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Abstract

Background: Magnetic Resonance acquisition is a time consuming process,
making it susceptible to patient motion during scanning. Even motion in the
order of a millimeter can introduce severe blurring and ghosting artifacts,
potentially necessitating re-acquisition. Magnetic Resonance Imaging (MRI)
can be accelerated by acquiring only a fraction of k-space, combined with
advanced reconstruction techniques leveraging coil sensitivity profiles and
prior knowledge. Artificial intelligence (Al)-based reconstruction techniques
have recently been popularized, but generally assume an ideal setting without
intra-scan motion.

Purpose: To retrospectively detect and quantify the severity of motion artifacts
in undersampled MRI data. This may prove valuable as a safety mechanism for
Al-based approaches, provide useful information to the reconstruction method,
or prompt for re-acquisition while the patient is still in the scanner.

Methods: We developed a deep learning approach that detects and quantifies
motion artifacts in undersampled brain MRI. We demonstrate that synthetically
motion-corrupted data can be leveraged to train the convolutional neural net-
work (CNN)-based motion artifact estimator, generalizing well to real-world data.
Additionally, we leverage the motion artifact estimator by using it as a selector for
a motion-robust reconstruction model in case a considerable amount of motion
was detected, and a high data consistency model otherwise.

Results: Training and validation were performed on 4387 and 1304 syntheti-
cally motion-corrupted images and their uncorrupted counterparts, respectively.
Testing was performed on undersampled in vivo motion-corrupted data from
28 volunteers, where our model distinguished head motion from motion-free
scans with 91% and 96% accuracy when trained on synthetic and on real data,
respectively. It predicted a manually defined quality label (‘Good’, ‘Medium’ or
‘Bad’ quality) correctly in 76% and 85% of the time when trained on synthetic
and real data, respectively. When used as a selector it selected the appropriate
reconstruction network 93% of the time, achieving near optimal SSIM values.
Conclusions: The proposed method quantified motion artifact severity in
undersampled MRI data with high accuracy, enabling real-time motion artifact
detection that can help improve the safety and quality of Al-based reconstruc-
tions.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
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1 | INTRODUCTION

Magnetic Resonance Imaging (MRI) is a non-invasive
medical imaging modality essential for visualizing the
internal anatomy of a patient in the clinic, based on
which a diagnosis can be made. While other modal-
ities such as computed tomography (CT) can also
acquire anatomical images in a non-invasive manner,
MRI does not expose the subject to harmful ioniz-
ing radiation. However, a major drawback of MRI is
that the process of acquiring the necessary k-space
data is time-consuming, and requires subjects to lie
still for extended periods of time, which can be espe-
cially challenging for young or very sick subjects. Small
movements can already introduce severe blurring and
ghosting artifacts,' necessitating re-acquisition. One
study reports that 20% of the scans in the investigated
hospital had to be reacquired as a result of motion arti-
facts, with an associated cost estimated at $115,000 per
scanner every year?

If the time required to traverse k-space during acqui-
sition can be reduced, the scan will last shorter, thereby
reducing the chance that the acquired image con-
tains motion artifacts.! Acceleration of MRI can be
achieved by parallel imaging methods (which utilize
multicoil acquisition followed by coil-combination) or
by compressed sensing methods (which utilize inco-
herent undersampling followed by sparsity promoting
reconstruction). In both cases, only a fraction of k-
space is acquired and a reconstruction technique
leveraging prior knowledge is used to fully reconstruct
the image. Recent research employing Atrtificial intelli-
gence (Al) based reconstruction techniques has been
successful.>* but generally assumes an ideal setting
without intra-scan motion.

Whereas acceleration of MRI acquisition lowers the
risk of motion, residual motion artifacts may still result
in images with reduced diagnostic quality. This prob-
lem is exacerbated by the fact that, when a lower
percentage of k-space is sampled, the relative impact
of motion becomes higher. In the era of Al-based
reconstructions, however, such motion-corrupted data
may confuse the network, giving rise to reconstructions
that appear of sufficient quality but contain so-called
hallucinations. Examples of hallucinations are the omis-
sion of existing pathology® or the wrongful creation
of structures. As Al hallucinations may take a regular
form (anatomy or pathology), they may go unnoticed
and affect the subsequent clinical decision-making in
contrast to traditional motion artifacts that are easily
recognised by a radiologist. It is therefore of growing
importance to reliably detect motion, preferably in a

real-time and automated fashion. Data-driven motion
detection is preferred in terms of simplicity and flexibility
over magnetic resonance imaging (MR) navigators that
come with increased complexity and acquisition times,
as well as over external trackers that require additional
hardware."®

