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Inclusion Depth for Contour Ensembles
Nicolas F. Chaves-de-Plaza, Prerak Mody, Marius Staring,

René van Egmond, Anna Vilanova and Klaus Hildebrandt

Abstract—Ensembles of contours arise in various applications
like simulation, computer-aided design, and semantic segmen-
tation. Uncovering ensemble patterns and analyzing individual
members is a challenging task that suffers from clutter. Ensemble
statistical summarization can alleviate this issue by permitting
analyzing ensembles’ distributional components like the mean
and median, confidence intervals, and outliers. Contour boxplots,
powered by Contour Band Depth (CBD), are a popular non-
parametric ensemble summarization method that benefits from
CBD’s generality, robustness, and theoretical properties. In this
work, we introduce Inclusion Depth (ID), a new notion of
contour depth with three defining characteristics. First, ID is
a generalization of functional Half-Region Depth, which offers
several theoretical guarantees. Second, ID relies on a simple
principle: the inside/outside relationships between contours. This
facilitates implementing ID and understanding its results. Third,
the computational complexity of ID scales quadratically in the
number of members of the ensemble, improving CBD’s cubic
complexity. This also in practice speeds up the computation
enabling the use of ID for exploring large contour ensembles or
in contexts requiring multiple depth evaluations like clustering.
In a series of experiments on synthetic data and case studies
with meteorological and segmentation data, we evaluate ID’s
performance and demonstrate its capabilities for the visual
analysis of contour ensembles.

Index Terms—Uncertainty visualization, contours, ensemble
summarization, depth statistics.

I. INTRODUCTION

Different applications in simulation, computer-aided design,
and semantic segmentation have to deal with ensembles of
curves. Analyzing these ensembles permits understanding un-
certainties in the results. We focus on ensembles of spa-
tiotemporal scalar fields from which one can extract contours,
closed and consistently-oriented curves. These appear in sev-
eral domains. One example is meteorology, where analysts
use ensembles of weather forecasts to analyze the predictions’
variability under different initial conditions or changes in
the computational model [1]. Another example is semantic
segmentation, where ensembles are used to quantify the uncer-
tainty that might come from the training data or the model [2].
In image-guided medical specialties, ensembles of segmenta-
tions are analyzed for planning the patients’ treatments [3].

Visual inspection of the ensemble can facilitate its analysis
and understanding. Spaghetti plots, which draw each con-
tour in the ensemble using a different color, are a popular
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technique. They are attractive because they are accessible,
represent all the data, and are simple to implement. Neverthe-
less, as the ensemble size increases, spaghetti plots become
cluttered, potentially hiding interesting features of the ensem-
ble. Motivated by these limitations, ensemble summarization
methods have been proposed. They reduce information by
extracting features of interest, such as representative members
and contour variability, from the ensemble and visualize them
using visual encodings based on lines and bands [4]–[7].

A successful contour summarization technique is the con-
tour boxplot (CBP) [7], which has been used in the fields of
meteorology [8] and medicine [9]–[11]. As Fig. 1 illustrates,
like traditional boxplots, CBPs depict four statistical features
of an ensemble: the median, the trimmed mean, confidence
intervals, and outliers. Underlying the CBP is the concept
of statistical depth, which extends univariate order and rank
statistics to complex multivariate datasets by establishing a
center-outward measure of centrality for the ensemble mem-
bers [12].

Contour Band Depth (CBD) was jointly presented with the
CBP visual idiom [7]. CBD draws inspiration from previous
developments in statistical functional depth, generalizing Band
Depth [13] to the contour case. Computing a contour’s CBD
entails finding the number of times it falls within the bands
formed by all J-sized subsets of ensemble contours. The
depth is maximum when the contour falls within all bands
and decreases as fewer bands contain it. CBD is easy to
implement and provides several theoretical guarantees. Unfor-
tunately, CBD’s requirement of comparing a contour against
bands formed by all other contours makes it computationally
expensive. When considering bands made of pairs of contours
(J = 2), as recommended in [7], CBD takesO(N3) operations
to compute the depths of an N -member ensemble, rendering
the method impractical for larger ensembles.

In this paper, we propose an alternative notion of contour
depth called Inclusion Depth (ID). ID contributes to the arsenal
of depth-based contour analysis methods in three ways.

First, ID provides a novel statistical depth for ensembles of
contours. It draws inspiration from Half-Region Depth (HRD)
and generalizes HRD from the class of functions to contours.
This connection to HRD endows ID with theoretical properties
and enables computational advantages analogous to those of
HRD, also for ensembles of contours. HRD operates on graphs
of functions with a natural parametrization and one-to-one
correspondence given by the function’s domain, for example,
the unit interval in R. Extending this approach to the case of
contours is not trivial because of the lack of an independent
variable that establishes correspondences between the contours
and because contours require topological considerations, like
how to handle disconnected components. In Section IV, we
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Fig. 1. Extension of the boxplot idiom (a) to the functional (b) and contour
(c) data types.

present the ID framework, detailing how it overcomes the
challenges that the case of contours brings.

Second, ID leverages a simple principle that makes it
accessible and facilitates the interpretation of the results.
Specifically, ID leverages the inside/outside relationships be-
tween contours to estimate the ensemble’s depth. To compute
a contour’s ID we compute how many other contours of the
ensemble the contour contains and in how many other contours
it is contained. Intuitively, a highly central contour has similar
values for both quantities. An outlier might have an asymmetry
of these quantities, if it’s a magnitude outlier, or lower values
for both, in the case of a shape outlier.

Third, the computation of ID scales better than the CBD
with respect to the number of members in the ensemble. ID
requires O(N2) operations while CBD needs at least O(N3).
The reason is that ID considers all pairs of contours, while
CBD processes all triplets or even quadruples. In Section VI,
we evaluate ID, empirically showing that performing only
pairwise comparisons does not degrade ID’s performance and
yields depth scores qualitatively comparable to CBD’s.

