om gebruik te maken van gepersonaliseerde anatomische
kennis die tijdens de behandelingssessies werd opgebouwd. In dat hoofdstuk toonden
we aan dat het aanpassen van het model aan een specifieke anatomie van de patiënt
de prestaties van het netwerk kan verbeteren, vooral voor de organen die niet veel
vervormen ten opzichte van de planningscan, zoals te zien is in Figuur 3.1. Voor
de organen die tussen de sessies vervormen, zoals het rectum en de blaas, is de
prestatie van het aangepaste netwerk niet significant verbeterd, zoals blijkt uit Tabel
3.2. Deze aanpassingsstrategie is doeltreffend voor elk bestaand model, en kan dus
worden gebruikt om een vooraf geleverd model op interne gegevens aan te passen of
te personaliseren zonder dat het nodig is het model van nul af aan opnieuw te trainen.
Dit zou de prestaties van het model in de loop van de tijd verbeteren tegen minimale
kosten en met behoud van de privacy van de gegevens. Door de transfer-leerstrategie
aan te passen kan het bovendien worden gebruikt om de voorspelling van het model
voortdurend te verbeteren nadat het door klinische radiologen is gecorrigeerd.

De netwerken die in de hoofdstukken 2, 3, 4 en 5 zijn ontwikkeld, waren in
de eerste plaats gericht op automatische contourpropagatie voor prostaat CT. Deze
netwerken kunnen echter worden gegeneraliseerd naar MR-beelden voor MRIgRT. Ver-
schillende CNN netwerken met een U-Net variant architectuur zijn reeds voorgesteld
in de literatuur voor MR prostaat segmentatie [179, 180, 181, 182] evenals andere
anatomieën zoals de hersenen [183, 184, 185] en het hart [186, 187]. Bovendien
werden soortgelijke netwerken met succes gebruikt voor MR-registratie op verschil-
lende anatomische plaatsen [16, 117, 188]. Het succes van de eerder genoemde
methoden die gebruikmaken van een vergelijkbare netwerkarchitectuur, maakt het
veelbelovend dat de door ons voorgestelde diepe gezamenlijke netwerken kunnen
worden gegeneraliseerd naar MR-beelden van de prostaat en mogelijk ook voor
andere anatomische locaties. Om die hypothese te valideren, zouden we een studie
moeten uitvoeren met meerdere datasets van verschillende anatomische sites en
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beeldvormingsmodaliteiten.

Voor MRIgRT toepassingen vormen de acquisitie en reconstructietijd van de MR-
beelden zelf nog steeds een knelpunt. In hoofdstuk 6 hebben we dit probleem
aangepakt, waarbij we een snel reconstructie-algoritme hebben ontwikkeld dat zowel
voor single-coil als multi-coil MR-beelden werkt. De output van het netwerk was
klinisch acceptabel op basis van de klinische evaluatie uitgevoerd door radiologen. Het
resultaat van deze klinische evaluatie maakt het veelbelovend en bemoedigend om te
worden ingezet in klinische proeven na het doen van verdere klinische beoordeling op
verschillende anatomische plaatsen.

In termen van de klinische gereedheid van het voorgestelde diepe gezamenli-
jke registratie- en segmentatienetwerk, hebben we in Hoofdstuk 2 een uitgebreide
dosimetrische evaluatie uitgevoerd op de automatisch gegenereerde contouren van
de hybride methode. We ontdekten dat het verbeteren van de kwaliteit van de
gegenereerde contouren in termen van MSD, resulteerde in een verhoging van de
dosimetrische maatregelen in termen van V95 en de Conservative Success Rate (CSR)
vergeleken met wanneer alleen op intensiteit gebaseerde registratie werd gebruikt.
Aangezien het kruissteeknetwerk een nog betere geometrische prestatie behaalde,
veronderstellen we dat deze verbetering ook zou resulteren in een boost in de
overeenkomstige dosimetrische metingen en we valideren momenteel deze hypothese.

