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Synopsis
Motivation:

Scans within an MR exam share redundant information due to the same underlying structures. One

contrast can hence be used to guide the reconstruction of another, thereby requiring less

measurements.

Goals:

Multimodal guided reconstruction to reduce scanning times.

Approach:

Our method exploits AI-based content/style decomposition in an iterative reconstruction algorithm.

We explored this concept via numerical simulation and subsequently validated it on

in vivo data.

Results:

Compared to a conventional compressed sensing baseline, our method showed consistent

improvement in simulations and produced sharper reconstructions from undersampled

in vivo data. By enforcing data consistency, it was also more reliable than blind image translation.

Impact:

In the clinic, this can potentially enable a reduced MR exam time for a given image quality or improve

image quality given a scan time budget. The former can reduce strain on the patient, whereas the

latter can improve diagnosis.

Introduction
Different contrast-weighted MR images are reflections of the same underlying tissues and share

redundant information. Therefore, an existing high-quality reference scan can be used to guide the

reconstruction of an undersampled second scan. In this work, we learn an image-to-image model

that explicitly represents the shared information and apply it as an artifact removal operator within

the proximal gradient algorithm. We studied this concept via numerical simulations and validated it

on undersampled in vivo data obtaining higher fidelity reconstructions compared to

wavelet-regularized compressed sensing and pure image translation.

Methods



Our method is based on MUNIT, an unsupervised technique for learning image-to-image generative

models through content/style disentanglement. We describe sets of T1W and T2W images as data

distributions and assume that the contrast-independent structural information can be separated as

“content” from the contrast-specific variations like acquisition settings. Figure 1 illustrates these

modeling assumptions. Plug-and-play (PnP) reconstruction methods

use an off-the-shelf denoiser to model the image prior in an iterative algorithm, applied to the image

estimate alternatingly with a data consistency step. Given a spatially aligned T1W reference scan 𝑥
𝑟𝑒𝑓

during a T2W image reconstruction, we observe that a trained MUNIT can function as an image prior

in a proximal gradient algorithm, applied as a powerful artifact removal operator:
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respectively, represents content maps, is the data-consistent image from iteration , and𝑐 𝑝𝑘−1 𝑘 − 1

is the image at iteration with aliasing artifacts removed. This forms the basis of our𝑥𝑘 𝑘
PnP-MUNITalgorithm, illustrated in Figure 2. If the T1W content perfectly matches the ground truth

T2W content, the algorithm will produce high-quality reconstructions. However, in practice, there is

always some discrepancy between them, e.g. due to misalignment between images, modeling errors

associated with MUNIT, etc. To address this, we initialize the content estimate with the T1W content

and iteratively refine it to be increasingly consistent with the measured data:
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where is a tunable parameter.λ

We analyzed this concept via simulations based on the BrainWeb anatomical models. The 20 brain

volumes were split into MUNIT training (18) and validation (1) sets and a reconstruction test set (1).

Synthetic T1W/T2W spin-echo scans were simulated using TE/TR values randomly chosen from a

fixed set per contrast and were used to train the model. During reconstruction, 2D single-coil T2W

k-space with different accelerations and noise levels was simulated from the test brain volume. We

additionally validated our method on IRB-approved patient data. The MUNIT training data comprised

277 T1W TSE and 279 T2W TSE 2D-acquired coronal brain scans. As reconstruction test set, we used

10 slices from a separate set of 10 patients, each with 13-coil T2W k-space acquired using 3T Philips

Ingenia scanner (with parameters FA=90°, TR=2000-2094ms, TE=90ms, echo train length=17, matrix

size=304x263, in-plane resolution 0.39×0.46mm, slice thickness 2mm, 1D random undersampling

with R=1.8) and the corresponding spatially registered T1W reference scan. We tested on total

acceleration of R=4 and R=8 reached by retrospectively removing portions of the acquired samples.

We used two baselines: (a) L1-Wavelet reconstruction implemented with the ISTA algorithm which

differs from our method in just the denoising step, and (b) pure T1W-to-T2W image translation with

MUNIT which, assuming no knowledge of the acquisition, is defined as the average of synthetic

images obtained from randomly sampled style codes.

Results and Discussion



Figure 3 shows the numerical simulation results for a single slice. Note that the learned content need

not correspond to brain tissues since the model learns useful arbitrary content representations to

solve the learning problem. Interestingly, some correspondence with brain tissues did emerge here,

e.g. content maps #3 and #9 seem to encode background and fat tissue, respectively. Given ideal

T2W content maps, PnP-MUNITproduced extremely low-error reconstructions, whereas the

reconstruction quality dropped with T1W reference content maps due to the T1W/T2W content

discrepancy. Introducing the content update step significantly reduced error approaching the ideal

content case. PnP-MUNIT consistently improved over L1-Wavelet across the acceleration range and

the different noise levels. As shown in Figure 4, PnP-MUNIT produced sharper in vivo

reconstructions, visible more prominently at R=8. Aggregate metrics for both experiments, shown in

Figure 5, agree with the qualitative observations.

Conclusion
The proposed concept was analyzed in numerical simulations and its practicality was demonstrated

on undersampled in vivo data where it produced substantially improved reconstructions. Future

work will be directed towards more extensive analysis on a larger

in vivo test set and benchmarking against state-of-the-art reconstruction algorithms.

Figure 1: We assume that a pair of MR contrasts of a given anatomy can be decomposed into a shared

“content” representation and separate “style” encodings, and seek to model this relationship with MUNIT via

unpaired training. Given two distributions of image data, content represents a learned feature space shared by



the two distributions, whereas style is a set of latent variables that encode properties of one image distribution

which cannot be explained by the other.

Figure 2: Iteration of the proposed PnP-MUNIT algorithm. The content update step is not shown here. In the𝑘
data consistency update, is the MRI forward operator composed of coil sensitivity encoding, Fourier𝐴
encoding, and sampling, and is the size of the gradient descent step.η



Figure 3: Single-slice result of the numerical simulation. Top: A selection of 12 learned content maps of the

T1W/T2W image pair and the error between them. The 12 original BrainWeb tissue maps are shown for



comparison, though there is no direct correspondence with the content maps. Middle: Reconstructed images.

Here, “ideal content” refers to content maps of the T2W ground truth which are, in theory, ideal for PnP-MUNIT.

Difference image dynamic range is 10% of ground truth. Bottom: Performance comparison over different

acceleration factors and noise levels.

Figure 4: Reconstruction of an undersampled in vivo slice. Difference image dynamic range is 10% of ground

truth. A region of interest from the reconstructions is selected and enlarged to show the detail.

Figure 5: Aggregate metrics over the reconstruction test sets of the numerical simulation (top, 359 slices from 1

test volume) and the undersampled in vivo data (bottom, 10 slices from a test set of 10 patients). The SSIM and

PSNR columns show the mean value and 95% confidence intervals.
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