We further demonstrate the practical use of ID in Sec-
tion VII by performing depth-based exploratory analysis of
several real datasets from diverse domains like segmentation
in radiotherapy and meteorological forecasting. Based on the
results, we expect the faster but still performant ID will
enable visual analysis of larger ensembles using depth-based
visualizations like CBP, which allows both quantitative and
qualitative interpretation of contour ensembles. Furthermore,
it will bring applications that require multiple or/and fast depth
evaluations like regression [14] and clustering [15] within
reach.

II. RELATED WORK

Our method fits in the context of uncertainty visualization.
Ensembles permit quantifying predictive uncertainties due to
changes in the initial conditions, the training data, or the model
parameters [2]. Wang et al. [16] survey ensemble visualization
techniques based on the data type, visualization method, and
analytic task.

There are several alternatives to present a visual overview
of contour ensembles. Spaghetti plots are a composition-
after-visualization technique that plots each contour using a
different color [17]. Although straightforward to implement
and interpret, spaghetti plots become cluttered as the size of
the ensemble grows, potentially hiding trends and interesting
members. To address this issue, several ensemble summa-
rization techniques have been proposed in recent years that
aggregate contour data into salient features before visualizing
it. Most available summarization techniques share a visual lan-
guage that uses contour lines for the ensembles’ representative
members like the median, mean, and outliers, and bands for
areas of interest like the ensemble’s spread [18] and confidence
intervals [7].

Available summarization techniques differ in the features
they compute and the assumptions they make. Parametric
model-based techniques assume a data distribution and use
available models to derive statistical quantities. Ferstl et al. [5],
[19] fit a Gaussian distribution on the contours’ PCA-reduced
signed distance field (SDF) transform and use it to derive a
median and calculate bands. In [20], Pothkow and Hege use a
Gaussian model to describe each grid point and use this model
together with iso-contour density and level-cross probability
to extract the iso-contours probability density. Parametric
techniques are conceptually attractive as they permit extract-
ing information analytically [5]. Nevertheless, they impose
assumptions on the data, like normality, which limits the
applicability in practice. Our method is fully non-parametric
using a depth-based ordering of the contours to detect outliers
and derive quantities of interest the median and the trimmed
mean.

The family of data-based non-parametric methods does not
impose assumptions on the data distribution and, therefore,
can describe the ensemble data on each point more accurately
[21], [22]. Local summarization methods operate on the grid in
which contours lie, computing point-wise statistics. Examples
are contour probability plots, which extract bands by thresh-
olding a scalar field of percentages [18], and EnConVis [4],
which performs point-wise kernel density estimation, and then
uses the per-point density to extract bands and representatives.
Contour grid points are not independent of each other, so
computing summaries based solely on point-wise estimates
can fail to consider global characteristics of the contour data
like the topological relationships between contours.

Demir et al. [6] use a vector-to-closest-point representation
along the contours boundary points to quantify their centrality
based on the vector lengths and directions. Their approach
requires only comparisons between contours, making it more
efficient than CBD. Nevertheless, it uses parametric statistical
models that require parameter fitting to obtain the centrality
estimates. Furthermore, it is unclear how the method performs
under different ensemble distributions, which makes it hard to
compare to existing contour depth methods like CBD.

III. BACKGROUND: CONTOUR DEPTH AND BOXPLOTS

A. Statistical Depth
Statistical depth provides a framework for extending con-

cepts like the median, trimmed mean, and outliers, which
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depend on the points’ ranks and orderings from the univariate
to the multivariate case. Given a cloud of N d-dimensional
points X ∈ RN×d, a depth function D(z,X) : Rd → [0, 1]
yields a center-outward measure of the centrality or depth of a
point z with respect to X . Intuitively, the farther away a point
z is from the center of X , the lower its centrality. In practice,
there are different methods for computing D(z,X), which
come with different guarantees in terms of the function’s
behavior like invariance to different geometric transformations
of X [12].

Statistical depth functions were originally devised to handle
multivariate data. Nevertheless, their performance decreases
with a high number of dimensions. Furthermore, in some
cases, data is more naturally represented as functions. In
response to these observations, several definitions of depth that
apply to functional data have been recently proposed [13],
[23]. Two predominant functional depth methods are Band
Depth (BD) [13] and Half-Region Depth (HRD) [23]. Inspired
by the multivariate simplicial depth [24], BD computes a
function’s depth by comparing it to the bands formed by all
other subsets of functions in the ensemble. Contour Band
Depth, presented in the next subsection, generalizes BD’s
formulation and extends it to the case of contours.

Instead of forming bands, HRD looks at the proportion
of functions lying on each side of the function of interest
to determine its depth. The multivariate analog of HRD is
Tukey’s half-space depth [25]. HDR is more computationally
efficient than BD, requiring only O(N) comparisons per
function. Furthermore, it has been shown to yield comparable
depths to BD [23]. The proposed Inclusion Depth generalizes
HDR’s formulation and extends it to the case of contours. In
the following, we outline HDR.

Let X = {x1, x2, ..., xN} with xi : I → R be an ensemble
of functions defined on the compact interval I . The graph of
a function x ∈ X can be defined as

G(x) = {(t, x(t)), t ∈ I} (1)

The epi and hypographs of x, which correspond to the
regions above and below G(x), can be defined as

hyp(x) = {(t, y) ∈ I × R : y ≤ x(t)},
epi(x) = {(t, y) ∈ I × R : y ≥ x(t)}. (2)

The HRD of x can be computed by evaluating the propor-
tion of times G(x) is contained in the epi and hypographs of
other functions of the ensemble. Formally,

HRD(x|X) = min{INhyp(x), INepi(x)}, (3)

where

INhyp(x) =
1

N

N∑
i=1

G(x) ⊂ hyp(xi),

INepi(x) =
1

N

N∑
i=1

G(x) ⊂ epi(xi), (4)

where A ⊂ B is 1 if A is contained in B and 0 otherwise.
HRD in Eq. 3 attains its maximum value of 0.5 when G(x)

is contained in as many epi and hypographs of the other

functions in the ensemble. The HDR satisfies several of the
properties of a valid depth function [26]: linear invariance,
maximality at the center, monotonically decreasing on rays,
and upper-semicontinuity. Finally, a finite-dimensional version
can be obtained by drawing d samples from I . When d = 1,
the Half-Region Depth is equivalent to the Tukey depth.