Een veelbelovende richting voor toekomstig onderzoek voor het gezamenlijke
netwerk is de toevoeging van een derde taak, mogelijk het schatten van het dosisplan
voor radiotherapie. Zo kunnen we contouren genereren die consistent zijn met een
optimale dosisplanning. Verdere studies kunnen zich ook richten op geavanceerde
MTL-netwerkarchitecturen zoals sluisnetwerken [132] of routeringsnetwerken [133].
Bovendien kunnen we onderzoeken hoe we de contouren uit de segmentatie- en regis-
tratiepaden slimmer kunnen samenvoegen in plaats van er simpelweg één te selecteren
op basis van de validatieset. Het is ook de moeite waard om semi-gesuperviseerde train-
ingstechnieken [189] te onderzoeken om de generaliseerbaarheid van de voorgestelde
netwerken te verbeteren. Voor het snelle MR-reconstructienetwerk, als toekomstige
richting, zal het gunstig zijn om beter te begrijpen in hoeverre het netwerk afhankelijk
is van de priors door interpreteerbare AI-technieken toe te passen, zoals differentieer-
bare beeldparameterisaties voor featurevisualisatie [175]. Sterker gebruik van de
priors via de loss-functie is een extra optie. Gezien het einddoel van MRIgRT, namelijk
het extraheren van beeldcontouren en het vervolgens genereren van een dosisplanning,
zou het interessant zijn om te onderzoeken of we de beeldkwaliteit kunnen opofferen
zonder verlies van segmentatie- en registratieprestaties, wat de MR-beeldvorming zelfs
nog verder kan versnellen, gaande van minuten tot seconden. Dit zou in de toekomst
kunnen leiden tot een bijna realtime stuur- en controlemodaliteit, wat voordelen heeft
voor sneller bewegende organen zoals de longen en het hart.
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Algemene conclusies

Samengevat stelt dit proefschrift een op deep learning gebaseerde automatische con-
tourmethode voor real-time adaptieve radiotherapie voor. De voorgestelde netwerken
werden geëvalueerd op CT-beelden van de prostaat, een veelgebruikte modaliteit voor
behandelplanning, maar kan worden gegeneraliseerd voor MR-beelden. Daarnaast
hebben we een snel MR-reconstructie-algoritme voorgesteld om de MR-acquisitie te
versnellen, zodat onze modellen mogelijk ook kunnen worden gebruikt voor MR-
geleide adaptieve radiotherapie. Alle deep learning-methoden die in dit proefschrift
worden voorgesteld, hebben een looptijd van minder dan een seconde, waardoor
real-time automatische contouren mogelijk zijn die nodig zijn voor online adaptieve
radiotherapie.
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Appendix of chapter 5

In this appendix we provide a detailed results for the proposed methods and associated
experiments in terms of DSC and %95 HD.

Table 1: The effect of network input for the different architectures on the validation
set (HMC) in terms of DSC. Higher values are better. Here, ⊕ is the concatenation
operation, and ·‖· represents the inputs to the segmentation network (left of ‖) and
the inputs to the registration network (right of ‖).

Prostate Seminal vesicles Rectum Bladder
Network Input Output path µ±σ median µ±σ median µ±σ median µ±σ median

Seg

I f 0.84±0.03 0.84 0.60±0.14 0.62 0.75±0.10 0.77 0.90±0.07 0.93
I f ⊕Sm 0.85±0.05 0.86 0.66±0.16 0.72 0.79±0.12 0.82 0.93±0.03 0.94
I f ⊕ Im 0.66±0.08 0.67 0.39±0.21 0.40 0.39±0.21 0.41 0.91±0.08 0.93

I f ⊕ Im ⊕Sm 0.86±0.04 0.87 0.64±0.16 0.70 0.78±0.08 0.78 0.93±0.03 0.94

Reg
I f ⊕ Im 0.85±0.06 0.86 0.62±0.18 0.68 0.79±0.08 0.81 0.82±0.10 0.84

I f ⊕ Im ⊕Sm 0.82±0.08 0.83 0.60±0.17 0.65 0.77±0.08 0.80 0.79±0.13 0.83

JRS-reg
I f ⊕ Im 0.87±0.04 0.87 0.68±0.14 0.72 0.82±0.06 0.84 0.87±0.08 0.91

I f ⊕ Im ⊕Sm 0.87±0.04 0.87 0.67±0.15 0.72 0.83±0.06 0.84 0.87±0.08 0.91

Cross-stitch

I f || I f ⊕ Im
Segmentation 0.85±0.03 0.85 0.57±0.19 0.60 0.81±0.08 0.83 0.93±0.05 0.94
Registration 0.87±0.03 0.88 0.67±0.15 0.70 0.82±0.06 0.84 0.87±0.08 0.91

I f || I f ⊕ Im ⊕Sm
Segmentation 0.88±0.04 0.88 0.70±0.11 0.74 0.86±0.05 0.88 0.94±0.02 0.95
Registration 0.87±0.03 0.88 0.68±0.15 0.73 0.84±0.05 0.85 0.88±0.08 0.91