Motion can be estimated in terms of motion
parameters® on an inter-scan basis by for example,
estimating deformation vector fields’” and on an intra-
scan basis by for example, aligned reconstruction,®'°
which jointly searches for an uncorrupted multi-
shot reconstruction and rigid-body motion parameters,
with recent research inserting deep learning based
components.'! 12 Besides estimating the motion param-
eters, retrospective motion estimation can also focus
on estimating motion in terms of artifacts in the image,
which is useful as a more direct metric of image qual-
ity, and is the focus of this paper. Attempts have been
made to relate motion trajectories acquired with track-
ing systems to image quality, such as integrating motion
based on head speed’® and comparing that to known
values of motion-corrupted cases.'* Convolutional neu-
ral networks (CNNs) have been used to classify fully
sampled MRI images as motion-free or corrupted,'® to
estimate motion between artificially corrupted images
and the corresponding uncorrupted images in terms of
structural similarity (SSIM),'® or to generate probability
maps for motion artifacts in MRI.'7-18

While research has been done on estimating motion
parameters of undersampled data, the aforementioned
motion artifact estimation approaches all work on
fully sampled images, whereas differentiation between
motion and undersampling artifacts is challenging, and
the focus of this paper. Moreover, undersampled imag-
ing has become the clinical standard, which elevates
the importance of differentiating motion artifacts from
undersampling artifacts, that can have similar appear-
ance. Our primary contributions are as follows:

1. We propose a deep-learning based regressor that
can accurately estimate the severity of motion arti-
facts in brain MRI scans. Its ability to detect motion
artifacts in undersampled acquisitions is critical for
potential application in the clinic.

2. We synthesize motion-corrupted raw MR data from
motion-free data, for training with realistic motion-
corrupted and corresponding uncorrupted ground
truth image pairs. We demonstrate on a prospectively
motion-corrupted test set that synthetic motion-
corrupted data can be used effectively during training
in the common case no labeled data with in vivo
intra-scan motion is available.
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FIGURE 1 Overview of our framework. The reconstruction models also receive the coil sensitivity maps as input, which are omitted from
this figure.

TABLE 1 Overview of the different models.

Model Type Arch. Loss Training Data Test Data Unders.
Rsynth Regressor g Equation (1) Synthetic & Still Prospective & Still 1x to 8x
Rvca19 Regressor VGG19 Equation (1) Synthetic & Still Prospective & Still 1x to 8x
Crorart Classifier g - Prospective & Still Prospective & Still 1x to 8x
Rstil Reconstructor f Equation (2) Still Prospective & Still 4x

R motion Reconstructor f Equation (2) Synthetic & Still Prospective & Still 4x

Note: Arch means architecture, unders means undersampling factor. Synthetic refers to the synthetic retrospectively motion-corrupted training set, Still to motion-free

data, and Prospective to the test set with real prospective motion.

3. Our model is able to detect motion corruption dur-
ing acquisition before all k-space lines are sampled,
enabling the possibility to alert the MR technician
early, before the scan is fully completed. It could
also prove valuable as a safety mechanism to pre-
vent low-quality input data being used by Al-based
approaches. Another use case is to leverage the
model in a reconstruction framework, for example
in an optimization strategy that uses the estimated
motion artifact severity as a quality heuristic, or for
the grouping criteria of adjacent k-space shots when
little motion is detected between those shots in an
approach like DISORDER,'? or as stopping criterion
in a model-based reconstruction.

4. We introduce and evaluate one potential use-case for
the regressor: a deep-learning based reconstruction
framework that falls back on a motion-robust solution
when a considerable amount of motion is detected.
This can improve quality if the motion-robust solution
performs less well on motion-free cases, or improve
speed if it is slower than a regular reconstruction
approach.

5. We show that our approach accurately estimates
motion artifact severity on prospectively and ret-
rospectively motion-corrupted in vivo MRI data of
the brain with an undersampling factor between
1 — 8x. Additionally, we investigate the effects of
rigid-body motion on Al-based reconstructions by
training reconstruction models with and without
motion-corrupted data. We show an improvement
in performance on a mixed set of motion-free and
motion-corrupted data as a result of our selector
framework.

2 | METHODS

An overview of our framework is given in Figure 1 and
of our models in Table 1. The motion corruptor can use
one or more motion-free datasets to generate a large
amount of training pairs of motion-corrupted images
with corresponding motion-free ground truth. Either an
undersampled motion-corrupted image or an under-
sampled motion-free image is provided to the networks
during training and inference. The framework contains
a motion-robust and a high data consistency recon-
struction network that are trained to reconstruct either
motion-corrupted data or still data, respectively. The
severity of motion artifacts as estimated by the motion
artifact regressor determines whether the high data
consistency or motion-robust reconstruction is deployed.

