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Synopsis
Traditional MR �ngerprinting involves matching the acquired signal evolutions against a dictionary of expected tissue �ngerprints to obtain the

corresponding tissue parameters. Since this dictionary is essentially a discrete representation of a physical model and the matching process

amounts to brute-force search in a discretized parameter space, there arises a tradeo� between discretization error and parameter estimation

time. In this work, we investigate this tradeo� and show via numerical simulation how a neural net-based approach solves it. We additionally

conduct a phantom study using 1.5T and 3T data to demonstrate the consistency of neural net-based estimation with dictionary matching.

Introduction
Magnetic Resonance Fingerprinting (MRF)  is a quantitative MRI technique combining fast data acquisition with robust parameter mapping. One of

its key enablers is dictionary-based parameter estimation. An MRF dictionary is a discrete representation of a physical model constructed by grid-

sampling the parameter space. Naturally, there comes a tradeo� between grid density and matching speed. In neural network (NN)-based MRF

parameter estimation , a trained NN model represents a continuous functional approximation of the inverse physical model and can, in theory,

overcome the fundamental limitation of traditional matching. We show via numerical simulation that the NN-based approach is consistent with full

dictionary matching (FDM) and that fast matching at the speed of the NN performed with a reduced dictionary (RDM) produces a predictable worst-

case discretization error. Further, to strengthen the former result, we evaluate the agreement between NN and FDM on phantom data acquired

using two �eld strengths.

Methods
We used a sequence of 625 time points, TR=12 ms, TE=3 ms, and an optimized FA pattern . A dictionary of 308922 �ngerprints was computed using

Bloch simulation for a T /T  grid with T  range 9-5056 ms, T  range 5-2018 ms, and 2% grid spacing relative to T /T  values. The dictionary was

compressed in time domain to 6 coe�cients using SVD. A 6-layer complex-valued NN  was de�ned that accepts compressed �ngerprints and

outputs T  and T  parameters. To simulate realistic signal corruption for training, �ngerprints were scaled by a random complex scaling factor with

magnitude 0.4-2.4 and phase 0-2π. Complex Gaussian noise of σ=0.01 was added resulting in SNR  range 40-240, where SNR  is de�ned as the

noise level relative to the MR signal from a fully relaxed spin system (with M =1) excited by a 90° pulse . The �ngerprints were normalized to have

unit L  norm. The dictionary was randomly split 90%-10% for training and validation. The NN model was trained using Cramér-Rao bound-weighted

MSE loss  and Adam optimizer (0.001 learning rate, 512 batch-size, 500 epochs). For numerical simulation, �rst, the estimation time was de�ned as

the time required to compute T /T  maps given a single-slice image series of size 224x224 and 6 coe�cients. On Intel Xeon W-2235 CPU, FDM and

NN inference required 23.4 s and 0.5 s, respectively. Then, a coarse dictionary was created with a 36x subsampled T /T  grid - 6x along each axis -

which matched within the same time budget as our NN. We conducted in-dictionary and out-of-dictionary bias-variance analyses where 12 T /T

combinations were chosen from the reduced dictionary's grid and 12 from halfway between its grid points. In each case, 250 noisy realizations of

�ngerprints per T /T  combination were produced at 4 noise levels - SNR ={50,100,150,200}. Estimation bias and variance of FDM, RDM, and our

NN were calculated. For the phantom study, four scans of the T -plane of an HPD System Phantom Model 130  were acquired using Philips Ingenia

1.5T/3T scanners with 15-channel head coil. All scans were in coronal orientation with 224 mm x 224 mm FOV, 1 mm x 1 mm in-plane resolution,

and 4 mm slice thickness. A multi-slice spiral acquisition trajectory (5.9 ms window, 36 interleaves) was used to obtain k-space data for 15 slices.

Coe�cient images were reconstructed from the non-Cartesian k-space data using a non-iterative low-rank inversion method. For each series, T /T

maps were estimated for the central slice using FDM and our NN, and their probe-wise distributions were compared.

Results and Discussion
In the in-dictionary simulation scenario (Figure 1), RDM was comparable to FDM at SNR =50. With increasing SNR, RDM's variance became slightly

lower. This can be attributed to the greater noise contribution than the discretization's contribution (which is zero) to the variance. At SNR ≥100,

RDM's coarse T /T  grid o�ered greater isolation between signal noise and estimate variance resulting in more robust matching. In the out-of-

dictionary case (Figure 2), while all three methods were comparable at SNR =50, RDM approached a �xed 6% standard deviation in higher T  and

mid-range T  values at SNR ≥100. This was expected considering the 6x reduction factor along the T  and T  grid axes of the reduced dictionary

and because the out-of-dictionary T /T  values represented the worst-case o�-grid points for RDM which maximized the contribution of

discretization in the estimation variance. Thus, the drawback of RDM in the out-of-dictionary scenario outweighed its advantage in the in-dictionary

case. In contrast, our NN was consistent with FDM in each case in terms of variance. In the phantom results (Figures 3, 4, and 5), a high agreement

between our NN and FDM was observed for T1 and T2 at both 1.5T and 3T �eld strengths.

Conclusion
T /T  estimation using an NN was not only comparable in precision to matching with a dense dictionary but also was 46x faster. To achieve fast

matching, the dictionary had to be heavily subsampled by a factor of 36 thereby trading away its precision and demonstrating a fundamental

limitation of dictionary matching. Estimation using a simulation-trained NN can replace FDM without signi�cant change in estimation quality for

scans of a standardized phantom at multiple �eld strengths. Future work will investigate the e�ect of discretization on in vivo data where the T /T

distribution is more heterogeneous.
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Figures

Figure 1: Bias-variance plots of T  and T  at di�erent SNR  levels for in-dictionary simulation. In each plot, bias is presented relative to the

reference parameter value, and con�dence intervals represent 1 standard deviation per side.

Figure 2: Bias-variance plots of T  and T  at di�erent SNR  levels for out-of-dictionary simulation. In each plot, bias is presented relative to the

reference parameter value, and con�dence intervals represent 1 standard deviation per side.
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Figure 3: Probe-wise distribution of T  and T  estimates for 1.5T and 3T phantom data showing comparing NN with FDM. Scans 1 and 2 were

acquired with 1.5T scanner whereas scans 3 and 4 with 3T scanner. For better visualization, results corresponding to the phantom's 14 probes are

split into two parts - probes 1-7 and 8-14. Bars indicate estimation median and range.

Figure 4: Estimated maps for 1.5T phantom scan 1. Background values are masked away to focus on the probes. Color scales are logarithmic.

Figure 5: Estimated maps for 3T phantom scan 3. Background values are masked away to focus on the probes. Color scales are logarithmic.
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