#include <itkFiniteDifferenceGradientDescentOptimizer.h>
An optimizer based on gradient descent ...
If is a costfunction that has to be minimised, the following iterative algorithm is used to find the optimal parameters x:
for all parameters .
From this equation it is clear that it a gradient descent optimizer, using a finite difference approximation of the gradient.
The gain at each iteration is defined by:
The perturbation size at each iteration is defined by:
Note the similarities to the SimultaneousPerturbation optimizer and the StandardGradientDescent optimizer.
Definition at line 55 of file itkFiniteDifferenceGradientDescentOptimizer.h.
Public Types | |
using | ConstPointer = SmartPointer<const Self> |
using | Pointer = SmartPointer<Self> |
using | Self = FiniteDifferenceGradientDescentOptimizer |
enum | StopConditionType { MaximumNumberOfIterations , MetricError } |
using | Superclass = ScaledSingleValuedNonLinearOptimizer |
Public Types inherited from itk::ScaledSingleValuedNonLinearOptimizer | |
using | ConstPointer = SmartPointer<const Self> |
using | Pointer = SmartPointer<Self> |
using | ScaledCostFunctionPointer = ScaledCostFunctionType::Pointer |
using | ScaledCostFunctionType = ScaledSingleValuedCostFunction |
using | ScalesType = NonLinearOptimizer::ScalesType |
using | Self = ScaledSingleValuedNonLinearOptimizer |
using | Superclass = SingleValuedNonLinearOptimizer |
Public Member Functions | |
virtual void | AdvanceOneStep () |
virtual void | ComputeCurrentValueOff () |
virtual void | ComputeCurrentValueOn () |
virtual const char * | GetClassName () const |
virtual bool | GetComputeCurrentValue () const |
virtual unsigned long | GetCurrentIteration () const |
virtual double | GetGradientMagnitude () const |
virtual double | GetLearningRate () const |
virtual unsigned long | GetNumberOfIterations () const |
virtual double | GetParam_A () const |
virtual double | GetParam_a () const |
virtual double | GetParam_alpha () const |
virtual double | GetParam_c () const |
virtual double | GetParam_gamma () const |
virtual StopConditionType | GetStopCondition () const |
virtual double | GetValue () const |
ITK_DISALLOW_COPY_AND_MOVE (FiniteDifferenceGradientDescentOptimizer) | |
void | ResumeOptimization () |
virtual void | SetComputeCurrentValue (bool _arg) |
virtual void | SetNumberOfIterations (unsigned long _arg) |
virtual void | SetParam_A (double _arg) |
virtual void | SetParam_a (double _arg) |
virtual void | SetParam_alpha (double _arg) |
virtual void | SetParam_c (double _arg) |
virtual void | SetParam_gamma (double _arg) |
void | StartOptimization () override |
void | StopOptimization () |
Public Member Functions inherited from itk::ScaledSingleValuedNonLinearOptimizer | |
const ParametersType & | GetCurrentPosition () const override |
virtual bool | GetMaximize () const |
virtual const ScaledCostFunctionType * | GetScaledCostFunction () |
virtual const ParametersType & | GetScaledCurrentPosition () |
bool | GetUseScales () const |
virtual void | InitializeScales () |
ITK_DISALLOW_COPY_AND_MOVE (ScaledSingleValuedNonLinearOptimizer) | |
virtual void | MaximizeOff () |
virtual void | MaximizeOn () |
void | SetCostFunction (CostFunctionType *costFunction) override |
virtual void | SetMaximize (bool _arg) |
virtual void | SetUseScales (bool arg) |
Static Public Member Functions | |
static Pointer | New () |
Static Public Member Functions inherited from itk::ScaledSingleValuedNonLinearOptimizer | |
static Pointer | New () |
Protected Member Functions | |
virtual double | Compute_a (unsigned long k) const |
virtual double | Compute_c (unsigned long k) const |
FiniteDifferenceGradientDescentOptimizer () | |
void | PrintSelf (std::ostream &os, Indent indent) const override |
~FiniteDifferenceGradientDescentOptimizer () override=default | |
Protected Member Functions inherited from itk::ScaledSingleValuedNonLinearOptimizer | |
virtual void | GetScaledDerivative (const ParametersType ¶meters, DerivativeType &derivative) const |
virtual MeasureType | GetScaledValue (const ParametersType ¶meters) const |
virtual void | GetScaledValueAndDerivative (const ParametersType ¶meters, MeasureType &value, DerivativeType &derivative) const |
void | PrintSelf (std::ostream &os, Indent indent) const override |
ScaledSingleValuedNonLinearOptimizer () | |
void | SetCurrentPosition (const ParametersType ¶m) override |
virtual void | SetScaledCurrentPosition (const ParametersType ¶meters) |
~ScaledSingleValuedNonLinearOptimizer () override=default | |
Protected Attributes | |
bool | m_ComputeCurrentValue { false } |
DerivativeType | m_Gradient {} |
double | m_GradientMagnitude { 0.0 } |
double | m_LearningRate { 0.0 } |
Protected Attributes inherited from itk::ScaledSingleValuedNonLinearOptimizer | |
ScaledCostFunctionPointer | m_ScaledCostFunction {} |
ParametersType | m_ScaledCurrentPosition {} |
Private Attributes | |
unsigned long | m_CurrentIteration { 0 } |
unsigned long | m_NumberOfIterations { 100 } |
double | m_Param_A { 1.0 } |
double | m_Param_a { 1.0 } |
double | m_Param_alpha { 0.602 } |
double | m_Param_c { 1.0 } |
double | m_Param_gamma { 0.101 } |
bool | m_Stop { false } |
StopConditionType | m_StopCondition { MaximumNumberOfIterations } |
double | m_Value { 0.0 } |
using itk::FiniteDifferenceGradientDescentOptimizer::ConstPointer = SmartPointer<const Self> |
Definition at line 64 of file itkFiniteDifferenceGradientDescentOptimizer.h.
