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Abstract. Electrocardiography is the most common method to inves-
tigate the condition of the heart through the observation of cardiac
rhythm and electrical activity, for both diagnosis and monitoring pur-
poses. Analysis of electrocardiograms (ECGs) is commonly performed
through the investigation of specific patterns, which are visually recogniz-
able by trained physicians and are known to reflect cardiac (dis)function.
In this work we study the use of β-variational autoencoders (VAEs) as
an explainable feature extractor, and improve on its predictive capac-
ities by jointly optimizing signal reconstruction and cardiac function
prediction. The extracted features are then used for cardiac function
prediction using logistic regression. The method is trained and tested
on data from 7255 patients, who were treated for acute coronary syn-
drome at the Leiden University Medical Center between 2010 and 2021.
The results show that our method significantly improved prediction and
explainability compared to a vanilla β-VAE, while still yielding similar
reconstruction performance.
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prediction

1 Introduction

The electrocardiogram (ECG), is one of the most widely used methods to ana-
lyze cardiac morphology and function, by measuring the electrical signal from
the heart with multiple electrodes. ECG data is used by clinicians for both diag-
nostic and monitoring purposes in various cardiac syndromes. A 12-lead ECG
is routinely obtained in patients to diagnose and monitor disease development.
However, for the interpretation of the ECG signal, the knowledge of an expert is
required. Physicians usually analyze the ECG through the recognition of specific
patterns, known to be associated with disease. This however requires substantial
expertise, and potentially additional relevant information exists in a 12-lead ECG
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missed by human interpretation. Deep learning has already proven its usefulness
in the interpretation of the ECG signal in multiple classification challenges [1,3]
and more recently also in feature discovery by means of explainable AI algo-
rithms [2,7,9,10,15]. The explainablity of AI algorithms is especially valued in
medical settings, where trusting a black box AI algorithm is undesirable [1].

VAEs and in particular β-VAEs have been used as unsupervised explainable
ECG feature generators in the explainable AI algorithms mentioned above [6].
It was shown that a β-VAE, trained on reconstruction of the ECG signal, is able
to extract features from the ECG signal that can be made more interpretable
by visualization of reconstructed latent space samples with the decoder of the
β-VAE [10]. This is a first step towards an explainable deep learning pipeline for
ECG analysis. However, the features generated by a β-VAE when only trained to
minimized reconstruction loss, are likely not optimal for task specific predictions.

The aim of this paper is to explore further improvement of the latent features
by improving their explainability and prediction performance. This is clinically
relevant but unexplored for the post myocardial infarction setting. We propose
to improve explainability by reducing the dimension of the latent space to a
level more manageable for human assessment, while encouraging outcome spe-
cific information to be captured in a small part of the latent space, and while
maintaining ECG reconstruction performance for visual assessment. To achieve
this, we propose a novel method to jointly optimize the β-VAE with a com-
bination of a task specific prediction loss for a subset of the latent space, and
KL-divergence and reconstruction loss for the entire latent space. The task cho-
sen to optimize here is left ventricular function (LVF), one of the most important
determinants of prognosis in patients with cardiac disease. Current assessment
of LVF requires advanced imaging methods and interpretation by a trained pro-
fessional. The ECG, on the other hand, can be obtained by a patient at home.
In combination with automated analysis this would facilitate remote monitoring
of LVF in patients.

2 Methods

2.1 Data

To train the models for both reconstruction and LVF prediction, two datasets
were used: i) A non-labeled dataset consisting of 119,886 raw 10 s 12-lead ECG
signals taken at 500 Hz from 7255 patients diagnosed with acute coronary syn-
drome between 2010 and 2021 at the Leiden University Medical Center, the
Netherlands; ii) A labeled dataset of 33,610 ECGs from 2736 patients of the
same cohort. This dataset was labeled by visual assessment of an echocardio-
gram performed within 3 days before or after the ECG. The label categories,
normal, mild, moderate and severe impairment were binarized for model training.
When the ECG was taken within two weeks after cardiac intervention a 1-day
margin was used. If a cardiac intervention was performed between ECG and
echocardiography, the case was excluded. 11.5% of the ECGs were labeled with
a moderate to severe impaired LVF. The institutional review board approved
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the study protocol (nWMODIV2 2022006) and waived the obligation to obtain
informed consent.