B. Contour Band Depth

Statistical depth allows for robust and model-free ex-
ploratory data analysis. Contour Band Depth (CBD) permits
applying the depth methodology to contours [7]. Similarly
to functional BD, CBD computes a contour’s depth by de-
termining how many bands formed by all other possible J-
sized contour subsets (where J ∈ Z and J ≥ 2) contain the
contour. A contour is in a band if it contains the intersection
of the band’s contours and is contained in their union. To
reduce the computational cost of verifying contour contain-
ment in

∑N
i=2

(
N
i

)
bands (where N is the size of the contour

ensemble), the authors propose to use J = 2. To alleviate the
tendency of CBD with J = 2 to produce depth ties, the authors
propose a modified CBD (mCBD). Instead of strictly enforcing
the containment property, mCBD considers the proportion of
the contour that falls outside each band when computing its
depth. CBD and mCBD compute an ensemble’s depths in
O(N3) time

C. Contour Boxplots

Boxplots offer a visualization of a dataset’s summary statis-
tics. Specifically, as Fig. 1 illustrates, a boxplot has four
components. The gold and blue-colored lines represent the
median and the trimmed mean, respectively. The trimmed
mean is the average of the dataset with the outliers removed.
Purple bands around the mean encode the interquartile range.
Finally, outliers are shown using red dashed lines. As the
middle and right side of Fig. 1 shows, the idea of boxplots can
be extended to ensembles of functional [27] and contour [7]
types through the concept of functional and contour depth. In
these cases, the per-member depth values are used to compute
the different statistics. The median is the member with the
highest depth value and the interquartile ranges are bands
formed by members whose depths fall in the specified ranges.
Finally, the members with the lowest depths are flagged as
outliers.

IV. INCLUSION DEPTH

In this section, we introduce Inclusion Depth (ID). While
ID can be defined for contours in R2 and R3, for sake of
simplicity, we consider the two-dimensional case.

Let C = {c1, c2, ..., cN} be an ensemble of contours, where
a contour ci is a pair of a function Fi : Ω→ R and an isovalue
qi ∈ R. Here Ω is a compact domain in R2, such as rectangle.
A contour encloses a subset in the plane that we call the inside
region

in(ci) = {p ∈ Ω|Fi(p) < qi}. (5)

ID is based on a simple principle. We evaluate for all pairs
ci, cj ∈ C whether or not in(ci) is contained in in(cj). Then,
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(b)

(a)

Epigraph = Outside

Hypograph = Inside

Fig. 2. Example of the ID computation for a 4-contour ensemble. In red is the
contour for which we are currently estimating the depth. (b) shows the four
comparisons that need to be performed to compute ID based on Eq. 8. Note
that c1 ⊂ c1 (second column) counts for the inside and outside relationships.

we form the fraction of contours of C in which in(ci) is
contained,

INin(ci) =
1

N

N∑
j=1

in(ci) ⊂ in(cj), (6)

and the fraction of contours of C that are contained in(ci),

INout(ci) =
1

N

N∑
j=1

in(cj) ⊂ in(ci). (7)

In the sums in Eqs. 6 and 7, we interpret in(ci) ⊂ in(cj) as
the numerical value 1 if in(ci) is contained in in(cj) and as
0 otherwise. The ID is the minimum of the two fractions

ID(ci|C) = min{INin(ci), INout(ci)}. (8)

Fig. 2 illustrates the process of computing the ID of a
contour. As the top panel depicts, ID is related to HRD.
Specifically, the proof sketch in the appendix shows that
if there is an invertible transform mapping the contours to
graphs of functions, our definition of ID is the same as HRD.
Furthermore, ID is a generalization of HDR. Applying ID to
the region that contains the functions’ graphs is equivalent to
computing the depth of the functions ensemble using HRD.

ID is more general than HDR, accommodating the different
topologies that arise in higher dimensions. Fig. 3 shows
examples of how ID deals with different cases. Note that, by
subset operations, the definitions of INin(c) and INout(c) in
Eqs. 6 and 7 ensure that the two contours under comparison
are nested. As the bottom right panel of Figure 3 shows,
when contours are not nested, the comparison will not add
to the inside or outside counts, effectively reducing the depth
of the contour under consideration. ID has other interesting
properties for which we sketch proofs in the appendix. First,

(a) Valid

(b) Invalid

Fig. 3. Examples of how ID deals with different cases. If contours are nested
(a), their relationship will add to the inside/outside counts. In other cases (b),
the inside/outside counters will not increase, effectively reducing the overall
depth.

ID’s results are invariant to homeomorphic transformations of
the domain Ω, a general class of transformations that includes
affine transformations and Möbius transformations. Second,
ID’s results are invariant to the choice of inside and outside.
Finally, if contours are nested, the contour with median size
attains the largest depth and the depth vanishes when the
contour’ size tends to zero and infinity.

Algorithm 1 shows how to compute the ID of a contour
ensemble. For computations, we assume Ω to be a rectangle,
e.g., the bounding box of the ensemble of contours, and
discretize the rectangle by a regular grid. ID’s scaling behavior
depends mainly on the ensemble’s size (N ). Nevertheless, the
grid size will also impact the algorithm’s scaling behavior
when performing the inside/outside comparisons. Given that
CBD shares this cost, we assume the grid size is constant.
Under this assumption, ID has a computational complexity of
O(N2), which is a significant improvement over the O(N3)
complexity of CBD.

Algorithm 1 Inclusion Depth (ID)
Require: C,N ▷ Contour ensemble, number of contours
dID ← {} ▷ Inclusion depths
for i = 1 to N do

num in← 0;num out← 0 ▷ Inside/outside counts
for j = 1 to N do

num in← num in+ [in(ci) ⊂ in(cj)]
num out← num out+ [in(cj) ⊂ in(ci)]

end for
INin(ci) = num in/N
INout(ci) = num out/N
dID ← dID ⋃

min{INin(ci), INout(ci)}
end for
return dID
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V. EPSILON INCLUSION DEPTH

If the ensemble’s contours are non-smooth and intersect,
inside/outside relationships will be ambiguous. In these cases,
ID will produce ties and low-depth scores that reduce the
method’s practical utility. In this section, we present the
Epsilon Inclusion Depth (eID) that relaxes the definitions of
inside/outside in ID, reducing the effect of highly varying
contours on the depth estimate.