2.1 | Motion artifact regression network
For estimating the amount of motion in a scan, we use
a CNN architecture g with weights ¢ called Rgyni, that
takes an undersampled motion-corrupted 2D zero-filled
image slice x as input and returns the predicted motion
artifact amount u. We focused on a 2D image acquisi-
tion protocol as this constitutes the majority of scans
acquired in radiological practice. We propose a loss that
quantifies the average pixel-wise difference between the
motion-corrupted zero-filled image and the motion-free
image, thereby optimizing

arg mqsin llgs(AHACX) — |AHACX — APAXI41l1, (1)
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where the inner L1-norm operator provides a scalar rep-
resenting the mean pixel-wise difference between the
images, and the measurement operator A multiplies the
image with the coil sensitivities, applies the Fourier trans-
form, and finally applies a mask that zeroes out the
k-lines that were not measured. A" is the Hermitian
transpose of A, and A"”Ax applies k-space masking to
x. This loss aims to approximate the intensity of motion
artifacts in the motion-corrupted image, by isolating the
effect of the motion-corruption operator C on the uncor-
rupted image. We reason that comparing the zero-filled
images rather than the fully sampled images in the loss
may lead to more stable training as the network input is
undersampled as well. For the motion-free scans, C is
the identity function and thus the target is 0. We define
Rsynth @s @ CNN with seven blocks, each consisting of
two convolutional with corresponding leaky rectified lin-
ear unit (ReLU) layers, followed by a max pooling layer.
Each block has half the width and height but double
the number of feature layers compared to the previous
block. The final block ends with a linear layer instead
of a max pooling layer. R nin, uses 9M parameters. We
compare this architecture against VGG19,'° a popu-
lar architecture in medical imaging, trained in the same
way on the same data. We used a VGG19 model with
pre-trained weights (IMAGENET1K_V1), where after the
original output layer we added one fully connected layer
that returns the estimated motion artifact severity. This
model Rygg1g Uses 144M parameters.

To mitigate the effect of training variance, we employ
an ensemble that combines 21 instances of the same
network design that were trained with a different seed
and order of data. The median prediction of the 21
networks is considered to be the prediction of the
ensemble. For testing we selected the network that
performed the best on the validation set.

2.2 | Reconstruction selector

We propose a reconstruction ‘selector’ framework that
utilizes the regressor Ry, to estimate the level of
motion artifacts in the image data to be reconstructed.
If substantial motion is detected, a motion-robust
approach is used for reconstruction, otherwise a regu-
lar reconstruction approach is used. This can improve
quality when the motion-robust solution performs less
well on motion-free cases, or improve speed when it
is slower than a regular reconstruction approach. The
regular reconstruction model Ry, is trained to recon-
struct motion-free k-space data, while the motion-robust
model Rotion receives an undersampled corrupted
image slice as input during training, with the target being
the corresponding fully sampled uncorrupted image.
Both reconstruction models use a modified version
of the Adaptive-CS-Network architecture,?’ which is a
deep-learning unrolled iterative reconstruction scheme
consisting of a sequence of blocks that each apply a

reconstruction and a data consistency operation. Specif-
ically, we lowered the number of blocks to ten for
faster training. The data consistency enforces similarity
between the measured k-space data and reconstructed
k-space?’ as follows:

rier = X; — LAR(Ax; — ), (2)

where X; is the output of the reconstruction step in block
i, ripq is the ‘data consistent’ residual image, and 4; is
a learned data consistency modifier for block i/, allow-
ing the data consistency to be imposed less strongly if
beneficial for performance. The training loss for recon-
struction architecture f with weights 8, which differ per
reconstruction model, is described by:

arg min /[ |f,(A"ACX)| = IxI[|, + Y [[If.(A¥ACx)| - Ix]],.
i
®3)

The first term is the loss for the final predicted image
and the second term is the loss for the intermediate
image predicted by block i, compared against the fully
sampled ground truth image. The first term is weighted
stronger via w, which we set to 50.