I f ⊕Sm || I f ⊕ Im ⊕Sm
Segmentation 0.77±0.11 0.79 0.52±0.19 0.57 0.80±0.05 0.80 0.93±0.03 0.94
Registration 0.85±0.04 0.85 0.66±0.14 0.72 0.80±0.06 0.82 0.87±0.08 0.90

I f ⊕ Im ⊕Sm || I f ⊕ Im ⊕Sm
Segmentation 0.88±0.04 0.89 0.67±0.15 0.72 0.85±0.05 0.86 0.94±0.03 0.95
Registration 0.86±0.04 0.87 0.67±0.16 0.72 0.83±0.06 0.84 0.88±0.08 0.91

Table 2: The effect of network input for the different architectures on the validation
set (HMC) in terms of %95 HD (mm). Lower values are better. Here, ⊕ is the
concatenation operation, and ·‖· represents the inputs to the segmentation network
(left of ‖) and the inputs to the registration network (right of ‖).

Prostate Seminal vesicles Rectum Bladder
Network Input Output path µ±σ median µ±σ median µ±σ median µ±σ median

Seg

I f 4.4±1.0 4.4 8.6±8.6 7.3 16.5±11.0 13.3 6.9±6.6 4.0
I f ⊕Sm 3.9±1.4 3.6 5.9±5.9 4.1 12.1±9.7 8.9 4.3±3.2 3.0
I f ⊕ Im 9.1±2.3 8.7 14.9±10.5 11.7 45.1±17.3 41.8 5.3±5.6 3.6

I f ⊕ Im ⊕Sm 3.8±1.1 3.6 7.3±9.2 4.2 11.5±6.7 9.6 3.3±1.5 3.0

Reg
I f ⊕ Im 5.5±4.5 4.0 5.6±4.1 4.3 11.0±6.4 9.4 15.7±9.6 12.1

I f ⊕ Im ⊕Sm 7.7±6.3 5.5 6.2±4.2 4.8 11.6±6.8 9.2 17.0±9.5 14.7

JRS-reg
I f ⊕ Im 3.6±1.3 3.0 4.5±3.0 3.3 9.6±5.7 8.2 13.1±10.1 9.4

I f ⊕ Im ⊕Sm 3.6±1.9 3.1 4.4±2.8 3.7 9.8±5.9 8.1 13.4±10.7 10.6

Cross-stitch

I f || I f ⊕ Im
Segmentation 5.1±2.3 4.4 9.5±9.6 6.1 17.2±14.0 12.6 5.0±6.6 3.0
Registration 3.3±0.9 3.0 4.7±3.0 3.7 10.1±6.3 9.0 12.6±10.0 9.4

I f || I f ⊕ Im ⊕Sm
Segmentation 3.0±1.0 3.0 4.3±1.7 3.9 9.5±6.2 7.2 3.3±2.9 2.3
Registration 3.2±0.9 3.0 4.5±3.3 3.6 9.8±6.3 8.6 12.2±10.1 9.7

I f ⊕Sm || I f ⊕ Im ⊕Sm
Segmentation 5.8±2.0 5.9 11.0±13.4 5.8 10.2±4.9 8.5 4.5±4.3 3.0
Registration 4.4±1.6 4.1 4.5±3.3 3.6 10.2±5.7 9.3 12.9±9.3 11.1

I f ⊕ Im ⊕Sm || I f ⊕ Im ⊕Sm
Segmentation 3.1±1.0 3.0 5.4±5.4 4.4 9.7±5.6 8.9 4.2±5.6 2.6
Registration 3.5±1.2 3.2 4.4±3.1 3.4 10.2±6.3 9.1 12.5±10.6 8.7
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Table 3: DSC values for the different networks and loss weighting methods for the
HMC dataset. Higher values are better.