For this extension, we proceed analogously to HRD, for
which modified HRD (mHRD) alleviates the problem that
strongly varying functions pose on HRD by relaxing the
requirement that the graph of a function must lie entirely in the
epi or hypograph. mHRD determines the average proportion
of the domain that a function’s graph lies in the hypo and
epigraphs of other functions [23]. This strategy is not directly
applicable to the case of contours because of the lack of an
independent variable. Therefore, we follow a strategy inspired
by the modified Contour Band Depth in [7], which operates
directly on the contours’ domain and therefore does not require
a dependent variable.

First, we define the epsilon subset operator A ⊂ϵ B for two
sets A,B ⊂ R2. In contrast to the subset operator ⊂, which
returns either 0 or 1, ⊂ϵ yields a value in the interval [0, 1].
It is defined as

A ⊂ϵ B = 1−

{
0 |A| = 0,

|A−B|/|A| otherwise,
(9)

where |A| denotes the area of A and A−B the set difference.
Note that A ⊂ϵ B will be one if B contains A. If a part of A
lies outside of B, ⊂ϵ will yield lower values.

The definition of eID is analogous to ID except that the ⊂
operator is replaced by the ⊂ϵ operator. We consider the values

INϵ
in(ci) =

1

N

N∑
j=1

in(ci) ⊂ϵ in(cj),

INϵ
out(ci) =

1

N

N∑
j=1

in(cj) ⊂ϵ in(ci). (10)

The eID is the minimum of the two values

ϵID(c|C) = min{IN ϵ
in(c), IN

ϵ
out(c)}. (11)

Fig. 4 shows how ⊂ϵ works across a variety of cases. As
the extremes of the first row illustrate, when in(ci) (red)
is completely inside or outside of cj (blue), the difference
between in(ci) ⊂ϵ in(cj) and in(cj) ⊂ϵ in(ci) is the largest.
When the relationship between the contours is ambiguous, the
second row of the figure shows that the difference shrinks.
Also, the values of these quantities decrease, which has the
effect of reducing the contribution of the ci/cj comparison
to the overall depth calculation. Finally, eID is invariant to
area-preserving transformations. We sketch the proof of this
property in the appendix.

As the next sections show, eID provides meaningful results
even when contours have many intersections. The implemen-
tation of eID only requires swapping ⊂ for ⊂ϵ in Alg. 1. eID
maintains ID’s computational complexity of O(N2).

(b)

(a)

Fig. 4. Examples of computing the inside and outside relationships with the
⊂ϵ operator in Equation 9 for different contour configurations. In red and
blue are contour {ci, cj ∈ C}. The first row shows the transition of ci from
being completely inside to completely outside of cj . The second row shows
the values that ⊂ ϵ yields in ambiguous cases.

VI. EXPERIMENTS

In this section, we perform an extensive evaluation of the
Inclusion Depth (ID) method using synthetic data. Specifically,
we assess the scaling behavior of ID as the dataset’s size
increases and investigate the robustness of estimators derived
with ID and the method’s performance at identifying outliers.
Before continuing with the experiments, we detail our exper-
imental setup.

A. Experimental Setup

In the experiments, we compare ID and eID against the other
existing contour depth method: Contour Band Depth (CBD).
We consider the strict and modified (mCBD) versions of CBD.
The only parameter of CBD is the number J of contours used
to form the band. We set it to J = 2 for all the experiments.

We implemented CBD and ID methods in a common
Python-based framework. All methods receive as input a list of
binary masks corresponding to a discretization of Eq. 5. These
binary masks can be obtained, for example, as the output of a
segmentation algorithm or by thresholding scalar fields using
an iso-value. We represent these masks as integer Numpy [28]
two-dimensional arrays with a resolution of 300× 300 pixels
and isotropic pixel spacing. We use Numpy’s built-in functions
to perform operations on the masks, like finding their union
and intersection. It is possible to accelerate CBD and ID by, for
instance, parallelizing the methods’ outer loop. We chose not
to implement such optimizations and focus on the methods’
asymptotic algorithmic scaling.

Similar to [7], we use synthetic ensembles of circular
shapes contaminated with outliers to assess the methods’
performance. We extend the experiments of contour depth by
considering different types of outliers separately, following the
experimental paradigm used to evaluate the functional Half-
Region Depth [23]. The first row of Figure 5 showcases the
different outliers we consider.

To generate ensembles of contours contaminated with out-
liers, we define a stochastic model from which we can sample
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shapes. The model results from a mixture of a base model
r0 and a second model r1, which depends on the outlier type
under consideration. For both r0 and r1, we use stochastic pro-
cesses indexed by the shape’s angle, yielding angle-correlated
values for the shape’s radius. Specifically, we define the base
model r0 as

r0(θ) = f0(θ) + ϵ0(θ), (12)

where θ ∈ Rd is a vector containing d equally spaced samples
of the interval [0, 2π] and f0(θ) is the mean radius function.
For all experiments, we use d = 100 and f(θ) = 0.5.

To add randomness to the mean shape, we use Gaussian
Processes (GP), defined by a mean and an exponentiated
quadratic kernel

kmid(θi, θj) = σ2
mid exp

(
− (g(θi)− g(θj))

2

2l2mid

)
, (13)

where θi, θj ∈ θ, g : R → R is a function that transforms
the domain and mid can be zero or one depending on the
stochastic model in Eq. 14 we are discussing.

We define ϵ0(θ) in Equation 12 as the sum of two zero-
mean GPs with g = sin and g = cos in Eq. 13, respectively.
Using these periodic functions ensures that the start and
end of the θ interval are mapped to the same radius. The
kernel’s parameters σ0 and l0 define the shape of the contour
by affecting the amplitude and the frequency of the angle-
correlated noise. We set these parameters to σ0 = 0.003 and
l0 = 0.9.