2.3 | Synthesizing motion-corrupted
K-Space data

We simulate motion-corrupted MRI acquisitions with
a linear interleaved scanning protocol. We synthesize
motion-corrupted scans by applying a 3D rigid motion
pattern to a given still image over a series of timesteps
to simulate the motion of the subject in the scanner. Dur-
ing each timestep, we apply a 3D shift and rotation in
image space, and convert to k-space to sample relevant
k-space lines according to a linear interleaved multi-slice
pattern. Finally,we combine the sampled lines from each
timestep into one motion-corrupted k-space. This pro-
cess is also illustrated in Figure 2. The coil sentitivity
maps were kept unchanged. We used 524 rigid-body
head motion patterns acquired on a scanner with an
optical tracking system from a study where participants
were instructed to perform shaking or nodding motion.?
393 patterns were used for training and 131 for valida-
tion. We multiplied each measured motion pattern by
a uniformly randomly selected factor between 0 and 2
in order to generate a variety of training images with
different amounts of motion. For motion-corrupted val-
idation images, the patterns were either strengthened
or weakened by a random factor of up to 2. The motion
patterns were only used for training data generation, our
approach does not require them during inference.

2.4 | K-Space undersampling patterns

The regressor and reconstruction networks are fed
images reconstructed from zero-filled k-space data
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that was retrospectively undersampled using Cartesian
masks, with k-space lines set to zero in the phase
encoding direction. As a default undersampling mask,
we use the uniformly random distributed sampling pat-
tern as used for the 2019 FastMRI challenge? Given an
undersampling factor R and a center fraction parame-
ter ¢ that determines the fraction of lines guaranteed to
be sampled from the center of k-space, the remaining
lines are sampled with probability p = (% —c)/(1-=oc).
For some experiments we also used an undersampling
mask based on Poisson disk sampling?® that reflects
better undersampling patterns as used by clinical MRI
scanners. It precludes the occurrence of large unsam-
pled gaps in k-space that may be present in completely
random sampling approaches. The sampling probability
is higher near the center (low frequencies), and lower
near the edges (high frequencies). Our implementation
incorporates a center fraction parameter that guaran-
tees a sufficient number of centermost k-space lines
are sampled.

3 | EXPERIMENTS AND RESULTS

3.1 |
details

Training and implementation

The motion artifact regression models were trained
for 9x10° iterations with a batch size of 64 on an
NVIDIA Quadro RTX 6000 GPU, while the reconstruc-
tion models were trained for 3x10° iterations. For the
regression models we selected the retrospective under-
sampling factors per slice random uniformly from the

range of 1x to 8x, with a corresponding central frac-
tion between 11% and 4%, so that the models learn to
estimate motion artifact severity on scans with every
possible reasonable acceleration factor. Even the low
accelerations are interesting as the amount of motion
still needs to be correctly estimated and be discerned
from undersampling artifacts. For reconstruction we
used an acceleration of 4x with 8% central fraction
since the low accelerations are considered to be triv-
ial and 4x acceleration is clinically the most relevant at
the moment.

3.2 | Data
We used multicoil brain T1, T2 and FLAIR scans from
the NYU FastMRI brain dataset’* as motion-free images
and to generate retrospectively 3D-motion-corrupted
images. We focused on a 2D image acquisition proto-
col as this constitutes the majority of scans acquired
in radiological practice. Since 2D acquisition proto-
cols are subject to through-plane motion as well, we
used 3D motion. We discarded images with width or
height smaller than 320 voxels. For training we used
4267 uncorrupted scans, and the same scans again as
basis for 4267 retrospectively motion-corrupted train-
ing scans. 1389 of the training scans are T1-weighted,
2668 are T2-weighted and 210 are FLAIR. For valida-
tion, we used 1304 uncorrupted scans and 1304 derived
motion-corrupted scans (427 T1,809 T2, 68 FLAIR).
For prospectively motion-corrupted data we used the
motion-related artifacts MR-ART dataset.?® This dataset
consists of 3D T1 brain images from 148 volunteers,
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Histogram and scatterplot of motion severity predictions during the evaluation of Ry, on retrospectively motion-corrupted

undersampled NYU FastMRI challenge data. The trend line for predictions on motion-corrupted data is 0.984x + 0.016.

who were asked to lie still, nod five times (‘Head Motion
1), and nod ten times (‘Head Motion 2’) during three
separate scans, respectively. For the motion-free vol-
unteer task, 119/28/1 image volumes were labeled as
‘Good’/'Medium’/'‘Bad’ quality images by neuroradiolo-
gists. This changed to 7/59/75 for the first head motion
task and 3/22/122 for the second head motion task.
Twenty-eight sets of three scans each were used as
test set. We resampled the MR-ART images from 1 x 1
mm to 0.6875 x 0.6875 mm followed by cropping to
320 x 320 pixels to match the resolution of the FastMRI
challenge dataset. We discarded slices above the top of
the head since those contain no information, as well as
any slices > 85 mm lower to avoid slices where the face
had been removed for anonymization purposes and to
match the NYU FastMRI data that only contains the top
of the head.