Prostate Seminal vesicles Rectum Bladder
Network Weight Output path µ±σ median µ±σ median µ±σ median µ±σ median

JRS-reg
Equal Registration 0.84±0.16 0.89 0.67±0.25 0.79 0.76±0.14 0.79 0.79±0.17 0.88
Homoscedastic Registration 0.84±0.16 0.89 0.68±0.25 0.77 0.76±0.15 0.80 0.80±0.18 0.89
DWA Registration 0.83±0.16 0.88 0.66±0.25 0.78 0.74±0.15 0.79 0.76±0.18 0.84

Dense

Equal
Segmentation 0.83±0.15 0.88 0.55±0.29 0.65 0.78±0.16 0.81 0.88±0.11 0.93
Registration 0.83±0.16 0.88 0.66±0.25 0.75 0.76±0.15 0.80 0.79±0.16 0.87

Homoscedastic
Segmentation 0.84±0.16 0.89 0.63±0.27 0.75 0.79±0.16 0.82 0.87±0.13 0.93
Registration 0.84±0.16 0.88 0.68±0.25 0.78 0.77±0.14 0.80 0.78±0.17 0.86

DWA
Segmentation 0.84±0.15 0.89 0.58±0.28 0.67 0.79±0.15 0.83 0.88±0.12 0.93
Registration 0.84±0.16 0.89 0.67±0.24 0.76 0.76±0.15 0.79 0.79±0.16 0.87

SEDD

Equal
Segmentation 0.79±0.16 0.85 0.46±0.28 0.53 0.77±0.14 0.80 0.85±0.12 0.91
Registration 0.82±0.16 0.87 0.66±0.26 0.78 0.75±0.15 0.79 0.78±0.16 0.86

Homoscedastic
Segmentation 0.84±0.15 0.89 0.50±0.28 0.58 0.76±0.18 0.82 0.88±0.13 0.94
Registration 0.84±0.16 0.88 0.68±0.24 0.78 0.76±0.15 0.80 0.79±0.17 0.88

DWA
Segmentation 0.83±0.14 0.88 0.62±0.27 0.74 0.78±0.16 0.83 0.87±0.14 0.94
Registration 0.84±0.15 0.88 0.67±0.24 0.78 0.75±0.15 0.79 0.78±0.18 0.86

Cross-stitch

Equal
Segmentation 0.84±0.14 0.89 0.61±0.27 0.73 0.78±0.14 0.81 0.88±0.10 0.93
Registration 0.84±0.15 0.89 0.68±0.24 0.80 0.77±0.15 0.80 0.80±0.16 0.87

Homoscedastic
Segmentation 0.84±0.13 0.87 0.65±0.24 0.76 0.74±0.18 0.80 0.92±0.08 0.95
Registration 0.84±0.15 0.89 0.68±0.24 0.79 0.75±0.15 0.79 0.80±0.17 0.87

DWA
Segmentation 0.82±0.14 0.86 0.66±0.24 0.76 0.75±0.18 0.79 0.92±0.08 0.95
Registration 0.84±0.15 0.89 0.68±0.23 0.79 0.75±0.15 0.78 0.77±0.17 0.83

Table 4: %95 HD (mm) values for the different networks and loss weighting methods
for the HMC dataset. Lower values are better.

Prostate Seminal vesicles Rectum Bladder
Network Weight Output path µ±σ median µ±σ median µ±σ median µ±σ median

JRS-reg
Equal Registration 5.2±5.7 3.2 6.5±7.1 4.0 12.6±6.7 12.0 20.3±14.0 18.6
Homoscedastic Registration 5.7±5.9 3.7 6.2±7.1 3.6 13.0±7.3 11.5 18.5±14.0 13.0
DWA Registration 5.7±5.9 3.5 6.4±6.8 3.7 13.2±7.3 12.2 20.0±13.2 17.6

Dense

Equal
Segmentation 5.7±5.4 4.1 14.4±17.2 6.8 16.8±12.6 13.6 10.9±10.9 5.5
Registration 5.6±5.6 4.0 6.6±7.8 4.0 13.1±6.7 13.0 19.6±12.0 17.4

Homoscedastic
Segmentation 5.8±5.9 3.3 10.0±11.6 5.1 17.1±16.6 13.8 11.4±11.3 5.9
Registration 5.3±5.7 3.0 6.4±6.8 3.2 13.0±6.5 12.6 19.2±13.7 14.2

DWA
Segmentation 5.4±5.5 3.6 12.7±17.0 5.9 16.2±12.5 14.4 10.8±10.7 6.2
Registration 5.3±5.6 3.5 6.0±6.6 3.3 13.1±7.2 13.0 19.4±11.9 17.4

SEDD

Equal
Segmentation 8.5±7.1 6.0 18.9±19.5 8.6 16.7±11.9 14.7 12.7±11.0 8.5
Registration 5.6±5.8 3.6 6.7±7.2 4.1 13.3±7.0 12.0 19.0±12.7 15.2