To obtain a binary mask from the zero-centered shape
defined by the polar coordinates (θ, r(θ)), we first convert
them to Cartesian coordinates with the mappings y = r sin(θ)
and x = r cos(θ). Then, we use scikit-image’s polygon2mask
code to rasterize the resulting closed polygon in a square grid
with the target resolution of 300 × 300 pixels. The panel in
the upper left corner of Figure 5 shows a N = 100 ensemble
generated by sampling the base model r0 (D1).

For the experiments, we define five datasets of contour
ensembles (D2-D6 in Figure 5) based on the three types of
outliers we describe next. In all cases, we obtain an outlier-
contaminated ensemble by sampling from the mixture

r(θ) = r0(θ) + ρr1(θ), (14)

where ρ ∼ Bern(0.1) introduces an outlier with a probability
of 0.1 and r1 is defined analogously to r0 in Equation 12.
In the following, we describe how we model different outlier
types by modifying r1.

First, we consider magnitude outliers in which we alter the
shape’s mean radius. We define the auxiliary random variable
sign = 2γ− 1 where γ ∼ Bern(0.5). sign indicates whether
the magnitude contamination corresponds to shrinking (-1)
or enlarging (1) the shape. The first dataset with magnitude
outliers is the Symmetric Magnitude Contamination (D2) for
which f1(θ) = 0.3 · sign. We define a second dataset with
magnitude outliers which we call Peaks Magnitude Contami-
nation (D3). Instead of changing the magnitude of the shape’s
radius, in D3 we only contaminate a subinterval (θl, θr) of θ

where θl < θr and both θl and θr are uniformly distributed
random variables. Specifically, for D3, we define f1 as

f1(θ) =

{
sign · inc θl ≤ θ ≤ θr

0 otherwise

where inc = 0.3, and θl and θr are defined for every θi ∈ θ.
The second type of outlier we consider is shape outliers. To

obtain shape outliers, instead of altering the mean radius of
the circular shape, we modify the parameters of the covariance
matrix of ϵ1 which define the amplitude (σ1) and the frequency
(l1) of the noise along the shape’s boundary. Specifically,
increasing σ1 leads to higher amplitude while increasing l1
increases the number of peaks. For the Shape Inside (D4)
dataset, we keep σ1 = 0.003 but decrease the frequency to
l1 = 0.01 to ensure that the shape varies while staying within
the ensemble’s envelope. For the Shape Outside (D5) dataset,
we set σ1 = 0.009 and l1 = 0.04, which results in highly
varying shapes that spill outside the bounds defined by the
normal members of the ensemble. We expect D4 outliers to
be more challenging to detect than D5 ones, given that they
fall inside the ensemble’s envelope.

The final type of outlier we consider are topological outliers
which correspond to contours that have holes or disconnected
components not present in other members of the ensemble.
To create the Different Topologies dataset (D6), we randomly
downscale r1 using a uniform distribution between 0.1 and 0.2
for the scaling factor. Note that we use the same parameters
for r1 as for r0. After determining the (x, y) coordinates of the
shrank shape, we translate them to a random location that lies
either inside or outside (with equal probability) of the mean
circular shape defined by r0.

For the experiments, we consider several ensemble sizes
N ∈ {i ∗ 10 : 1 ≤ i ≤ imax, where imax = 10 for CBD
and imax = 30 for ID. We compute 10 realizations of each
dataset/size/depth method combination to establish the statis-
tical significance of the results. We ran all the experiments
presented in this section on a Mac Book Pro (2022) with
an M1 Pro processor (without GPU acceleration) and 32 GB
RAM.

B. Experiment 1: Scaling Behavior

Figure 6 depicts the time in seconds that each depth method
takes for ensembles of different sizes. For each size, we
compute the mean and standard deviation across replications
and datasets (D1-6). The first thing to note is that we only
ran CBD methods until N = 100. After this point, the CBD
method took too long to compute. In contrast, we considered
ensembles up to size N = 300 for ID. The figure shows how
ID and eID, with a computational complexity of O(N2), scale
more favorably than CBD methods, which are O(N3).

In addition to the aggregated runtime, we investigated the
time the preprocessing and depth calculation loop portions of
each method take. Table I shows this information for D1 with
N = 100. As the table shows, all methods spend most of their
time in the depth calculation loop (t2). CBD methods take, on
average, an order of magnitude more time than ID methods.
The large standard deviations of CBD methods’ timings are
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Fig. 5. The first row presents an overview of the synthetic datasets we used in the experiments, with the outliers highlighted in orange. The last four rows
plot the ensembles assigning the lines’ colors based on the depths each method yielded. Darker and brighter colors denote lower and higher depth values,
respectively. The color scale was scaled based on the min and max depth value per dataset/depth method combination to facilitate the comparison of the
depth-induced rankings across methods.

TABLE I
MEAN AND STANDARD DEVIATION OF THE PREPROCESSING (T1), DEPTH
CALCULATION LOOP (T2) AND FULL (T3=T1+T2) TIMES IN SECONDS FOR

D1 WITH N = 100.

Method t1 (secs) t2 (secs) t3 (secs)

CBD 6.75 ± 1.77 612.31 ± 351.40 619.06 ± 351.14
mCBD 6.48 ± 1.46 697.02 ± 328.91 703.50 ± 328.49
ID 0.00 ± 0.00 2.31 ± 0.37 2.31 ± 0.37
eID 0.00 ± 0.00 7.37 ± 3.98 7.37 ± 3.98

caused by outlier timings that arose likely due to other
processes in the machine interfering with the experiment’s
process. Within each method family, the modified version takes
more time because they require more operations than the strict
versions. Finally, CBD methods have a larger preprocessing
time (t1) than ID methods, which do not require preprocessing.
This is specific to our implementation, which precomputes
CBD’s bands before starting the depth calculation loop.