3.3 | Performance of motion artifact
regressor on retrospectively
motion-corrupted data

The motion artifact regression model Rsyni, Was trained
on 4267 and 120 motion-free and 4267 and 120
derived synthetically motion-corrupted NYU and MR-
ART cases, respectively. While prospectively corrupted
MR-ART data was available, only retrospectively cor-
rupted data was used during training as we wanted
to investigate the effectiveness of training exclu-
sively on synthetically generated data. For validation,
we used 1304 uncorrupted scans and 978 motion-
corrupted scans.

While our approach predicts the motion amount as a
scalar, for evaluation we instead report the ability to dif-
ferentiate between still and motion scans based on the
predicted motion amount, since the quantified motion
artifacts is a non-interpretable number and to allow

for a comparison against other approaches. Figure 3
displays a histogram of the predictions of Rgyn on ret-
rospectively motion-corrupted NYU FastMRI data. Given
a classification threshold separating the two peaks
in the histogram at the lowest place in between, the
model has an accuracy of 93.1%, with a false posi-
tive rate of 6.6% (incorrectly predicting a high amount
of motion on a still scan) and a false negative rate
of 7.3% (incorrectly predicting less motion than the
threshold on a scan affected by motion). These results
demonstrate that the regressor can accurately detect
motion and differentiate between still and retrospectively
motion-corrupted images.

3.4 | Performance of motion artifact
regressor on prospectively
motion-corrupted data

To assess whether the results on retrospectively
motion-corrupted data are indicative of performance on
prospectively motion-corrupted scans, we also evaluate
the model Ry on 28 volunteers (84 scans in total)
from the MR-ART dataset. While the regressor is able
to quantify motion artifacts as a scalar, only three dis-
crete clinical artifact score labels by neuroradiologists
(‘good’ < ‘medium’ < ‘bad’) and three task labels (still
< head motion 1 < head motion 2) are available on
the prospectively motion-corrupted data, as described
in Section 3.2. We therefore evaluated the model based
on the correspondence between its motion estimations
and the artifact or task labels. First, we provided slices
from the three different tasks per volunteer to the model
and checked whether the difference in estimated motion
artifact severity between the slices was in line with their
labels, provided of course that the labels were different,
that is, were not both ‘Bad’. For a given slice pair (there
are three possible pairs per slice per volunteer), the

85U8017 SUOWWOD A1) 8|t jdde 8y} Ag peusenob a1e seoile VO ‘8sN JO S8|nJ o} Akeiq1T8uljuO 8|1 UO (SUOTIPUCO-PUB-SWB)W0D" A8 | 1M Ake.q 1 |Bu [U0//SANY) SUORIPUOD pue swie 1 8y} 89S *[¢202/T0/y0] Uo Ariqiauliuo Ae|im ‘Uepe JO AIsIeAlun Ag 8T69T dW/Z00T 0T/I0p/W0d A8 |im Azl jpul|uo"wdee//sdny wo.j pepeojumod ‘0 ‘602rELrZ



MRI MOTION ARTIFACT ESTIMATION

MEDICAL PHYSICS——

0.10 1 0.10 1
€ €
3 0.08 3 0.08
€ €
< <
§ 0.06 1 § 0.06 1
° °
= =
T 0.044 T 0.04
] ks]
5 S
2 0.02 1 2 0.02 1
o / o
0.00{ == 0.00{ ©
Sfill Headmotfon 1 Headmotibn 2 Gdod Medium Béd

FIGURE 4 Predictions of our model Rgyn, on MR-ART data for each set of three scans per volunteer, with each scan grouped either by
motion task (left) or artifact label (right). Each colored line corresponds to a different volunteer. Lines are vertical if the same artifact label was
given to multiple tasks of the same volunteer. The data point for each scan was obtained by averaging the predictions for all its slices, with each

slice having a random undersampling factor.

TABLE 2 Performance of the different models on MR-ART data with a random undersampling factor between 1 — 8x.

Data label: ~ Good Artifact score Medium Artifact score Bad Artifact score 3 Label- 2 Label-
Prediction Good? Med| Bad| Good| Med? Bad| Good| Med| Bad?t accuracy accuracy
Rsynth 88% 12% 0% 30% 48% 22% 0% 14% 86% 76% 88%
RvcG19 76% 8% 16% 35% 22% 43% 0% 0% 100% 71% 83%
Crnrart 96% 4% 0% 13% 57% 30% 0% 6% 94% 85% 95%

model correctly orders the artifact score labels 98.1% of
the time. If instead of the artifact label we consider the
task (still < head motion 1 < head motion 2), the model
correctly predicted the ordering only 89.7% of the time.
If we only compared the still task against head motion
task 1 and 2, that is, not including the comparison of
head motion task 1 against 2, this increased to 98.0%.
In other words, estimating which task was performed is
challenging since the artifacts caused by head motion
task 1 and 2 are hard to distinguish from each other.
Figure 4 illustrates the average predictions of Ry for
each set of three scans per volunteer on a per-volume
basis. The model predicted an increasing amount of
motion 100% of the time as the label of a volunteer
progressed from Good to Medium or from Medium
to Bad. When looking at predictions between different
volunteers, it can be seen that the model sometimes esti-
mated a scan to have more severe motion artifacts than
a scan of another volunteer despite it having a better
label.