using itk::FiniteDifferenceGradientDescentOptimizer::Pointer = SmartPointer<Self> |
Definition at line 63 of file itkFiniteDifferenceGradientDescentOptimizer.h.
using itk::FiniteDifferenceGradientDescentOptimizer::Self = FiniteDifferenceGradientDescentOptimizer |
Standard class typedefs.
Definition at line 61 of file itkFiniteDifferenceGradientDescentOptimizer.h.
using itk::FiniteDifferenceGradientDescentOptimizer::Superclass = ScaledSingleValuedNonLinearOptimizer |
Definition at line 62 of file itkFiniteDifferenceGradientDescentOptimizer.h.
Codes of stopping conditions
Enumerator | |
---|---|
MaximumNumberOfIterations | |
MetricError |
Definition at line 73 of file itkFiniteDifferenceGradientDescentOptimizer.h.
|
protected |
|
overrideprotecteddefault |
|
virtual |
Advance one step following the gradient direction.
|
protectedvirtual |
|
protectedvirtual |
|
virtual |
|
virtual |
|
virtual |
Run-time type information (and related methods).
Reimplemented from itk::ScaledSingleValuedNonLinearOptimizer.
Reimplemented in elastix::FiniteDifferenceGradientDescent< TElastix >.
|
virtual |
|
virtual |
Get the current iteration number.
|
virtual |
Get the CurrentStepLength, GradientMagnitude and LearningRate (a_k)
|
virtual |
|
virtual |
Get the number of iterations.
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
|
virtual |
Get Stop condition.
|
virtual |
Get the current value.
itk::FiniteDifferenceGradientDescentOptimizer::ITK_DISALLOW_COPY_AND_MOVE | ( | FiniteDifferenceGradientDescentOptimizer | ) |
|
static |
Method for creation through the object factory.
|
overrideprotected |
PrintSelf method.
void itk::FiniteDifferenceGradientDescentOptimizer::ResumeOptimization | ( | ) |
Resume previously stopped optimization with current parameters
|
virtual |
|
virtual |
Set the number of iterations.
|
virtual |
Set/Get A.
|
virtual |
Set/Get a.
|
virtual |
Set/Get alpha.
|
virtual |
Set/Get c.
|
virtual |
Set/Get gamma.
|
override |
Start optimization.
void itk::FiniteDifferenceGradientDescentOptimizer::StopOptimization | ( | ) |
Stop optimization.
|
protected |
Boolean that says if the current value of the metric has to be computed. This is not necessary for optimisation; just nice for progress information.
Definition at line 158 of file itkFiniteDifferenceGradientDescentOptimizer.h.
|
private |
Definition at line 173 of file itkFiniteDifferenceGradientDescentOptimizer.h.
|
protected |
Definition at line 149 of file itkFiniteDifferenceGradientDescentOptimizer.h.
|
protected |
Definition at line 151 of file itkFiniteDifferenceGradientDescentOptimizer.h.
|
protected |
Definition at line 150 of file itkFiniteDifferenceGradientDescentOptimizer.h.
|
private |
Definition at line 172 of file itkFiniteDifferenceGradientDescentOptimizer.h.
|
private |
Definition at line 178 of file itkFiniteDifferenceGradientDescentOptimizer.h.
|
private |
Parameters, as described by Spall.
Definition at line 176 of file itkFiniteDifferenceGradientDescentOptimizer.h.
|
private |
Definition at line 179 of file itkFiniteDifferenceGradientDescentOptimizer.h.
|
private |
Definition at line 177 of file itkFiniteDifferenceGradientDescentOptimizer.h.
|
private |
Definition at line 180 of file itkFiniteDifferenceGradientDescentOptimizer.h.
|
private |
Private member variables.
Definition at line 169 of file itkFiniteDifferenceGradientDescentOptimizer.h.
|
private |
Definition at line 171 of file itkFiniteDifferenceGradientDescentOptimizer.h.
|
private |
Definition at line 170 of file itkFiniteDifferenceGradientDescentOptimizer.h.
Generated on 2024-07-17 for elastix by 1.11.0 (9b424b03c9833626cd435af22a444888fbbb192d) |