C. Experiment 2: Outlier Detection

Depths can be used to perform robust statistical analysis
by removing outliers, which are contours with low depth.
For the second experiment, we evaluate ID’s performance in
identifying outliers in D2-D6 in Fig. 5. Specifically, given a
set of outliers Om for a method m and a reference set Or,

Fig. 6. Comparison of mean runtimes across datasets and replications of CBD,
mCBD, ID and eID. Both x and y-axis use logarithmic scales and shaded area
denotes the 95 percent confidence interval.

we compute the percentage of correctly identified outliers with
respect to the reference set as

POm,r =

{
0 if |Or| = 0
|Om∩Or|

|Or| otherwise,
(15)

where | · | denotes the number of outliers in the set.
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TABLE II
AVERAGE PERCENTAGE OF OUTLIERS THAT CONTOUR BAND DEPTH

(CBD) AND INCLUSION DEPTH (ID) METHODS DETECTED WITH RESPECT
TO THE GROUND TRUTH OUTLIERS FOR N = 100.

CBD (%) mCBD (%) ID (%) eID (%)
Dataset

D2 76.16 ± 13.31 98.12 ± 4.22 90.08 ± 7.68 98.12 ± 4.22
D3 77.54 ± 14.67 58.94 ± 13.19 71.46 ± 14.48 49.89 ± 14.20
D4 88.14 ± 15.59 17.43 ± 14.74 85.07 ± 14.34 8.06 ± 7.68
D5 85.21 ± 16.92 69.27 ± 8.94 83.37 ± 18.90 54.54 ± 7.78
D6 66.11 ± 9.31 68.19 ± 16.23 81.46 ± 13.33 66.52 ± 18.90

For a method m, we define its set of outliers Om as the
⌈Nα⌉ members with the lowest depths, where ⌈·⌉ is the
ceiling operator. For the results we report next, we used
α = 0.3. We compare the outliers of each depth method
identified against the ground truth (GT) outliers, which we
define as the reference set Or. Table II shows the mean and
the standard deviation of the percentage of the outliers each
method detected with respect to the GT ones for D2-D6 with
N = 100.

As the table indicates, except for D2, strict depth methods
are more effective at identifying outliers. This result agrees
with the functional depth literature, which shows that strict
depth methods have a higher sensitivity to outliers [13].
The most challenging dataset for mCBD and eID was D4,
with inside-shape outliers. Although both methods performed
poorly, mCBD did a better job, which potentially indicates
that the extra comparisons of CBD endow the method with a
higher sensitivity for detecting shape outliers.

As the table indicates, no strict method consistently out-
performs the other. ID performed better for the dataset with
symmetric magnitude contamination (D2) and topological
outliers (D6). In the other cases, CBD achieved better scores.
Similarly, except for D4, the performance of modified depth
methods was comparable across datasets. These results show
how, in practice, the choice of method will depend on the
type of data at hand. In agreement with previous literature in
band depths [7], [13], the strength of CBD lies in identifying
outliers like those in D4, which have a significantly different
shape but fall within the ensemble’s band envelope.

Finally, we also compare the methods’ outlier detection
performance qualitatively. The four bottom rows of Figure 5
present the spaghetti plots with lines colored according to the
depths that different methods yield. The figure evidences the
similarities between CBD and ID, and mCBD and eID. CBD
and ID produce a wider range of depth values, demonstrated
by the color gradient which contains black and bright yellow
lines. In contrast, mCBD and eID yield mostly high-depth
scores with some contours receiving lower ones. Graphically,
this translates to overall brighter color gradients. Despite this
visual change, it is possible to observe that in most cases, the
depth-induced rankings of the contours are similar between
strict and modified versions.

D. Experiment 3: Estimator’s Robustness

Depth values permit generalizing uni-variate order and rank
statistics to the multivariate case. For this experiment, we are

interested in the quality of the trimmed mean, which is one
of the robust statistics that the contour boxplot visualization
uses. To compute the α-trimmed mean (Mα

m) of an ensemble
of contours we average binary masks of the top N − ⌈Nα⌉
contours, depth-wise, and extract a new contour from the
resulting scalar field using 0.5 as iso-value. Specifically, we
compute the α-trimmed mean contour for method m using the
expression

Mα
m =

∑N−⌈Nα⌉
i=1 in(ci)

N − ⌈Nα⌉
, (16)

where in(c1), ..., in(cN−⌈Nα⌉) are the binary masks of the
inside regions associated with the N − ⌈Nα⌉ contours with
the highest depth, according to method m. In addition to
each method’s trimmed mean, we also consider the sample
mean (MS), which we compute per dataset/replication com-
bination by using Eq. 16 without trimming the ensemble. MS

represents a worst-case scenario in which outliers were not
removed. For the experiments in this section, we set α = 0.3.

A robust trimmed mean is one not affected by outliers. In
other words, the trimmed mean contour should be close to the
population’s average shape. Therefore, to evaluate the depth
methods’ estimators, we compare them against the binary
mask of f0 in Eq. 12, which we denote MP . To compare
the trimmed means with MP we compute the mean squared
error (MSE) between the masks

MSE(Mα
m,Mα

P ) =

∑rows
r=0

∑cols
c=0[M

α
m(r, c)−Mα

P (r, c)]
2

rows× cols
,

(17)
where Mα

m(r, c) is the value of the binary array of the trimmed
mean Mα

i under consideration at the given row and column.
Table III presents the mean and the standard deviation of the

MSE for D1-D6 with the ensemble size N = 100. Both CBD
and ID methods yield lower average MSE when compared
to the sample mean MS . This shows that removing outliers,
only considering the most central contours, leads to more
robust estimators closer to the population mean MP . In most
cases, the mean MSE of MCBD

α is higher than that of M ID
α .

The same observation holds for the modified versions, which
suggests that the outliers ID methods remove contribute more
to deviating the trimmed mean from the population estimate.
Finally, modified depth methods obtain lower MSE than their
strict counterparts. Considering that strict methods performed
better at identifying outliers, this result suggests that other con-
tours besides artificially introduced outliers might contribute
more towards making the mean estimates less robust. These
results show that both CBD and ID methods yield robust mean
estimates that are closer to the population estimate than MS .