We also evaluated the model on the prospectively
motion-corrupted data using the motion amount pre-
dicted by our model to bin scans into one of three artifact
score categories (Good, Medium or Bad quality) based
on two thresholds, which were selected to maximize
accuracy on 120 MR-ART cases not included in the test
set. The results on the prospectively motion-corrupted
test set are shown in Tables 2 and 3.

The VGG19 architecture did not perform as well as
Rsynth on the test set using the same training conditions
and data, potentially because its architecture is much
larger (namely seven times more parameters), making
it more susceptible to overfitting. We used pre-trained
weights for Rygg1g as itimproved the accuracy by about
2%.

We also trained a model on MR-ART artifact labels
specifically (Cpyart) On 120 training cases. As this work
focuses on training with synthetic data (Rgyn), this
experiment is not intended to be a competitive com-
parison, but it serves to demonstrate what performance
can be reached when training to predict the labels on
prospectively motion-corrupted data. The model cor-
rectly ordered the artifact score labels 99.85% of the
time for a given slice pair per subject, for example given
a ‘medium’ and ‘bad’ slice, the model correctly pre-
dicted almost always more motion for the ‘bad’ slice.
It achieved an accuracy on inter-subject separability
between Good and Medium/Bad volumes of 95.2%,
though that required reducing the task of the model to a
classification task and training on prospectively motion-
corrupted data, both of which were not the goal of
this paper.

In an alternative experiment where Ry, was trained
and evaluated on fully sampled data instead of under-
sampled data, it correctly ordered the artifact score
labels 98.5% of the time for a given slice pair per subject,
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TABLE 3 Performance of the different models on MR-ART data with a random undersampling factor between 1 — 8x.

Task: Still task Head motion task 1 Head motion task 2 3 Task- 2 Task-
Prediction Stillt HM1| HM2| Still] HM11 HM2| Still] HM1| HM21 accuracy accuracy
Rsynth 93% 7% 0% 14% 39% 46% 7% 21% 71% 68% 91%
Rvcae19 93% 7% 0% 25% 57% 18% 1% 39% 50% 67% 86%
Crnrart 96% 4% 0% 4% 39% 57% 4% 1% 86% 74% 96%

HM1 and HM2 stand for head motion task 1 and 2.

TABLE 4 Performance in SSIM of the individual reconstruction
models and the selector framework.

Dataset: Still Data Motion Data

Metric [median] y + o SSIM [median] u + o SSIM
Fully Sampled [1.000] 1.000 + 0.000 [0.762] 0.742 + 0.161
Zero-Filled [0.761] 0.750 + 0.0772 [0.648] 0.629 + 0.108°

Ratil [0.915] 0.892 + 0.0942
[0.909] 0.887 + 0.0957  [0.837] 0.805 + 0.1197
[0.914] 0.891 + 0.096 [0.835] 0.803 + 0.118

Note: The reconstruction models received 4x undersampled data, thus the fully
sampled motion-corrupted data should not be seen as a baseline.
2 Denotes a significant difference from Rggjector-

[0.773] 0.746 + 0.1312

Rmotion

R selector

and achieved an accuracy on inter-subject separability
between Good and Medium/Bad volumes of 88.1%, and
between still data and head motion volumes of 91.7%.

3.5 | Reconstruction models and
selector performance

The reconstruction models were initially trained for 1.7M
iterations with one slice per iteration on uncorrupted
brain T1, T2 and FLAIR images from the NYU FastMRI
dataset?* and subsequently finetuned for 1M itera-
tions on either 4267 uncorrupted cases (model Rgy;) or
both 4267 uncorrupted and 4267 derived retrospectively
motion-corrupted cases (model R otion)- The retrospec-
tively motion-corrupted dataset was used as opposed
to the MR-ART dataset as only the former contained
enough data to train a reconstruction model on.