2.2 Data Preprocessing

Fig. 1. Preprocessing, feature extraction and prediction pipeline.

The raw ECG signals were first split into separate heartbeats (400ms before and
after the R-peak, the largest peak in the ECG, that represents depolarization
of the ventricles) with a peak detection method inspired by RPNet, a U-Net
structured CNN with inception blocks, that was trained on manually labeled
peak locations [16]. The heartbeats were then filtered with a magnitude and an
autocorrelation filter. The magnitude filter removed heartbeats with an aver-
age magnitude below a set threshold. The autocorrelation filter removed signals
where both the mean and maximum autocorrelation between the heartbeats were
below a set threshold. These two criteria were used, since ECG signals showing
multiple rhythms can result in low mean autocorrelation, but, if not noisy, will
not result in low maximum autocorrelation. The remaining heartbeats were then
averaged per ECG lead. The μ and σ of the intervals of the subsequent R peaks
were used as an additional feature for LVF prediction.

2.3 Model Overview

To investigate a general improvement to the VAE feature extraction pipeline
[7,9,10,15], the proposed method was tested with two architectures: i) A small
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VAE with 300k parameters consisting of an encoder and a mirrored decoder.
Both parts contained 7 2D convolutional layers, of which 3 were residual lay-
ers, with respective channel sizes of [8,16,32,64,64,64,64] and a kernel size of 5;
ii) A second larger VAE from the FactorECG pipeline as proposed by Van de
Leur et al. (2022) [10] with 50M parameters. The VAEs were both extended at
the bottleneck (the latent space, of size L), with a single fully connected layer
for output prediction, in this case the LVF label, see Fig. 1. The μ and σ of
the RR intervals (time between two subsequent R peaks), were added to the
input of the prediction layer, since the information represented by these features
is lost in averaging the heartbeats. To maintain explainability of the extracted
features, only one fully connected layer is used, as otherwise the features will
become weighted combinations of the latent space values, which makes visualiza-
tion with the decoder and subsequent interpretation complex. However, for pure
prediction performance, additional fully connected layers may have been helpful.
The extracted features, again with the μ and σ of the RR interval, were subse-
quently analyzed with logistic regression using regularized l1 and l2 penalties on
the LVF prediction task, ignoring the output of the prediction layer in the VAE.
The VAEs were build and trained in the PyTorch 1.12 framework and trained on
a Quadro RTX 6000 GPU with CUDA 11.4 [12,13], while for logistic regression
we used the Scikit-learn toolbox [14]. The implementation of our models will be
made publicly available via GitHub at https://github.com/ViktorvdValk/Task-
Specific-VAE.

2.4 Model Training

The β-VAE was first pretrained in a self-supervised manner with the mean heart-
beats of all filtered ECG signals, minimizing i) the mean squared reconstruction
error (MSE) between the input and output ECG, and ii) the KL-divergence
between the output of the encoder and the standard normal distribution. The
KL-divergence loss was weighted with a β factor, like in the original paper [6].
This pretrained VAE was then fine-tuned in two-steps, first the encoder and
decoder were fixed, and only the prediction layer was trained, then all layers
were trained end-to-end. This training scheme was used to ensure more stable
training. For these fine-tuning steps, the loss function was complemented with
a binary cross-entropy loss, which was weighted with a γ factor. The task naive
VAE resulting from pretraining was compared to the task specific VAE result-
ing from both fine-tuning steps. For pretraining, both datasets were combined
and split in a training (85%) and a test set (15%). 5-fold cross validation was
done with the training set with again an 85%:15% ratio between training and
validation set. For fine-tuning, the same procedure was used on just the labeled
dataset, making sure labeled ECGs were in the same set in both cases. All data
splits were grouped by patient and stratified by label in case of the labeled data
splits. Both pretraining and fine-tuning were done until convergence, i.e. until
the loss on the validation set stopped improving for 25 epochs. This was done
to prevent the advantage of additional training of the task specific network. To
prevent overfitting, balanced sampling and regularization by means of drop out
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layers and the Adam optimizer with weight decay were used, this was especially
necessary in the fine-tuning phase. To prevent gradient explosion, gradient clip-
ping and He initialization were used [5].