VII. VISUAL COMPARISON ON REAL DATA

The previous results demonstrated ID’s robustness and more
favorable scaling behavior compared to CBD using synthetic
data. We now illustrate the use of ID with medical image se-
mantic segmentation and meteorological forecasting datasets.
The contours in these real datasets tend to cross over a
lot. Therefore, we focus the analysis on eID, which yields
more visually meaningful results in these cases. Unless stated
otherwise, we used the same setup for the depth computation
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TABLE III
AVERAGE MSE BETWEEN POPULATION ESTIMATE MP , AND THE

SAMPLE MEAN (MS ) AND ALPHA-TRIMMED MEANS OBTAINED WITH
CBD (Mα

CBD ), MCBD (Mα
mCBD ), ID (Mα

ID ) AND EID (Mα
eID )

DEPTHS. WE COMPUTE THE AVERAGE MSE ACROSS REPLICATIONS FOR
N = 100 AND INCLUDE ALSO THE STANDARD DEVIATION OF THE
ESTIMATES. WE MULTIPLY BOTH THE MEAN AND STD BY ×102 TO

REDUCE CLUTTER.

MS Mα
CBD Mα

mCBD Mα
ID Mα

eID
Dataset

D1 1.42 ± 0.06 1.17 ± 0.10 1.13 ± 0.04 1.15 ± 0.08 1.12 ± 0.05
D2 1.77 ± 0.08 1.47 ± 0.12 1.32 ± 0.14 1.37 ± 0.14 1.31 ± 0.12
D3 1.51 ± 0.08 1.26 ± 0.11 1.20 ± 0.12 1.24 ± 0.10 1.18 ± 0.11
D4 1.46 ± 0.08 1.24 ± 0.09 1.14 ± 0.05 1.22 ± 0.08 1.13 ± 0.05
D5 1.50 ± 0.08 1.24 ± 0.10 1.17 ± 0.07 1.24 ± 0.10 1.17 ± 0.07
D6 1.60 ± 0.16 1.48 ± 0.23 1.17 ± 0.08 1.24 ± 0.14 1.15 ± 0.06

methods and ran the analyses in the same machine as in the
experiments with synthetic data.

A. Medical Image Segmentation Ensembles

1) Data: In image-guided medical specialties, clinicians
use three-dimensional images of the patient’s anatomy to
plan the treatment. A core step of the treatment planning
process is to segment anatomies of interest like malignancies
and the organs-at-risk. With the advent of deep learning-
based auto-contouring technologies, this step has been largely
automated [29]. Nevertheless, clinicians still need to perform
a quality assessment of the segmentations, which requires
understanding the uncertainty in the predictions.

We consider the computerized tomography (CT) of a patient
with head and neck cancer treated at HollandPTC between
2018 and 2020. The IRB approved the research protocol for
the use of patient data in research, all patients signed an
informed consent form. For the analysis, we focus on the
brain stem and the parotid gland because these structures are
not always clearly visible in CT, which can increase inter-
clinician variability. In these cases, a visual statistical summary
can help clinicians understand the range of predictions. We
used a collection of 3D segmentation models based on the
popular UNet architecture [30] to generate an ensemble of
segmentation predictions of the right parotid gland. Specifi-
cally, we trained 30 models on different subsets of the training
split of the dataset of the Head and Neck Auto Segmentation
MICCAI Challenge [31], a technique known as bootstrapping
in the machine learning community. The MICCAI dataset
contains CT scans of patients with head and neck cancer
with ground truth segmentations of nine organs at risk. To
further augment the ensemble size, and the variability of the
predictions, we trained each model using different learnable
weight initializations. Using the resulting models to segment
the parotid gland yields an ensemble of 120 scalar maps
of per-voxel softmax probabilities. We extracted the contour
ensemble that CBD and ID receive as input by thresholding
these arrays with an iso-value of 0.8. For the results below,
we computed the depths of the ensemble of contours in 2D
540 × 540 pixels slices of the right parotid gland and brain
stem segmentation volumes.

2) Analysis: The top row of Figure 7 visualizes the raw
ensemble of contours of the brain stem and parotid gland

Right parotid gland
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Fig. 7. Contour boxplots that provide a statistical summary of an ensemble of
contours of a slice of the brain stem (top row) and right parotid gland (bottom
row) of a head-and-neck cancer patient. We generated the contour boxplots
using the depths obtained from the mCBD and eID. The yellow and blue lines
correspond to the median and mean, respectively. Two bands are depicted in
shades of purple as formed by members with the top 50% and 100% depths,
not considering outliers, which are shown using dashed red lines.

using spaghetti plots. The variability in the contours of the
two structures differs. The brain stem shows significantly more
variability than the parotid gland, especially on the upper left
side where several contour lines go out of the way of the main
shape. One possible reason for this behavior is that the brain
stem is harder to segment on a CT scan because of the lack
of contrast and landmarks. In these cases, clinicians usually
require additional image modalities like magnetic resonance.
In contrast, even though the parotid gland is also made of soft
tissue, it is surrounded by bone tissue and visible landmarks
like the patient’s face, which makes it slightly easier to
segment using CT alone. Nevertheless, similar to the brain
stem, in the lower right part of the parotid gland, where there is
less contrast, it is possible to observe how the model produced
more variable results.

Visual statistical summaries remove the need from pre-
senting all ensemble members while still conveying relevant
statistical features like the representative contours and the
ensemble’s variability. For each anatomical structure, Figure 7
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5.6 secs 0.2 secs

Spaghetti plot eIDmCBD

Fig. 8. mCBD and eID depths for an ensemble of 500 hPa geopotential height contour lines. The inset of each method presents the corresponding contour
boxplot with the N × 20% = 10 contours with the lowest depth set as outliers.

presents contour boxplots generated with depths from the
mCBD and eID, using α = 0.1 for the trimming. The first
thing to note is the different runtimes. For a N = 100
ensemble, mCBD took more than twenty minutes to compute
the depths. In contrast, it took eID seconds. These results show
that ID can support larger datasets without requiring special
hardware, which increases its practical value.