Table 4 shows the results of the two reconstruc-
tion models. The introduction of motion caused a
large decrease in reconstruction quality of Rgy. In
comparison, the model Rption that was fed motion-
corrupted data during training displayed better per-
formance when evaluated on motion-corrupted data,
although the reconstructions appear less sharp than the
uncorrupted fully sampled images. On still data, the per-
formance of Roion decreased compared to Ry by
7.1%, relative to the target SSIM of 1. When inspect-
ing the learned data consistency modifiers that allow the
data consistency to be imposed less strongly, we mea-
sured a decreased weighing in the first block from 1.00
for Rt to 0.65 for R otion, @and of the remaining blocks
from an average of 0.71 to 0.13. The change in data
consistency strength indicates that it is beneficial for the

motion-induced models to have more freedom to com-
pensate for motion in the measured k-space, and may
explain the lower performance of R ,0tion ON Motion-free
data. Example reconstructions can be seen in Figure 5.

We investigated a way to leverage the advantages
of both the standard and motion-robust reconstruction
approaches, by creating a motion-adaptive reconstruc-
tion framework based on a model selection mechanism
that does not compromise on quality or data consis-
tency for cases without motion. Using the amount of
motion artifacts as predicted by the developed regressor,
we select between a motion-robust versus a conven-
tional reconstruction model. If Rgynn quantifies the
severity of motion artifacts to be above 0.025, we con-
sidered the scan to be motion-corrupted and it was thus
fed into Ryotion rather than Rg . Table 4 shows the
results of the selector framework. The selector frame-
work comes very close to the performance of Ry
on motion-free data and performed much better on
motion-corrupted data, for which it almost matched the
performance of Rotion- 1he gold standard is for the
selector framework to perform as well as Rg; on still
data and as well as Rqtion ON mMotion-corrupted data.
The fact that the framework got close to the optimal
values indicates that the regressor model was most
of the time able to correctly provide Rg; with motion-
free scans and Rotion With scans containing motion
artifacts.

On motion data, in the cases where the regressor
provided accurate/inaccurate results and selected the
optimal/suboptimal network, the difference between the
reconstructions of R otion @nd Ry was 0.0657/0.0235
SSIM on average. This indicates that classification
errors on motion data are made more often when
the reconstructions are similar. On still data the differ-
ence was 0.0054/0.0062, indicating that classification
errors on still data are made more often when the
reconstructions are different.

3.6 | The effect of the sampling scheme
on performance

We investigated the performance of different sampling
strategies, under the assumption that sampling the
same set of k-lines for different cases may make the
undersampling artifacts more predictable and thereby
motion artifacts easier to identify. Acceleration during
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Motion-Free

Motion-Corrupted Motion-Corrupted

Ground Truth Zero-Filled

FIGURE 5

Rstin

Rmotion

From left to right: Fully sampled uncorrupted image, the 4x undersampled zero-filled image (network input) that is uncorrupted

in the first row and motion-corrupted in the other rows, the reconstruction by R and the reconstruction by R otion- The first row shows a case
where Rg performed better, as R qtion blurred structure away in the top left and did not reconstruct detailed structures at the center top. The
second row of images shows a case where R qiion Performed better, as the reconstruction by R propagated some of the motion artifacts.
The bottom images display a case where both models performed suboptimally, as the anatomy is smoothed away at the top and the bottom.

training and evaluation was fixed at 4x. Using random
uniform probability undersampling masks, the model
achieved an accuracy of 76% when predicting the
exact label (Good/Med/Bad). We compared this random
approach, which samples a different set of k-lines for
each case, to a similar masking strategy that always
samples the same set of k-lines for every scan. This
approach achieved an accuracy of 75%. The Poisson
mask approach described in Section 2.4 achieved an
accuracy of 79%, allowing the network to better estimate
motion artifact severity compared to using random uni-
form masking. However, note that we still used random
uniform masking in the other experiments of this paper
to adhere to the fastMRI-challenge setup.

4 | DISCUSSION AND CONCLUSION

We developed a deep-learning based regressor that
can accurately estimate the severity of motion artifacts

in undersampled brain MRI scans. To the best of our
knowledge, the existing retrospective motion artifact esti-
mation approaches require the full set of k-space data to
be available.>'® We investigated motion artifact sever-
ity estimation on accelerated MRI data, which introduces
undersampling artifacts on top of the motion artifacts
that can have similar appearances and are thus chal-
lenging to be distinguished from each other. Our model
is able to detect motion corruption during acquisition
before all k-space lines are sampled, enabling the pos-
sibility to alert the MR technician early, before the scan
is fully completed.