2.5 Feature Evaluation

The differences between the features from the task naive and task specific VAEs,
were compared w.r.t. reconstruction and prediction. For reconstruction, both
MSE and correlation between input and output ECG, and for prediction the Area
Under the Receiver Operator Characteristic Curve (AUROC) and the macro-
averaged F1 score were used. Significant difference between AUROC scores was
calculated as proposed in Hanley & McNeil (1983) [4]. For visualization of the
representation of a latent space feature f in a so called factor traversal, all
features except f were sampled at their mean, while f was sampled in a range
between μ−3σ and μ+3σ. Using these samples as input for the decoder, creates
a representation of that feature, which can give insight in ECG features that are
important for LVF prediction.

2.6 Baseline Methods

As a baseline method, a principal component analysis (PCA) was performed on
the preprocessed ECGs, to extract features. PCA can be considered an ordered
task naive linear feature extractor that focuses on the axis of the largest variance,
in contrast to the VAEs which are non-ordered non-linear feature extractors, that
are optimized for reconstruction. A logistic regression predictor with just sex and
age as input was used as an additional baseline.

3 Experiments and Results

3.1 Experiments

The proposed pipeline contains several hyper-parameters, of which the latent
space size L was optimized in this study. The influence of the β parameter was
also briefly addressed. L was optimized for its importance in the explainability
and the reconstruction and prediction quality of the model. A higher L increases
the complexity of the model, and consequently decreases its explainability. An L
that is too low, on the other hand, restricts the capacity of the model for recon-
struction and prediction. The PCA baseline method was considered to give an
upper bound of L, since the number of principal components, the PCA analog for
L, indicates how many values would be needed to capture sufficient information.

3.2 Hyperparameter Optimization

The influences of γ on prediction and reconstruction performance was small
and was therefore fixed to 500. The influence of L on prediction quality can
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be seen in Fig. 2. The PCA baseline performs more or less equal to the task
naive networks for all L. For the task specific networks, the F1 scores are higher
than their task naive counterparts and the PCA baseline, especially for lower
L. The task specific VAEs already reached their best prediction performance
starting at L = 2, as compared to the task naive VAEs and the PCA baseline
that reach their best prediction performance from L = 30. The influence of L on
reconstruction can be seen in Fig. 2a and b. All networks perform equal to the
PCA baseline for low latent dimensions. The reconstruction for the small VAE
and the FactorECG VAE does not seems to improve any further for respectively
L >20 and L > 15, where the PCA baseline reconstruction keeps improving with
L. However, setting β to 0 and thereby ablating the variational nature of the
VAEs prevents this stagnation of reconstruction performance. The task specific
networks perform equally well as their task naive counterparts, which suggests
that the additional joint optimization does not have a major negative impact on
reconstruction. The optimization shows that the relevant information for LVF
prediction in the ECG signal can be captured in just two features by both VAEs.
Reconstruction, on the other hand, requires at least 10/15 features for the VAEs
to reach maximum performance. Therefore, in another experiment, a split task
VAE was trained, in which 8 of the latent space features where only optimized
for reconstruction and only 2 also for prediction.

Fig. 2. Influence of the latent dimension L on reconstruction quality: (a) correlation
and (b) MSE, and on prediction quality: (c) AUROC and (d) F1-score, for various
models. Plotted are the mean and standard deviation of 5-fold cross-validation on the
validation set.
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Table 1. Reconstruction and LVF prediction comparison on the test set for the task
naive and task specific architectures. The results show the μ of 5-fold cross-validation.
AUROC is shown with its 95% confidence interval.* p-value < 0.01 between AUROC
of task naive and specific method for all folds.