In terms of the boxplot’s statistical features, we start by
analyzing the median, depicted as a yellow line. In both cases,
the median that mCBD and eID yield is not the same contour.
Nevertheless, the contours’ shapes are visually similar. When
we inspected the raw data, we noticed both medians obtained
high depth with both methods, but their ranks varied, which
resulted in a different contour being displayed. The similarity
of the rankings induced by mCBD and eID depths can be
observed by comparing the method’s trimmed means (blue
lines). The figure shows how the means are similar, which
indicates stable rankings of the contours. Finally, the figure
shows that the three methods identified the most visually
deviant contours of the brain stem and the parotid gland as
outliers, which is another reason for the stability of the α-
trimmed mean across methods.

B. Meteorological Forecasting
1) Data: A common use case for contour statistical models

is to analyze meteorological forecast data. In this work, we
consider data from the European Centre for Medium-Range
Weather Forecasts (ECMWF). Specifically, the ECMWF En-
semble Prediction System (ENS) provides ensembles of pre-
dictions for different variables like precipitation, temperature,
and pressure. The forecasts include N = 50 perturbed mem-
bers and a control run. We analyze the same data as in [5],
which is the forecast from 00:00 UTC 15 October 2012. More
details about this type of data can be found at [32]. The region
under consideration encompasses 101 × 41 × 62 grid points,
which corresponds to latitude, longitude, and geopotential
height dimensions. For the analysis, we consider 2D fields,
corresponding slices of the region where the geopotential
height is 500hPa. To obtain contours from this field, we
threshold them using an iso-value of 5600 m. The left-most
panel of Figure 8, depicts the extracted contours laid over the
geographical region they span.

2) Analysis: Without any coloring or grouping of the lines
in the first column of Figure 8 it is hard to discern patterns
and main trends in the ensemble. The second and third panels
of Figure 8 color the lines using the depth that mCBD and eID
assigned to each contour. Darker and brighter colors represent
lower and higher values, respectively. We scaled the color
scale based on the min and max depth each method yielded.
It is possible to observe how mCBD and eID yield similar
depth scores, evident when comparing the color gradients.
Nevertheless, similarly to the case of segmentation data, the
specific depth values vary, altering the depth-induced rankings.
The insets in the second and third panels show how differ-
ent rankings lead to different medians (yellow lines) being
displayed. Despite the median varying, the 0.1-trimmed mean
(blue line) and outliers (red dashed lines) show that the outlier
sets (dashed red lines) of mCBD and eID largely overlap,
which leads to robust mean estimates that are visually similar.

VIII. DISCUSSION AND CONCLUSION

In this paper, we presented Inclusion Depth (ID), a new
depth notion applicable to contour ensembles. The concept
of statistical depth permits extending order and rank-based
statistics to the multivariate case. Depth-induced orderings
allow summarizing the ensemble members in terms of their
median, trimmed mean, and confidence bands, and obtaining
robust estimators by removing outliers.

ID provides theoretical guarantees on the depth estimates,
derived from its relationship with Half-Region Depth. Ad-
ditionally, based on the simple principle of assessing con-
tours inside/outside relationships, ID is accessible and its
results interpretable. Using synthetic data we demonstrated
ID’s more favorable O(N2) scaling, compared CBD’s O(N3)
[7]. Furthermore, the experiments showed that ID and eID
are successful at identifying a wide range of outliers and
yield robust estimators of the ensemble’s mean, comparable
to CBD’s. These robust estimators enable extending robust
statistical theory and analysis to contours. Finally, by applying
ID to real datasets, we further demonstrated the method’s
practical value to analyze contour ensembles when paired with
visualizations like contour boxplots.

In the literature, it has been noted that CBD can be
accelerated in several ways. First, CBD’s outer loop is highly
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parallelizable, so it could significantly profit from GPU ac-
celeration. In this paper, we did not focus on improvements
that could be added on top of the methods. Rather, we
propose an alternative depth notion that is asymptotically faster
than CBD. Similarly to CBD, ID has a highly parallelizable
loop, so this improvement would also benefit ID. Second, in
terms of algorithmic improvements, [33] proposes a faster
way to compute functional Band Depth. Contours, with the
different possible topologies, are not straightforward to adapt
to this methodology. Therefore, it remains future work to
verify whether these optimizations are possible. Same as with
parallelization, it holds that such an improvement would likely
benefit both CBD and ID.

The experiments with synthetic data showed that ID and
eID detect outliers with comparable performance to CBD
across several outlier types. Nevertheless, there is still room for
improvement. Particularly in the case of eID, which performed
weakly at identifying shape outliers with a magnitude similar
to other ensemble members. Improving outlying detection per-
formance constitutes future work. We anticipate that introduc-
ing information about the contour’s metric structure, similar
to [6], could help in cases where inside/outside relationships
do not suffice. Second, the eID can assign low non-zero
depth scores to outlying contours. mCBD uses an automatic
thresholding method that optimizes the ensemble’s mean depth
to set outliers’ depth to zero. This procedure removes the
need to find a threshold for the trimming operations via trial
and error, like in eID’s case. To reduce users’ burden, we
will investigate options to integrate an automated thresholding
procedure similar to mCBD’s in our framework.

The improved computational complexity of ID brings within
reach the usage of depth-based order and rank statistics
for larger datasets in interactive settings. In domains like
computer-aided design, simulation, and medical image seg-
mentation, it is common to deal with three-dimensional objects
[11]. Our method is quite general and can be applied to three-
dimensional contours with ease. Second, currently unimodal
distribution is assumed, however, when studying contour’s
ensembles it is common to first identify the main modes of
variation [4], [19], [34]. CBD could make this identification
more robust to certain types of outliers [15] but at the cost
of reduced interactivity. Using ID instead would permit per-
forming real-time interactive depth-based clustering on larger
contour ensembles. Finally, the interactivity that ID unlocks
calls for reimagining contour boxplots for interactive scenar-
ios. For instance, it could be possible to change parameters
or weights in the depth function and see them reflected in the
contour boxplot in real time.
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