We simulated motion-corrupted MRI acquisitions
based on uncorrupted MRI data, according to a linear
interleaved scanning protocol, though different proto-
cols can be implemented as well. When trained to
quantify the severity of motion artifacts on undersam-
pled motion-free data and undersampled synthetically
motion-corrupted data, the model was able to separate
data from the two classes with an accuracy of over
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93%. While this regressor was trained exclusively on
retrospectively motion-corrupted data, it was still able
to distinguish prospectively motion-corrupted nodding
data from still data 91% of the time, indicating that our
motion-corruption framework generalized well to real
world data. The regressor ordered the artifact score
labels (Good/Medium/Bad) correctly 98% of the time
for each set of scans of a given subject. When com-
pared against VGG19, we found that our architecture
performed better, potentially because the higher num-
ber of parameters of VGG19 makes it more susceptible
to overfitting.

When investigating different sampling strategies, the
use of a particular Poisson disk sampling pattern
improved the performance compared to using random
uniform sampling. We believe that using the same sam-
pling pattern between all training and testing cases
caused the undersampling artifacts to be more pre-
dictable, making it easier to distinguish them from motion
artifacts. However, using such a single sampling mask
instance will introduce a bias, when a different sampling
scheme would be used, that is, a compromise between
generalizability and performance.

Presence of motion severely impacts reconstruc-
tions of fully sampled data by a regular Al-based
approach. By training the reconstruction model also
on motion-corrupted cases, it learns to deviate from
the measured k-space, which can partially alleviate the
negative effects of motion and improve reconstruction
quality on motion-corrupted data. However, the learned
data consistency that allows the model to deviate from
the measured k-space and thereby compensate for the
motion, also reduces how strongly the reconstruction is
based on the measured data when no motion is present
and will therefore negatively impact reconstructions of
still data.

We investigated a way to leverage the advantages
of both the standard and motion-robust reconstruction
approaches, by creating a motion-adaptive reconstruc-
tion framework based on a model selection mechanism
that does not compromise on quality or data consis-
tency for cases without motion. This is done by selecting
the optimal reconstruction network based on our motion
artifact severity estimator. One can also imagine a use-
case where a motion-robust approach performs as well
as a regular approach, but is much more computa-
tionally expensive. In such case, the selector can be a
time saving measure by only performing motion-robust
reconstruction on cases with visible motion artifacts.
We show a significant improvement in reconstruction
performance on a mixed set of motion-free and motion-
corrupted data as a result of our selector framework. For
motion-corrupted cases on which the regressor made a
mistake (i.e., predicted too little motion corruption), the
difference in SSIM between the two reconstruction mod-
els was on average three times as small compared to
when the regressor did correctly estimate much motion

corruption. The cases where the difference in SSIM is
larger are likely to be high motion cases on which R,
performs much worse. These high motion cases are
easier for the regressor to identify correctly. Thus, classi-
fication mistakes by the regressor are most often made
on low motion cases where the choice in reconstruction
model is not very impactful. This is further substan-
tiated by the fact that the selector achieves close to
optimal performance.

A limitation of the used datasets is that the validation
set uses raw k-space in vivo data but with simulated
motion, and the test set uses in vivo image data with
real prospective motion, albeit obtained by instructing
participants to move, that is, not natural motion. As
basis for the retrospectively motion-corrupted training
and validation sets, we used data with a 2D acquisi-
tion protocol. We took the anisotropic voxel sizes into
account when performing rotation and shift calculations.
The lower resolution in the z-direction can make the
simulation less realistic, although we believe the effect
to not be very detrimental since the performance was
good on the 3D test set with real motion. For future
work, the performance of 3D and 2D reconstruction
models on motion-corrupted data could be compared
to investigate the impact of through-plane motion, as
through-plane motion requires the 2D reconstruction
models to hallucinate to fill the gaps. We also would
like to train and evaluate a reconstruction model on
prospectively motion-corrupted cases, though a chal-
lenge is the availability of data and the fact that the
still and motion-corrupted scans need to be perfectly
aligned. Another direction for future research could be
to more explicitly compensate for motion in k-space by
integrating the quantified motion artifacts in the data
consistency term of the reconstruction. Further inves-
tigations could be towards the effect of different motion
patterns on model performance such as finetuning on
nodding patterns, and investigating whether it can be
impactful to take the effect of motion on the coil sensitiv-
ity maps into account during synthetic motion-corruption
and motion compensation.

In conclusion, the proposed motion detector showed
a very high accuracy on retrospectively as well as
prospectively motion-corrupted MRI data, and a motion
synthesis framework can be used effectively during
training in the common case when no labeled data
with real intra-scan motion is available. This enables,
among others, the use of our method as a safety
mechanism against Al hallucinations, as a prompt for
re-scanning, or as a component in a motion-robust
reconstruction framework.
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