Homoscedastic
Segmentation 5.7±5.5 3.9 16.0±16.3 10.6 18.8±16.5 15.3 9.4±9.9 4.1
Registration 5.5±5.6 3.3 6.3±6.7 3.6 13.3±7.3 13.0 18.8±13.5 14.6

DWA
Segmentation 6.2±5.4 4.4 11.5±14.0 5.0 16.8±14.4 13.0 9.5±10.8 4.4
Registration 5.8±5.7 4.0 6.4±7.4 3.6 13.4±7.5 12.5 21.9±11.5 19.0

Cross-stitch

Equal
Segmentation 5.8±5.4 4.0 12.2±15.8 5.0 17.0±14.7 14.0 10.8±11.3 4.4
Registration 5.1±5.5 3.2 6.2±8.6 3.3 12.6±6.7 12.0 19.1±12.5 16.2

Homoscedastic
Segmentation 5.9±5.4 4.1 7.8±7.4 4.6 20.5±18.9 14.7 7.8±8.7 3.1
Registration 6.2±5.6 4.5 6.1±7.2 3.2 13.5±7.3 13.5 19.4±12.3 16.3

DWA
Segmentation 6.7±5.8 4.2 7.6±9.1 4.1 20.7±18.6 14.9 7.5±8.8 3.5
Registration 6.0±5.7 4.1 6.1±6.8 3.4 13.5±7.5 13.6 21.5±11.6 20.1
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Table 5: DSC values for the different networks on the validation set (HMC). Higher
values are better.

Prostate Seminal vesicles Rectum Bladder
Network Output path µ±σ median µ±σ median µ±σ median µ±σ median
Seg Segmentation 0.84±0.03 0.84 0.60±0.14 0.62 0.75±0.10 0.77 0.90±0.07 0.93
Reg Registration 0.85±0.06 0.86 0.62±0.18 0.68 0.79±0.08 0.81 0.82±0.10 0.84
JRS-reg Registration 0.86±0.03 0.87 0.69±0.13 0.73 0.83±0.06 0.84 0.88±0.08 0.92

Dense
Segmentation 0.88±0.04 0.89 0.70±0.12 0.73 0.85±0.04 0.86 0.94±0.02 0.94
Registration 0.87±0.04 0.88 0.68±0.15 0.73 0.82±0.06 0.83 0.87±0.08 0.90

SEDD
Segmentation 0.87±0.04 0.88 0.69±0.12 0.72 0.83±0.07 0.84 0.93±0.02 0.94
Registration 0.86±0.04 0.87 0.69±0.13 0.74 0.82±0.06 0.83 0.88±0.08 0.92

Cross-stitch
Segmentation 0.88±0.04 0.88 0.70±0.11 0.74 0.86±0.05 0.88 0.94±0.02 0.95
Registration 0.87±0.03 0.88 0.68±0.15 0.73 0.84±0.05 0.85 0.88±0.08 0.91

Elastix [131] Registration 0.84±0.07 0.86 0.50±0.25 0.53 0.74±0.06 0.74 0.75±0.10 0.76
Hybrid [23] Registration 0.88±0.04 0.89 0.70±0.14 0.72 0.85±0.06 0.87 0.91±0.08 0.95
JRS-GAN [17] Registration 0.86±0.04 0.87 0.61±0.20 0.67 0.82±0.06 0.83 0.88±0.08 0.92

Table 6: % 95 HD (mm) values for the different networks on the validation set (HMC).
Lower values are better.

Prostate Seminal vesicles Rectum Bladder
Network Output path µ±σ median µ±σ median µ±σ median µ±σ median
Seg Segmentation 4.4±1.0 4.4 8.6±8.6 7.3 16.5±11.0 13.3 6.9±6.6 4.0
Reg Registration 5.5±4.5 4.0 5.6±4.1 4.3 11.0±6.4 9.4 15.7±9.6 12.1
JRS-reg Registration 3.8±1.3 3.2 4.1±2.8 3.2 9.9±6.2 8.4 11.7±10.3 9.2

Dense
Segmentation 3.2±1.0 3.0 5.8±7.6 3.9 9.6±5.8 8.0 3.8±3.9 2.8
Registration 3.4±1.1 3.2 4.4±3.0 3.2 10.5±6.0 9.0 12.6±9.2 10.2

SEDD
Segmentation 3.5±1.1 3.3 5.2±5.2 4.0 10.5±5.5 9.7 3.3±1.3 3.0
Registration 3.6±1.2 3.2 4.1±2.6 3.1 10.4±6.3 9.5 11.7±9.9 8.7