Architecture L MSE Correlation AUROC F1

Sex and age 2 – – 0.556 (0.520–592) 0.474

PCA 2 147 0.724 0.656 (0,624–0.688) 0.496

Small VAE task naive 2 133 0.739 0.686 (0.655–0.716) 0.503

Small VAE task specific 2 164 0.711 0.842* (0.822–0.861) 0.682

Small VAE split task 2 (10) 76.5 0.838 0.839 (0.819–0.859) 0.695

Small VAE split task β = 0 2 (10) 73.6 0.838 0.846 (0.823–0.862) 0.674

FactorECG [10] task naive 2 139 0.735 0.685 (0.654–0.715) 0.507

FactorECG [10] task specific 2 161 0.724 0.770* (0.745–0.796) 0.695

PCA 10 77.2 0.826 0.761 (0.735–0.787) 0.580

Small VAE task naive 10 63.1 0.854 0.803 (0.781–0.826) 0.586

Small VAE task specific 10 70.6 0.847 0.853* (0.834–0.871) 0.679

FactorECG [10] task naive 10 84.6 0.820 0.770 (0.745–0.796) 0.579

FactorECG [10] task specific 10 87.2 0.822 0.833* (0.813–0.854) 0.707

3.3 Results on the Test Set

Table 1 shows the results on the test set for L = 2 and L = 10. The (split)
task specific networks significantly outperform their task naive counterparts, the
PCA baseline, and the sex and age benchmark w.r.t. LVF prediction. Figure 3a,
3b and 3c show that the split task, in contrast to the task naive small VAE with
β = 0 and β = 4 can be used to encode the ECG signals to a landscape that
visually separates the signals based on LVF status reasonably well. The factor
traversals in Fig. 3e and d show an example of the interpretation of the latent
features. Setting β to 0, creates features that appear visually less informative.
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Fig. 3. Comparison of the latent space for different values of β, for the small VAE. For
task specific methods, the scatter plots show the two dimensions of the latent space that
are optimized for prediction: (a) task naive (β = 4); (b) split task (β = 0); (c) split task
(β = 4). The latent space factor traversals (d) and (e) show the visual representation
of the features for Lead I of the 12-lead ECG signal: (d) β = 0; (e) β = 4.

4 Discussion

Joint optimization of a β-VAE successfully generated features that contain more
information about LVF, without hampering reconstruction of the ECG signal.
We hypothesize that the β-VAEs have multiple optima for ECG reconstruction
of which only some generate features that are relevant for LVF prediction. This
study shows that joint optimization will favor this desired subset of optima, and
that this is true for different architectures. In addition, we showed that jointly
optimizing only a subset of the latent space features for prediction, results in
aggregation of the predictive information, thereby improving explainability.

The AUROC score of the FactorECG VAE prediction is similar when com-
pared to van der Leur et al. (2022) [10] (AUROC≈0.9 for L = 36). However, the
proposed small VAE achieved equal if not better reconstruction and prediction
performance with less than 1% of the parameters as shown in Fig. 2.

The F1 score is considered more robust than the AUROC score with data
imbalance, which is the case here [8]. From Fig. 2d we can therefore conclude
that the task specific networks outperform the task naive networks for any L.
The differences between the task specific networks and their task naive versions
in prediction, at similar reconstruction, indicate that the ECG signal can be
summarized with a set of latent features of which only a subset is important for
LVF prediction. The joint optimization promotes the extraction of this subset
especially when L is small. Figure 2a and b show that the PCA baseline out-
performs both VAEs in reconstruction for L > 20 when β = 4, but not for β
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= 0. This indicates that the VAEs are restricted in reconstruction by the KL-
divergence loss. This loss was shown to promote feature disentanglement and a
gradient in the latent space [11]. Figure 3d and e show that without this loss (β
= 0) the latent features are more complex to interpret. This could be explained
as a reduction of the disentanglement of the features resulting from the absence
of the KL-divergence loss. However, Fig. 3b and c both show a gradient in the
latent space, which suggests that the prediction loss on its own also promotes
a gradient in the latent space. Moreover, Fig. 3c shows dependence, and thus
a lack of disentanglement, between the latent features even when β = 4. This
complex interplay between the three losses used in the joint optimization, is very
relevant for the explainability aspect of this method, but beyond the scope of
the current study. We aim to examine the complex interplay in future work.
In conclusion, the proposed joint optimization improves both explainability and
prediction performance of VAEs by extraction of a smaller set of LVF specific
features from the ECG signal. This could reduce the need of more advanced
imaging methods, currently needed to measure the LVF. This opens the way for
remote monitoring of left ventricular function in patients.
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