Cross-stitch
Segmentation 3.0±1.0 3.0 4.3±1.7 3.9 9.5±6.2 7.2 3.3±2.9 2.3
Registration 3.2±0.9 3.0 4.5±3.3 3.6 9.8±6.3 8.6 12.2±10.1 9.7

Elastix [131] Registration 4.0±1.7 3.7 6.0±3.4 5.6 10.9±5.2 9.8 15.3±8.3 13.6
Hybrid [23] Registration 2.9±0.9 2.8 3.8±2.2 3.1 7.7±4.5 6.1 5.7±4.6 3.3
JRS-GAN [17] Registration 3.4±1.2 3.0 5.3±3.0 4.6 10.1±6.1 8.4 11.0±9.6 7.6

Table 7: DSC values for the different networks on the independent test set (EMC).
Higher values are better.

Prostate Seminal vesicles Rectum Bladder
Network Output path µ±σ median µ±σ median µ±σ median µ±σ median
Seg Segmentation 0.73±0.11 0.77 0.37±0.30 0.28 0.67±0.10 0.68 0.91±0.07 0.93
Reg Registration 0.83±0.16 0.88 0.64±0.26 0.74 0.72±0.16 0.77 0.75±0.19 0.82
JRS-reg Registration 0.84±0.16 0.89 0.68±0.25 0.77 0.76±0.15 0.80 0.80±0.18 0.89

Dense
Segmentation 0.84±0.16 0.89 0.63±0.27 0.75 0.79±0.16 0.82 0.87±0.13 0.93
Registration 0.84±0.16 0.88 0.68±0.25 0.78 0.77±0.14 0.80 0.78±0.17 0.86

SEDD
Segmentation 0.84±0.15 0.89 0.50±0.28 0.58 0.76±0.18 0.82 0.88±0.13 0.94
Registration 0.84±0.16 0.88 0.68±0.24 0.78 0.76±0.15 0.80 0.79±0.17 0.88

Cross-stitch
Segmentation 0.84±0.14 0.89 0.61±0.27 0.73 0.78±0.14 0.81 0.88±0.10 0.93
Registration 0.84±0.15 0.89 0.68±0.24 0.80 0.77±0.15 0.80 0.80±0.16 0.87

Elastix [131] Registration 0.89±0.05 0.91 0.72±0.24 0.82 0.75±0.12 0.76 0.79±0.18 0.87
Hybrid [23] Registration 0.88±0.04 0.89 0.77±0.15 0.81 0.80±0.10 0.82 0.85±0.13 0.90
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Table 8: %95 HD (mm) values for the different networks on the independent test set
(EMC). Lower values are better.

Prostate Seminal vesicles Rectum Bladder
Network Output path µ±σ median µ±σ median µ±σ median µ±σ median
Seg Segmentation 10.7±5.4 9.3 21.4±17.9 15.4 30.5±12.9 29.0 11.2±8.5 10.0
Reg Registration 6.7±5.9 4.2 7.5±8.6 4.3 13.1±6.9 12.0 22.7±14.0 20.2
JRS-reg Registration 5.7±5.9 3.7 6.2±7.1 3.6 13.0±7.3 11.5 18.5±14.0 13.0

Dense
Segmentation 5.8±5.9 3.3 10.0±11.6 5.1 17.1±16.6 13.8 11.4±11.3 5.9
Registration 5.3±5.7 3.0 6.4±6.8 3.2 13.0±6.5 12.6 19.2±13.7 14.2

SEDD
Segmentation 5.7±5.5 3.9 16.0±16.3 10.6 18.8±16.5 15.3 9.4±9.9 4.1
Registration 5.5±5.6 3.3 6.3±6.7 3.6 13.3±7.3 13.0 18.8±13.5 14.6

Cross-stitch
Segmentation 5.8±5.4 4.0 12.2±15.8 5.0 17.0±14.7 14.0 10.8±11.3 4.4
Registration 5.1±5.5 3.2 6.2±8.6 3.3 12.6±6.7 12.0 19.1±12.5 16.2

Elastix [131] Registration 3.6±2.0 2.9 4.6±4.4 3.2 11.3±6.0 11.3 16.1±14.8 10.4
Hybrid [23] Registration 3.9±1.9 3.4 4.8±4.7 3.1 10.3±6.8 8.6 11.1±10.6 6.6
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